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Analyzing causal structures using Tsallis entropies
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Understanding cause-effect relationships is a crucial part of the scientific process. As Bell’s theorem shows,
within a given causal structure, classical and quantum physics impose different constraints on the correlations
that are realizable, a fundamental feature that has technological applications. However, in general it is difficult
to distinguish the set of classical and quantum correlations within a causal structure. Here we investigate a
method to do this based on using entropy vectors for Tsallis entropies. We derive constraints on the Tsallis
entropies that are implied by (conditional) independence between classical random variables and apply these to
causal structures. We find that the number of independent constraints needed to characterize the causal structure
is prohibitively high such that the computations required for the standard entropy vector method cannot be
employed even for small causal structures. Instead, without solving the whole problem, we find new Tsallis
entropic constraints for the triangle causal structure by generalizing known Shannon constraints. Our results
reveal mathematical properties of classical and quantum Tsallis entropies and highlight difficulties of using

Tsallis entropies for analyzing causal structures.
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I. INTRODUCTION

Cause-effect relationships between physical systems con-
strain the correlations that can arise between them. The study
of causality allows us to explain observed correlations be-
tween different variables in terms of unobserved systems that
cause these variables to become correlated. This has found ap-
plications in diverse fields of research such as medical testing,
socioeconomic surveys and physics. The foundational interest
in causal structures stems from the fact that the theory that
describes the unobserved systems affects the set of possible
correlations over the observed variables. Bell inequalities [1]
are constraints on the observed correlations in a classical
causal structure [Fig. 1(a)] and can be violated in quantum
and generalized probabilistic theories (GPTs). The possibility
of such violations leads to applications in device-independent
cryptography [2-7].

In the bipartite Bell causal structure [Fig. 1(a)], the set of
all joint conditional distributions Pyy4p over the observed
nodes X, Y, A, and B that can arise when A is classical is
relatively well understood. For fixed input and output sizes,
it forms a convex polytope and hence membership can be
checked using a linear program (although the size of the linear
program scales exponentially with the number of inputs and
the problem is NP-complete [8]). Because of this, the com-
plete set of Bell inequalities characterizing these polytopes is
unknown for |X|, |Y| > 3 or |A|, |B| > 5 [9-11].

In causal structures with more unobserved common causes
[such as the triangle causal structure of Fig. 1(b)], the set of
compatible correlations is not well understood. The inflation
technique [12] can in principle certify whether or not a given
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distribution belongs to the classical marginal entropy cone'

of a causal structure [13]. However, the method does not
tell us how to construct a suitable inflation of the causal
structure in order to achieve this, or how large this inflation
needs to be. Thus, in general, using the inflation technique
becomes intractable in practice. The difficulty of solving the
general problem in part stems from its nonconvexity. One
approach to overcoming this is to analyze the problem in
entropy space [14]. This has proven to be useful in a number
of cases (see, e.g., [15,16], or [17] for a detailed review),
since the problem is convex in entropy space and the entropic
inequalities characterizing the relevant sets are independent
of the number of measurement outcomes. However, it was
shown in [18] that the entropy vector method with Shannon
entropies cannot detect the classical-quantum gap for linelike
causal structures.” Further, even though new Shannon entropic
inequalities have been derived using this method, no quantum
violation of these has been found for a range of causal
structures where nonclassical correlations are known to exist
[20,21]. Due to these limitations of Shannon entropies, it
is natural to ask whether other entropic quantities could do
better.

Here we consider Tsallis entropies in the entropy vector
method for analyzing causal structures. One motivation for
considering such entropies for the task is that they are a family

I'The set of possible entropy vectors over the observed nodes of the
classical causal structure.

Note that this result holds for the entropic characterization without
postselection. Using the postselection technique (see, e.g., [17] for an
explanation), one can derive quantum-violatable Shannon entropic
inequalities even for linelike causal structures [19]; however, this
technique is not generalizable to causal structures that have no
parentless observed nodes, such as in Fig. 1(b).
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FIG. 1. Some causal structures: Observed nodes are circled and
the uncircled ones correspond to unobserved nodes. (a) The bipartite
Bell causal structure. The nodes A and B represent the random
variables corresponding to Alice’s and Bob’s choices of input while
X and Y represent the random variables corresponding to their
outputs. A here is the only potentially unobserved node and is the
common cause of X and Y. (b) The triangle causal structure. Here,
the three observed nodes X, Y, and Z have unobserved, pairwise
common causes A, B, and C, but no joint common cause.

with an additional (real) parameter. The set of entropies for all
possible values of this parameter conveys more information
about the underlying probability distribution than a single
member of the family and hence the ability to vary a parameter
may give advantages for analyzing causal structures. Tsallis
entropies appear to be a good candidate since they satisfy
monotonicity, submodularity, and the chain rule, which are de-
sirable properties for their use in the entropy vector method.?
Tsallis entropies have been considered in the context of causal
structures before [23], where they were shown to give an ad-
vantage over Shannon entropy in detecting the nonclassicality
of certain states in the Bell scenario if one also postselects on
the values of observed parentless nodes.* Here we consider
a systematic treatment that can be applied to an arbitrary
causal structure in the absence of postselection. [Note that use
of postselection is not possible in causal structures with no
observed parentless nodes such as the triangle of Fig. 1(b)].

In Sec. IV, we derive the constraints on the classical
Tsallis entropies that are implied by a given causal structure,
and in the Appendix we generalize this result to quantum
Tsallis entropies for certain cases. In Sec. IVB, we use
these constraints in the entropy vector method with Tsallis
entropies but find that the computational procedure becomes
too time consuming even for simple causal structures such as
the bipartite Bell scenario. Despite this limitation, we derive
Tsallis entropic inequalities for the triangle causal structure
in Sec. V, using known Shannon entropic inequalities of [21]
and our Tsallis constraints of Sec. IV. In Sec. VI, we discuss
the reasons for the computational difficulty of this method,
the drawbacks of using Tsallis entropies for analyzing causal
structure, and identify potential future directions.

30ther examples of more general entropy measures such as the
Rényi entropy [22] do not satisfy one or more of these properties,
making it more difficult to get entropic constraints on them using the
entropy vector method.

“Note that nonclassicality cannot be detected entropically in the
Bell causal structure [Fig. 1(a)] without postselection [18].

II. SHANNON ENTROPY AND THE ENTROPY
VECTOR METHOD

Given a random variable X distributed according to the
discrete probability distribution® py, the Shannon entropy
of X is given by H(X) = —Y_ px(x)In px(x).° Given two
random variables X and Y, distributed according to Pyy,
the conditional Shannon entropy is defined by H(X|Y) =
— Zx,.v pxy(xy)In p;:—fg) and the Shannon mutual informa-
tion is defined by /(X : Y) = H(X) — H(X|Y). For three ran-
dom variables X, Y, and Z, we can also define the mutual
information between X and Y conditionedon Z, I(X : Y|Z) =
H(X|Z)-HX|YZ).

We will sometimes use the shorthands p, = px(x) =
p(X =x) and py, := pxy (X =x|Y =), etc., for probabil-
ity distributions.

We next provide a short overview of the entropy vec-
tor method that suffices for the purposes of this paper.
For a more detailed overview of the method, see [17].
Consider a joint distribution py, . x, over n random vari-
ables X, X5, ...,X,. With each such distribution, we as-
sociate a vector with 2" —1 components, each of which
corresponds to the entropy of an element of the power-
set of {X;, X»,...,X,} (excluding the empty set). This de-
fines the entropy vector of pyx, .x,. Note that this vec-
tor encodes the conditional entropies and mutual infor-
mation via the relations H(X|Y)=HXY)—-HY), I(X :
Y)=HX)+HY)—HXY), and I(X : Y|Z)=HXZ) +
H(YZ)—- H(XYZ)— H(Z). We use H to denote the map that
takes a probability distribution over n variables to its entropy
vector (with 2" — 1 components), and I"} to denote the set of
all vectors that are entropy vectors of a probability distribu-
tion py,  x, i€, [ ={v e R¥~!:3py, _x suchthatv =
H(px,...x,)}. The closure of I'}, denoted by 1"_;1k is known to
be a convex set for any n [24].

,,,,,

A. Shannon cone

Valid entropy vectors necessarily satisfy certain con-
straints. These include positivity of the entropies, monotonic-
ity [i.e., H(R) < H(RS)], and submodularity [also known as
strong subadditivity; H(RT )+ H(ST) > H(RST) + H(T)].
Monotonicity and submodularity are equivalent to the posi-
tivity of the conditional entropy H(S|R) and the conditional
mutual information /(R : S|T'), respectively, and hold for any
three disjoint subsets R, S, and T of {Xj, ..., X,,}. These linear
constraints are together known as the Shannon constraints
and the set of vectors u € R*~! obeying all the Shannon
constraints form the convex cone known as the Shannon cone,
I',,. Other than positivity (which, following standard practice,
we include implicitly), there are a total of n + n(n — 1)2n3
independent Shannon constraints for n variables [14]. By
definition, the Shannon cone is an outer approximation to F_j;,

>We will only be considering random variables defined on a finite
set in this paper.

®Note that it is common to take logarithms in base 2 and measure
entropy in bits; here we use base e corresponding to measuring
entropy in nats.
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ie., F_;lk C I',.” Hence all entropy vectors derived from a prob-
ability distribution py, . x, obey the Shannon constraints but
not all vectors u € R*~! obeying the Shannon constraints are
such that H(px, . x,) = u for some joint distribution py, . x,.

In the next subsection we discuss how causal structures
give additional entropic constraints.

B. Entropy vectors and causal structure

A causal structure can be represented as a directed acyclic
graph (DAG) over several nodes, some of which are labeled
observed and some of which are labeled unobserved. Each
observed node corresponds to a classical random variable,®
while for each unobserved node there is an associated system
the nature of which depends on the theory being considered.
A causal structure is called classical (denoted G©), quantum
(denoted GQ), or GPT (denoted GSPT) depending on the nature
of the unobserved nodes. In the following, we briefly review
the framework of classical causal models [25].

A distribution py, . x, over n random variables
{Xi,...,X,} is said to be compatible with a classical causal
structure G€ (with these variables as nodes) if it satisfies
the causal Markov condition, i.e., the joint distribution
decomposes as

n
Pty = [ ] Py (1)
i=1

where Xiil denotes the set of all parent nodes of the node
X; in the DAG G€. The Markov condition of Eq. (1) is
equivalent to the conditional independence of X; from its
nondescendants, denoted X[.“AL given its parents X[.l' in G,
ie,Viell,..., n},pX,_XlelL1 = pXi‘X[upX[;lX[l, [25]. All other
conditional independences between different subsets of nodes
are implied by these n constraints and can be derived from
these constraints and standard probability calculus based on
Bayes’ rule. The concept of d separation developed by Geiger
[26] and Verma and Pearl [27] provides a method to read off
implied conditional independence relations from the graph.
In other words, for arbitrary disjoint subsets X, Y, and Z of
the nodes, it can be used to determine whether X and Y are
conditionally independent given Z.

Definition 1 — Blocked paths. Let G be a DAG in which X
and Y # X are nodes and let Z be a set of nodes not containing
X or Y. A path from X to Y is said to be blocked by Z if it
contains either A —- W — BwithW € Z, A < W — B with
WeZ,orA—V < BwithV ¢ Z.

Definition 2 — d separation. Let G be a DAG in which X,
Y, and Z are disjoint sets of nodes. X and Y are d separated
by Z in G if every path from a variable in X to a variable in Y
is blocked by Z.

The importance of d separation is that, given a causal
structure G, X and Y are d separated by Z in G if and only if
I(X :Y|Z) = 0 for all distributions compatible with G [25].°
The complete set of d separation conditions gives all the

"For n < 3, the cones coincide, but for n > 4 they do not [24].
8These may represent inputs or outputs of an experiment.
Note that /(X : Y|Z) = 0 is equivalent to Pxyiz = PxizPy|z.

conditional independence relations implied by the DAG. In
the case of Shannon entropy for a DAG with n nodes these are
all implied by the n constraints:

(X :XHX") =0 Vie{l,...,n). )

In other words, a distribution over n variables satisfies Eq. (1)
if and only if it satisfies Eq. (2).

Since we wish to contrast classical and quantum versions
of causal structures we also define the latter. For the purpose
of this paper, it is sufficient to do so for causal structures with
at most two generations and in which the first generation can
be either observed classical random variables or unobserved
quantum nodes, while those of the second generation are only
observed classical variables (in the Appendix we also look at
a case in which the second generation can be quantum). Each
edge emanating from an unobserved node has an associated
Hilbert space labeled by the parent and the child. For example,
an edge from an unobserved node X to an observed node Y has
the associated Hilbert space Hy, . Each unobserved quantum
node corresponds to a density operator in the tensor product
of the Hilbert space corresponding to all the edges emanating
from that node. For each observed node, there is a positive
operator-valued measure (POVM) that acts on the tensor
product of the Hilbert spaces associated with the edges that
meet at that node. The set of distributions over observed nodes
compatible with the quantum causal structure G2 consists
of those distributions that can be obtained by performing
the specified POVMs (possibly specified by classical input
nodes in the first generation) on the relevant quantum states
and using the Born rule. For instance, a distribution Papxy
is compatible with the quantum analog of Fig. 1(a) if there
exists a quantum state p € Hp, ® H,, and POVMs {E¢},
and {E,l’}y acting on H,, and H,,, respectively, such that
Pupxy(a, b, x,y) = Ps(a)Pp(b) Tr[p(ES ® F?)] for all values
of the random variables.

Now, in the case of classical causal structures with unob-
served nodes, the compatibility condition requires that there
exists a joint distribution py, . x, over the n variables sat-
isfying the causal Markov condition and having the correct
marginals over the observed nodes. In quantum and more
general theories, the existence of a joint state over all the
nodes is not guaranteed because there may be sets of systems
that do not coexist. (For example, there is no joint quantum
state of a system and the outcome of a measurement on
it.) Because classical information can be copied, such joint
distributions always exist in the classical case. The entropy
vector method aims to exploit this difference to certify the
nonclassicality of correlations.

The entropic constraints over all the nodes will in general
imply constraints on the entropy vector over the observed
nodes. These can be obtained by Fourier-Motzkin elimination
[28]. The procedure takes the entropy cone over all nodes,
that is constrained by the n + n(n — 1)2"~3 Shannon con-
straints and the n causal constraints [Eq. (2)] and projects it
onto the entropy cone of the observed nodes (eliminating all
combinations of entropies involving unobserved nodes). Since
nonclassical causal structures do not satisfy the initial assump-
tion of the existence of the joint distribution and entropies,
they may give rise to correlations that do not satisfy the
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marginal constraints on the observed nodes obtained through
this procedure. A violation of one of the inequalities certifies
the nonclassicality of that causal structure.

For linelike causal structures [of which the bipartite Bell
causal structure of Fig. 1(a) is an instance], the classical
and quantum Shannon entropy cones coincide and Shannon
entropic inequalities cannot certify the nonclassicality of these
causal structures even though they support nonclassical corre-
lations [18]. Further, in other scenarios such as the triangle,
which is also known to support nonclassical correlations [29],
known Shannon entropic inequalities such as those of [20,21]
have no known quantum violations. The main question of the
current paper is whether using Tsallis entropies can provide
tighter, quantum violatable entropic inequalities and hence
avoid these limitations.

III. TSALLIS ENTROPIES

For a classical random variable X distributed according to
the discrete probability distribution py, the order g Tsallis
entropy of X for real parameter ¢ is defined as [30]

=1 Z{x:m>0} pilngp, ifg#1
S;X) = {H(X) ol 3)

where we have used the shorthand In, p, = ”'1‘11;1. This g-
logarithm function converges to the natural logarithm in the
limit ¢ — 1 so that lim,_,; S,(X) = H(X) and the function
is continuous in ¢. For brevity, we will henceforth write )
instead of ) (:p.=0)» keeping it implicit that probability zero
events do not contribute to the sum.!”

The conditional Tsallis entropy [31] is defined by

=X g pyy ifg#1
S = {H(XIY) ifg=1

and converges to the Shannon conditional entropy H(X|Y)
in the limit ¢ — 1. Note that there are other ways to define
the conditional Tsallis entropy [32] but they do not satisfy the
chain rule [Eq. (10)] and will not be considered here.

The unconditional and conditional Tsallis mutual informa-
tions are defined analogously to the Shannon case:

“4)

L(X 1Y) = 5,X) — S,X|Y), (5)

L(X :Y|Z) = S,(X|Z) — S,(X|Y Z). (6)

Properties of Tsallis entropies

Tsallis entropies satisfy a number of properties that are
desirable for their use in the entropy vector method. For
any joint distribution over the random variables involved the
following properties hold.

(1) Pseudoadditivity [33]: For two independent random
variables X and Y, i.e., pxyy = pxpy, and for all g, the Tsallis
entropies satisfy

SqXY) = 85,X) + S;(¥) + (1 — q@)S;(X)S,(Y).  (7)

10Note that this means the Tsallis entropy for g < 0 is not robust in
the sense that small changes in the probability distribution can lead
to large changes in the Tsallis entropy.

Note that in the Shannon case (¢ = 1) we recover additivity
for independent random variables.

(2) Upper bound [34]: For g > 0 we have S,(X) < In, dy.
For g > 0 equality is achieved if and only if Py (x) = 1/dx for
all x (i.e., if the distribution on X is uniform).

(3) Monotonicity [35]: For all g,

S,(X) < S,(XY). (8)
(4) Strong subadditivity [31]: For g > 1,
SqXYZ)+8,Z2) < S;(XZ)+ S, (Y Z). ©)]
(5) Chain rule [31]: For all ¢,

Sy X1, Xay oo X)) =) Sy(Xil Xy, .., X1, Y). (10)

i=1

The chain rules §,(XY)=S,(X)+S,Y|X) and
SqXY|Z) =8,X|Z2)+ S4(Y|XZ) emerge as particular
cases and allow the Tsallis mutual informations of Egs. (5)
and (6) to be written as

L(X 1Y) = 5,X) 4 5,(Y) — S,(XY), (11)

L(X :Y|Z) = S,(XZ) + S,(YZ) — S,(Z) — S,(XYZ). (12)

Using the chain rule, the monotonicity and strong sub-
additivity relations [Eqgs. (8) and (9)] are equivalent to the
non-negativity of the unconditional and conditional Tsallis
mutual information. For ¢ < 1, strong subadditivity does not
hold in general [31], hence we often restrict to the case g > 1
in what follows.

IV. CAUSAL CONSTRAINTS AND TSALLIS
ENTROPY VECTORS

In Sec. III, we discussed some of the general properties of
Tsallis entropy that hold irrespective of the underlying causal
structure over the variables. The causal structure imposes the
causal Markov constraints on the joint probability distribution
over the variables involved (Sec. II B) and we wish to translate
these probabilistic constraints into Tsallis entropic ones in
order to use Tsallis entropies in the entropy vector method
for analyzing causal structures.

A first observation is that Tsallis entropy vectors do not
in general satisfy the causal constraints [Eq. (2)] satisfied by
their Shannon counterparts. For a concrete counterexample,
consider the simple, three variable causal structure where Z
is a common cause of X and Y, and where there are no
other causal relations. In terms of Shannon entropies, the only
causal constraint in this case is I(X : Y|Z) = 0. Taking X, Y,
and Z to be binary variables with possible values 0 and 1, the
distribution p,,, =1/4Vx e X,yeY if z=0, and py,, =0
otherwise, satisfies pyy; = pxi:py; VX €X,yeY and z € Z
but has a g = 2 Tsallis conditional mutual information of
L(X:Y|Z)= i. Hence when using Tsallis entropies (and
conditional Tsallis entropy as defined in Sec. III) the causal
constraint cannot be simply encoded by /,(X : Y|Z) = 0 for
qg>1.

Given this observation, it is natural to ask whether there
are constraints for Tsallis entropies implied by the causal
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Markov condition [Eq. (1)]. We answer this question with the
following theorems.

Theorem 1. If a joint probability distribution pyxy over
random variables X and Y with alphabet sizes dy and dy
is separable (i.e., pxy = pxpy), then for all g € [0, co) the
Tsallis mutual information I, (X : Y') is upper bounded by

I,(X 1Y) < f(q,dx, dy),
where the function f (g, dx, dy) is given by

1 1 1
- -
(4_1)( df?_l>< d3_1>

= (g — 1DlIngdxIn,dy.

fg.dx,dy) =

For g € (0, 00) \ {1}, the bound is saturated if and only if pxy
is the uniform distribution over X and Y.

Proof. The proof follows from the pseudoadditivity of
Tsallis entropies (property 1) and the upper bound (property
2). Using these, for all g > 0 and for all separable distributions
Pxy = PxPr, we have

L(X :Y)=8,X)+S5;(Y) = S;(XY) = (g — 1S;(X)S;(Y)

1 1
(g0 )

qg—1

Whenever g € (0, oo) \ {1}, the bound is saturated if and only
if pxy is uniform over X and Y since, for these values of ¢,
S4(X) and S, (Y) both attain their maximum values if and only
if this is the case. ]
Theorem 2. If a joint probability distribution pxy satisfies
the conditional independence pxy|z = px|zpy|z, then for all

q > 1 the Tsallis conditional mutual information I,(X : Y|Z)
is upper bounded by

1,(X - Y12) < f(q, dx, dy).

= f(g,dx. dy). 13)

For g > 1, the bound is saturated only by distributions in
which for some fixed value k the joint probabilities are given

Lo if =k

by Pxyz = {((J)Xdy otherwise

Proof. Writing out I,(X : Y|Z) in terms of probabilities we
have

for all x, y, and z11

I(X :Y|Z) = qu [Z P! (xyz) + Z P'(2)
- > plxz) — Zp‘f(yz)}
= ¥
= qu ZZ:P"@[;P"(W'@ +1
= i) - qu(m)}

= qu(Z)Iq(X : Y)pxyxz::'

' These distributions have deterministic Z and there is one such
distribution for each value that Z can take.

Using this and Theorem 1, we can bound 1,(X : Y|Z) as
max I,(X :Y|Z)

Pxyz = PzPx|zPy|z

= max Zpglq(x : Y)PXY\Z::

Pxyz = PzPx\zPyiz

" Pxizpyiz

< II}]EZIX ZP? max Iq(X : Y)[’xy\z::
— q , d s d = s d s d .
II[IJ?[IXZPZ]“(C] x,dy) = f(q,dx,dy)

The last step holds because, forallg > 1, . p?is maximized
by deterministic distributions over Z with a maximum value
of 1, i.e., only distributions pxy7 that are deterministic over Z
saturate the upper bound of f(q, dx, dy). This completes the
proof. ]

Two corollaries of Theorem 2 naturally follow.

Corollary 1. Let X, Y, and Z be random variables with fixed
alphabet sizes. Then for all g > 1 we have

max I,X:Y|Z)= max [LX:Y).
Pxyz Pxy
Pxy|z = Px|zPy|z Pxy = pxpy

Furthermore, for ¢ > 1, the maximum on the left-hand side is
achieved only by distributions in which for some fixed value

.. e . L if =k
k the joint probabilities are given by p.,, = {z(r)xdy stherrice
while the maximum on the right-hand side occurs if and only
if Pxy is the uniform distribution.

The significance of these relations for causal structures is
then given by the following corollary.

Corollary 2. Let px, . x, be a distribution compatible with
the classical causal structure G and let X, Y, and Z be disjoint
subsets of {X|,...,X,} such that X and Y are d separated
given Z. Then for all ¢ > 1 we have

1,(X :Y|Z) < f(g.dx, dy),

where dy is the product of dy, for all X; € X, and likewise
for dy.

Remark 1. The results of this section can be generalized to
the quantum case under certain assumptions i.e., as constraints
on quantum Tsallis entropies implied by certain quantum
causal structures (see the Appendix for details). Note that only
constraints on the classical Tsallis entropy vectors derived in
this section are required to detect the classical-quantum gap.
Hence, the Appendix is not pertinent to the main results of
this paper but can be seen as additional results regarding the
properties of quantum Tsallis entropies.

A. Number of independent Tsallis entropic causal constraints

We saw previously that in the Shannon case (¢ = 1) the
n conditions of the form 7(X; :Xﬁ |Xil1) =0@G=1,...,n
imply all the independence relations that follow from the
causal structure. In the Tsallis case, however, the n conditions
of the form I,(X; : X' |X*") < (g, dx,, dy+) do not do the
same. In the bipartite Bell and triangle causal structures we
find that there is no redundancy amongst the 53 and 126
distinct Tsallis entropic inequalities that are implied by the
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d separation relations in the corresponding DAGs in the case
where the dimension (cardinality) of each individual node is
taken to be d. In more detail, we used linear programming to
show that each implication of d separation yields a nontrivial
entropic causal constraint for all ¢ > 1 and d > 2 for the
bipartite Bell and triangle causal structures. By comparison,
in these causal structures five and six independent Shannon
entropic constraints imply all others. As an illustration of
the difference, in the Shannon case I(A : BC) = 0 implies
I(A:B)=1I(A:C) =0, whereas the analogous implication
does not hold in the Tsallis case in general: although /,(A :
BC) < f(q. da. dpc) implies I,(A : B) < f(q. da. dpc), it is
not the case that I,(A : BC) < f(q, da, dpc) implies I (A :
B) < f(q, da. dp).”

The number of distinct conditional independences (and
hence the number of independent Tsallis constraints that
follow from d separation) in a DAG depends on the specific
graph; however, for any DAG G, with n nodes, the number
of such constraints can be upper bounded by that of the
n-node DAG where all n nodes are independent, i.e., the
n-node DAG with no edges. The number of conditions in this
DAG can be thought of as the number of ways of partitioning
n objects into four disjoint subsets'® such that the first two
are nonempty and where the ordering of the first two does not
matter. Therefore, there are at most %(4" — 2 x 3"+ 2")such
conditions.

B. Using Tsallis entropies in the entropy vector method

We used the causal constraints of Corollary 2 in the
entropy vector method with the aim of deriving quantum-
violatable entropic inequalities for the triangle causal struc-
ture [Fig. 1(b)]. To do so, we started with the vari-
ables A, B,C,X,Y, and Z of the triangle causal structure,
the Shannon constraints, and the causal constraints satis-
fied by the Tsallis entropy vectors over these variables
(Corollary 2) and used a Fourier-Motzkin (FM) elimina-
tion algorithm (from PORTA [36]) to eliminate the Tsal-
lis entropy components involving the unobserved variables
A, B, and C and obtain the constraints on the observed nodes
X,Y, and Z.

The Tsallis entropy vector for the six nodes has 2° —
1 = 63 components. The required marginal scenario with the
observed nodes X, Y, and Z has Tsallis entropy vectors with
23 — 1 = 7 components and in this case the Fourier-Motzkin
algorithm has to run 56 iterations, each of which eliminates
one variable.

Starting with the full set of 126 Tsallis entropic causal
constraints for the triangle causal structure as well as the
246 independent Shannon constraints, the Fourier-Motzkin
elimination algorithm did not finish within several days on a

2For an explicit counterexample, consider  pspc =
{3.0.0, 5,0.0, 5. 75 =, 15} over binary A, B, and C for which
L(A:BC)=9/25<3/8= f(2,2,4) but L(A:B)=13/50 >
1/4 = f(2,2,2).

3The four subsets correspond to the three arguments of the condi-
tional mutual information and a set of “leftovers.”

standard desktop PC and the number of intermediate inequal-
ities generated grew to about 90 000 after 11 steps. Because
of this we instead tried starting with a subset composed of
15 of the 126 Tsallis entropic causal constraints,'* i.e., 261
constraints on 63 dimensional vectors. We considered the case
of ¢ = 2 and where the six random variables are all binary.
Again, in this case the algorithm did not finish after several
days. We also tried starting with fewer causal constraints
(for example, the six constraints analogous to the Shannon
case) as well as using a modified code, optimized to deal
with redundancies better but both of these attempts made no
significant difference to this outcome.

Such a rapid increase of the number of inequalities in each
step is a known problem with Fourier-Motzkin elimination
where an elimination step over n inequalities can result in up
to n*/4 inequalities in the output and running d successive
elimination steps can yield a double exponential complexity of
4(n /4)2‘1 [28]. This rate of increase can be kept under control
when the resulting set of inequalities has many redundancies.
This happens in the Shannon case where the causal constraints
are simple equalities and the system of 246 Shannon con-
straints plus six Shannon entropic causal constraints reduces
to a system of just 91 independent inequalities before the FM
elimination. In the Tsallis case, no reduction of the system
of inequalities is possible in general due to the nature of the
causal constraints. The fact that the Tsallis entropic causal
constraints are inequality constraints rather than equalities
also contributes to the computational difficulty since each in-
dependent equality constraint in effect reduces the dimension
of the problem by 1.

We also tried the same procedure on the bipartite Bell
causal structure [Fig. 1(a)], again for ¢ = 2 and binary vari-
ables. Here, starting with the full set of 53 causal constraints
again resulted in the program running for over one week with-
out nearing the end, and a similar result was obtained when
starting with only eight to ten causal constraints. While start-
ing with fewer causal constraints such as the five conditional
independence constraints (one for each node) resulted in a
terminating program, no nontrivial entropic inequalities were
obtained (i.e., we only obtained constraints corresponding to
Shannon constraints or causal constraints that follow directly
from d separation).'

14These included the six that follow from “each node N is condi-
tionally independent of its descendants given its parents” (denoted
as N; L NI.’A‘ |N,.“) and nine more chosen arbitrarily from the total of
126 independent Tsallis constraints we found for the triangle. The
six former constraints for the triangle [Fig. 1(b)] are A L CXB, B L
CYA, C L BZA, X 1 YAZ|CB, Y L XBZ|AC, and Z 1 YCX|AB.
Examples of nine more constraints for which the procedure did not
work are X 1 Y|CB,X L A|CB,X L Z|CB,Y 1 X|AC,Y L B|AC,
Y L Z|IAC, Z L Y|AC, Z L C|AB, and Z 1 X|AB. We also tried
some other choices and number of constraints but this did not lead
to any improvement.

SFor example, we were able to obtain (A : BY) < % and (B :
AX) < %, while, in the case of binary variables and ¢ = 2, the inde-
pendences in the DAG together with Theorem 1 imply (A : BY) <
% and (B : AX) < ]6—6, which are the Tsallis entropic equivalents of
the two nonsignaling constraints.
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V. NEW TSALLIS ENTROPIC INEQUALITIES FOR THE
TRIANGLE CAUSAL STRUCTURE

entropy [21] and the causal constraints derived in Sec. IV.
Using the entropy vector method for Shannon entropies, the

following three classes of entropic inequalities were obtained
for the triangle causal structure [Fig. 1(b)] in [21].'® In-
cluding all permutations of X, Y, and Z, these yield seven
inequalities:

Despite the limitations encountered in applying the entropy
vector method to Tsallis entropies (Sec. IV B), here we find
Tsallis entropic inequalities for the triangle causal structure
for all ¢ > 1 by using known inequalities for the Shannon

J

—~H(X)—H({Y)—HZ)+HXY)+H(XZ) >0, (14a)
—5H(X)—5H(Y)—5H(Z)+4H(XY)+4H(XZ) +4H(YZ) — 2H(XYZ) > 0, (14b)
—3H(X)—3H(Y)—3H(Z)+2H(XY)+2H(XZ) +3H(YZ) — H(XYZ) > 0. (14c)

By replacing the Shannon entropy H () with the Tsallis entropy S, () on the left-hand side of these inequalities and minimizing
the resultant expression over our outer approximation to the classical Tsallis entropy cone for the triangle causal structure,
one can obtain valid Tsallis entropic inequalities for this causal structure. More precisely, the outer approximation to the
classical Tsallis entropy cone for the triangle is characterized by the 6 + 6(6 — 1)2°73 = 246 independent Shannon constraints
(monotonicity and strong subadditivity constraints) and the 126 causal constraints (one for each conditional independence
implied by the causal structure). To perform this minimization we used LPASSUMPTIONS [37], a linear program solver in
MATHEMATICA that implements the simplex method allowing for unspecified variables. In our case, we assumed that the
dimensions of all the unobserved nodes (A, B, and C) are equal to d,, and those of all the observed nodes (X, Y, and Z) are equal
to d,, and so the unspecified variables are ¢ > 1, d, > 2, and d, > 2. We obtained the following Tsallis entropic inequalities for

the triangle:

=8;(X) = 8,(Y) = S4(Z) + S4(XY) + Sy(XZ) > Bi(q, do, du), (15a)
~58,(X) —58,(Y) = 55,(Z) + 4S,(XY ) + 4S,(XZ) + 4S,(YZ) — 25,(XY Z)
2 BZ(Q7 d{)a du) = maX(le(qa d()a du)v Bzz(q7 d()s du))’ (15b)
—38,(X) —38,(Y) — 35,(Z) + 25,(XY) + 2S,(XZ) + 3S,(YZ) — S,(XYZ) > Bs(q, d,, d,), (15¢)
where
1
Bi(q,d,, d,) = ——1(1 —dy ) (2—-dy 1 —d, ), (16a)
1
Bai(q. d,, d,) = ——1(11 +d)7 +6d. 7% +3d)9d) 1 — 6d, 7 — 15d)79), (16b)
q—
1
Bxn(q, d,, d,) = ——1(10 +d)9d) 7+ 5d, 7+ 2d)9d) 4 — 5d, 1 — 13d,79), (16c¢)
1
Bs(q.d,, d,) = ——1(6 +d)d 7 4 3d) 2+ d)yd, 1 — 3d) 1 — 8d, 7). (16d)
q—
{
Note that lim,_,| By =limy_,| B, =lim,,| B3 = with dy =dy =dz = d, and dy = dg = dc = d, as consid-

0 Vvd, d,>2, recovering the original inequalities for
Shannon entropies [Eqgs. (14a)—(14c¢)] as a special case.

In [38], an upper bound on the dimensions of classical
unobserved systems needed to reproduce a set of observed
correlations is derived in terms of the dimensions of the
observed systems. In the case of the triangle causal structure

Note that a tighter entropic characterization was found in [20]
based on non-Shannon inequalities, and that the techniques intro-
duced here could also be applied to these.

ered here, the result of [38] implies that all classical cor-
relations Pyxyz can be reproduced by using hidden systems
of dimension at most d> — d,. Since the dimension of the
unobserved systems is unknown, it makes sense to take the
minimum of the derived bounds over all d, between 2 and
d? — d,,. By taking their derivative, one can verify that for ¢ >
1 each of the functions By, By, B2y, and B3 is monotonically
decreasing in d, and d,, and hence that the minimum is
obtained for d, = dg —d, for any given d, > 2. It follows
that for all ¢ > 1 and d, > 2 relations of the same form as
Egs. (15a)—(15¢) hold, with the quantities on the right-hand
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sides replaced by
Bi(q, dy) = Bi(q, do» d; — do)

- —;[2+d02‘2‘?—3d(}“’+d0( —detd)) ' —d(—dy+d)) = a7 —dy+d)) " +d(—d,+d)) ],

qg—1

B3 (q.d,) = B2 (q. dp, d} — d,)

- _q_i][n 64272 154 4 (—dp+d2)’ T = 6(—dp+d2) T+ 3d(—d, +d2) ),

B3y(q. do) = Bx:(q. do. d; — d,)

——

Bi(q.d,) = B3(q, d,, d} — d,)

-

A quantum violation of any of these bounds would imply that
no unobserved classical systems of arbitrary dimension could
reproduce those quantum correlations.

Remark 2. Because they are monotonically decreasing, the
bounds for d,, = dj —d, are not as tight as the d,-dependent
bounds for general g > 1. Nevertheless, as g — 1, all the
bounds B*(q, d,)) tend to zero, reproducing the known result
of [15] for the Shannon case.

Remark 3. In some cases it may be interesting to show
quantum violations of these inequalities for low values of d,,,
hence ruling out classical explanations with hidden systems
of low dimensions, while possibly leaving open the case of
arbitrary classical explanations. This would be interesting if
it could be established that using hidden quantum systems
allows for much lower dimensions than for hidden classical
systems, for example.

Looking for quantum violations

It is known that the triangle causal structure [Fig. 1(b)]
admits nonclassical correlations such as Fritz’s distribution
[29]. The idea behind this distribution is to embed the Clauser-
Horne-Shimony-Holt (CHSH) game in the triangle causal
structure such that nonlocality for the triangle follows from
the nonlocality of the CHSH game. To do so, C is replaced
by the sharing of a maximally entangled pair of qubits, and
A and B are taken to be uniformly random classical bits. The
observed variables X, Y, and Z in Fig. 1(b) are taken to be
pairs of the form X := (X, B), Y := (Y, A), and Z := (A, B),
where X and Y are generated by measurements on the halves
of the entangled pair with B and A used to choose the settings
such that the joint distribution Pgyp, maximally violates
a CHSH inequality. By a similar postprocessing of other
nonlocal distributions in the bipartite Bell causal structure
[Fig. 1(a)] such as the Mermin-Peres magic square game
[39,40] and chained Bell inequalities [19], one can obtain
other nonlocal distributions in the triangle that cannot be
reproduced using classical systems. We explore whether any
of these violate any of our inequalities.

- [10+5d27% —13d)~* +d)"(—d, + d)

[6+3d27% —8d) 1 +d I —dy+d2) ! =3(=dy+d2) " +d I (—d,+d}) ]

(17a)

(17b)

3-3¢q

S(—dy+d2) 24 (—dy+d2) Y, (170)

(17d)

Since the values of B;(q, d,, d,) are monotonically decreas-
ing in d, and d,,, if a distribution realizable in a quantum causal
structure does not violate the bounds (15a)—(15c) forall g > 1
and some fixed values of d, and d,, then no violations are
possible for d) > d,, d, > d,. We therefore take the smallest
possible values of d, and d,, when showing that a particular
distribution cannot violate any of the bounds.

For Fritz’s distribution [29], C is a two-qubit maximally
entangled state, A and B are binary random variables, while
X, Y, and Z are random variables of dimension 4, i.e., the
actual observed dimensions are (dy, dy, dz) = (4, 4, 4) in this
case. Here we see that taking d, = 4 and the smallest possible
d,, which is d,, = 2, the left-hand sides of Inequalities (15a)—
(15¢) evaluated for Fritz’s distribution do not violate the
corresponding bounds B;(q,d, = 4,d, = 2) for any g > 1.
This means that it is not possible to detect any quantum
advantage of this distribution (even over the case where the
unobserved systems are classical bits) using this method,
and automatically implies that it cannot violate the bounds
Bi(q,d,=4,d,) ford, > 2.

We also considered the chained Bell and magic square
correlations embedded in the triangle causal structure anal-
ogously to the case discussed above. For each of these, we
define d’ to be the smallest value of d, for which the bound
Bi(q,d, =d',d, = 2) cannot be violated for any ¢ > 1. The
values of d' are given in Table I for the different cases of
the chained Bell correlations and the magic square. Since the
values of d' are always lower than the smallest of the observed
dimensions in the problem, and due to the monotonicity of the
bounds, it follows that none of these quantum distributions
violate any of our inequalities when the observed dimension
is set to 4™in,

We further checked for violations of Inequalities
(15a)—-(15¢c) by sampling random quantum states for the
systems A, B, and C and random quantum measurements
the outcomes of which would correspond to the classical
variables X, Y, and Z. The value of ¢ was also sampled
randomly between 1 and 100. We considered the cases where
the shared systems were pairs of qubits with four outcome
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TABLE 1. Values of d' for the chained Bell and magic square correlations embedded in the triangle causal structure. The values of N
correspond to the number of inputs per party in the chained Bell inequality, which always has two outputs per party (the N = 2 case corresponds
to Fritz’s distribution [29]). When embedded in the triangle, the number of outcomes of the observed nodes is (dy, dy, dz) = (2N, 2N, N?).
The last column of the table gives the minimum of the observed node dimensions (dy, dy, dz) for each N, which is simply 2N. For the magic
square, the dimensions (dx, dy, dz) are (12,12,9). In all cases, the minimum value of d’ such that the Inequalities (15a)—(15c) with bounds
Bi(q,d, = d', d, = 2) are not violated for any g > 1 is less than the minimum observed dimension d;“i“, and hence no violations of (15a)—(15¢)

could be found for the relevant case with d, = d™".

d' Smallest
Scenario Ineq. (152) i = 1) Ineq. (15b) (i = 2) Ineq. (15¢) (i = 3) observed dim. (d(‘)“i“)
N=2 2 2 2 4
N=3 3 2 3 6
N=4 4 2 4 8
N=5 5 2 5 10
N=6 6 2 6 12
N=17 7 2 7 14
N =38 8 2 8 16
N=9 9 3 9 18
N=10 10 3 10 20
Magic Sq 4 2 4 9

measurements (dy = dy = dz =4) and qutrits with nine
outcome measurements (dy = dy = dz = 9) but were unable
to find violations of any of the inequalities even for the
bounds with the d, =4,d, =2 (the two-qubit case) and
d, =9, d, = 2 (the two-qutrit case), i.e., the bounds obtained
when the unobserved systems are classical bits.

Remark 4. In the derivation of Inequalities (15a)—(15c), we
set the dimensions of the observed nodes X, Y, and Z to all be
equal and those of the unobserved nodes A, B, and C to also
all be equal. One could in principle repeat the same procedure
taking different dimensions for all six variables but we found
the computational procedure too demanding. However, Table I
shows that, even when we consider the bounds B;(q, d,, d,,)
with d, and d, much smaller than the actual dimensions,
known nonlocal distributions in the triangle considered in
Table I do not violate the corresponding Inequalities
(15a)—(15c¢) for any g > 1. Since the bounds are monotoni-
cally decreasing in d,, and d,,, even if we obtained the general
bounds for arbitrary dimensions of X, Y, Z, A, B, and C,
they would be strictly weaker than Bi(q,d',d, =2) Vi€
{1,2,3},g > 1 and can certainly not be violated by these
distributions.

VI. DISCUSSION

We have investigated the use of Tsallis entropies within
the entropy vector method to causal structures, showing how
causal constraints imply bounds on the Tsallis entropies of
the variables involved. Although Tsallis entropies for g > 1
possess many properties that aid their use in the entropy vector
method, the nature of the causal constraints makes the prob-
lem significantly more computationally challenging than in
the case of Shannon entropy. This meant that we were unable
to complete the desired computations in the former case, even
for some of the simplest causal structures. Nevertheless, we
were able to derive classical causal constraints expressed in
terms of Tsallis entropy by analogy with known Shannon
constraints, but were unable to find cases where these were

violated, even using quantum distributions that are known not
to be classically realizable. This mirrors an analogous result
for Shannon entropies [20].

Tsallis entropies are known to give improvements [23] in
cases that involve postselection. While postselection cannot
be used for general causal structures (including the triangle),
it would be interesting to understand whether using Tsallis
entropy helps in other cases for which postselection is appli-
cable.

One could also investigate whether other entropic quanti-
ties could be used in a similar way. The Rényi entropies of
order « do not satisfy strong subadditivity for @ 0, 1, while
the Rényi as well as the minimum and maximum entropies fail
to obey the chain rules for conditional entropies. Thus, use of
these in the entropy vector method would require an entropy
vector with components for all possible conditional entropies
as well as unconditional ones, considerably increasing the
dimensionality of the problem, which we would expect to
make the computations harder.!”

Further, one could consider using algorithms other than
Fourier-Motzkin elimination to obtain nontrivial Tsallis en-
tropic constraints over observed nodes starting from the Tsal-
lis cone over all the nodes (see, e.g., [42]). These could in
principle yield solutions even in cases where FM elimina-
tion becomes intractable. However, we found that the FM
elimination procedure became intractable even when starting
out with only a small subset of the Tsallis entropic causal
constraints for a simple causal structure such as the Bell one.
This suggests that the difficulty is not only with the number of
constraints, but also with their nature (in particular, that they
are not equalities and depend nontrivially on the dimensions).
Consequently, we bypassed FM elimination and used an alter-
native technique to obtain Tsallis entropic inequalities for the
triangle causal structure (Sec. V).

"In some cases, not having a chain rule may not be prohibitive
[41].
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It is also worth noting that the following alternative defini-
tion of the Tsallis conditional entropy was proposed in [32]:

1 X, PIS(X|Y =)

S,X|Y) = - >
y £y
_ L Ly Py —1). (18)
I—q\ X,p

Using this definition, Tsallis entropies would satisfy the
same causal constraints as the Shannon entropy [Eq. (2)].
However, the conditional entropies defined this way do
not satisfy the chain rules of Eq. (10) but instead obey
a nonlinear chain rule, S,(XY) = S5,(X)+ S,Y|X)+ (1 —
q)S4(X)S,(Y |X) [32]. This would again mean that conditional
entropies would need to be included in the entropy vector. Fur-
thermore, since Fourier-Motzkin elimination only works for
linear constraints, an alternative algorithm would be required
to use this chain rule in conjunction with the entropy vector
method.

That the inequalities for Tsallis entropy derived in this
paper depend on the dimensions of the systems involved could
be used to certify that particular observed correlations in a
classical causal structure require a certain minimal dimension
of unobserved systems to be realizable. To show this would
require showing that classically realizable correlations violate
one of the inequalities for some d,,. Such bounds would then
complement the upper bounds of [38]. However, in some
cases we know our bounds are not tight enough to do this.
As a simple example, within the triangle causal structure we
tried taking X = (Xp, X¢), ¥ = (Ya, Ye), and Z = (Z4, Zp)
with Xp = Zp, Xc = Y¢, and Y4 = Z4 where each is uniformly
distributed with cardinality D, for D € {3, ..., 10}. In this
case it is clear that the correlations cannot be achieved with
classical unobserved systems with d, = 2. Taking the bound
with d, = 2 and d, = D? no violations of Inequalities (15a)—
(15c) were seen by plotting the graphs for g € [1, 20], for the
range of D above. Hence, our bounds are too loose to certify
lower bounds on d,, in this case.

While our analysis highlights significant drawbacks of
using Tsallis entropies for analyzing causal structures, it does
not rule out the possibility of Tsallis entropies being able to
detect the classical-quantum gap'® in these causal structures,
or others. To overcome the difficulties we encountered we
would need either increased computational power or the use
of new, alternative techniques for analyzing causal structures
(with or without entropies).
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APPENDIX: QUANTUM GENERALIZATIONS
OF THEOREMS 1 AND 2

In the following, for a (finite-dimensional) Hilbert space
‘H, we use L(H) to represent the set of linear operators on H,
P(H) to represent the set of positive (semidefinite) operators
on H, and S(H) to denote the set of density operators on H
(positive and trace 1).

Tsallis entropies as defined for classical random variables
in Sec. III are easily generalized to the quantum case by
replacing the probability distribution by a density matrix [43].
For a quantum system described by the density matrix p €
S(H) on the Hilbert space H and g > 0, the quantum Tsallis
entropy is defined by

q#1
g=1

—Tr p?1n, p,
Sq(,O): {H(,O), i

where H(p) = —Tr p In p is the von-Neumann entropy of p
and In,(x) = xl:; as in Sec. 111"

Given a density operator pap € S(Ha ® Hp), the condi-
tional quantum Tsallis entropy of A given B can then be
defined by S,(A|B), = S,(AB) — S,(B), the mutual infor-
mation between A and B can be defined by /,(A: B), =
Sq(A) + S4(B) — S4(AB), and for papc € S(Ha ® Hp ® Hc)
the conditional Tsallis information between A and B given C
is defined by I,(A : B|C), = S,(A|C) 4+ S,(B|C) — S,(AB|C).
In this section we use ds to represent the dimensions of the
Hilbert space Hs.

The following properties of quantum Tsallis entropies will
be useful for what follows.

(1) Pseudoadditivity [30]: If pap = pa ® pp, then

S,(AB) = S4(A) + Sy(B) + (1 — q)S4(A)Sy(B). (A2)

(2) Upper bound [44]: For all g > 0, we have S,(A) <
In, d4 and equality is achieved if and only if py = 14/dy.

(3) Subadditivity [44]: For any density matrix psp with
marginals ps and pg, the following holds for all ¢ > 1:

(AL)

S,(AB) < S,(A) + S,(B). (A3)

Using these we can generalize Theorem 1 to the quantum
case. This corresponds to the causal structure with two inde-
pendent quantum nodes and no edges in between them.

Theorem 3. For all separable bipartite density opera-
tors, i.e., pap = pa ® pp with ps € S(Ha) and pp € S(Hp),
the quantum Tsallis mutual information I,(A : B), is upper
bounded as follows for all g > 0:

14(A: B), < f(q. da, dp),

19 Analogously to the classical case we keep it implicit that if p has
any zero eigenvalues these do not contribute to the trace.
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where the function f (g, da, dg) is given by

1 1
q_l>(l - q_l>
dA dB

= (q - 1)1I1q dA ll'lq dB.

1
,dy,dp) = 1-—
f(q.da,dp) (q—1)<

The bound is saturated if and only if psp = ® 33

Proof. The proof goes through in the same way as the
proof of Theorem 1 for the classical case (properties 1 and
2 are analogous to those needed in the classical proof). ]

Next, we generalize Theorem 2 and Corollaries 1 and 2.
This would correspond to the causal constraints on quantum
Tsallis entropies implied by the common cause causal struc-
ture with C being a complete common cause of A and B
(which share no causal relations among themselves). Here,
one must be careful in precisely defining the conditional mu-
tual information and interpreting it physically. For example,
if the common case C were quantum and the nodes A and B
were classical outcomes of measurements on C, then A, B, and
C do not coexist and there is no joint state pspc in such a case.
This is a significant difference in quantum causal modeling
compared to the classical case, and there have been several
proposals for how do deal with it [45-48]. In the following
we consider two cases.

(1) When C is classical, all three systems coexist and
papc can be described by a classical-quantum state (see
Theorem 4).

(2) When C is quantum, one approach is to view pspc not
as the joint state of the three systems but as being related to the
Choi-Jamiolkowski representations of the quantum channels
from C to A and B (see Sec. VI) as done in [47].

The following lemma proven in [49] is required for our
generalization of Theorem 2 in the first case.

Lemma 1 [49, Lemma 1]. Let H4 and Hz be two Hilbert
spaces and let {|z)}, be an orthonormal basis of H . Let psz
be classical on H; with respect to this basis, i.e.,

PAz = sz Y |z){z

where ) | p. =1 and pf) € S(Ha) Vz. Then, for all g > 0,

S,(AZ), = Z P1S,(p5) +8,(2),

where §,(Z) is the classical Tsallis entropy of the variable Z
distributed according to P.
Note that the above lemma immediately implies that

S4(AI1Z), =) piSq(047). (A4)

z

Theorem 4. Let papc =, pcp/g‘B) ® |c)c|, where p/g"B) =
,o(‘) ® ,0(°) Vc; then, forall g > 1,

L,(A : BIC) pyye < f(q.du. dp).

For g > 1 the bound is saturated if and only if pspc = g—ﬁ ®
};—g ® e){clc-

Proof. Using (A4) we have

I(A : BIC)pye = S,(AIC), + S,(BIC), — S,(ABIC),

0)+ 8,(7) = o)

—ZPC
_Zﬂmmm

The rest of the proof is analogous to Theorem 2,

where, using the above, using Theorem 3, and defining

the set R = {papc € Ha ® Hp ® Hc : papc = Z DPcPy (C) ®
(”) ® |c){c|}, we have

m7§X1‘1(A :B|IC), = mgx Zp‘glq(A : B)pX;

maxz pie) max I(A:B),q
{pele - {p)e o )e

= f(q: dAv dB),

where the last step follows because, for all ¢ > 1, Y. p?
is maximized by deterministic distributions over C with a
maximum value of 12 and I,(A:B) P for product states is
maximized by the maximally mixed state over A and B for all
¢ (Theorem 3). Thus, for g > 1, the bound is saturated if and
only if papc = g—;‘ ® g—g ® |c){c|c for some value cof C. W

Generalization: When systems do not coexist

There is a fundamental problem with naively generalizing
classical conditional independences such as pxy|z = px|zpy|z
to the quantum case by replacing joint distributions by density
matrices: it is not clear what is meant by a conditional quan-
tum state, e.g., pa|c, since it is not clear what it means to con-
dition on a quantum system, especially when the (joint state of
the) system under consideration and the one being conditioned
upon do not coexist. There are a number of approaches for
tackling this problem, from describing quantum states in
space and time on an equal footing [50] to quantum analogs
of Bayesian inference [45] and causal modeling [46—48]. In
the following, we will focus on one such approach that is
motivated by the framework of [47]. Central to this approach
is the Choi-Jamiotkowski isomorphism [51,52] from which
one can define conditional quantum states.

Definition 3 — Choi state. Let |y) =Y . li)gli)g- € Hr ®
Hp+, where Hpg« is the dual space to Hyg and where {|i)g}; and
{|i)g+}; are orthonormal bases of Hz and Hg«, respectively.
Given a channel &s : S(Hg) — S(Hs), the Choi state of the
channel is defined by

psik = (Eris @ D)y )y ) = Zf(li)UIR) ® 1) (Jlr--

ij
Thus, PSR € P(Hs @ Hg+).

Now, if a quantum system C evolves through a unitary
channel &(-) = U’'(-)U"" to two systems A’ and B’ where
U' :Hc — Ha ® Hp, it is reasonable to call the system C
a quantum common cause of the systems A’ and B’. Further,
this would still be reasonable if one were to then perform local
completely positive trace preserving (CPTP) maps on the A’

For g > 1 such deterministic distributions are the only way to
obtain the bound.
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FIG.2. A circuit  decomposition of the  channel

E:SHe) > S(Ha ® Hp) when C is a complete common
cause of A and B: If the map £ from the system C to the systems
A and B can be decomposed as shown here, then C is a complete
common cause of A and B ([47]). We build up our result step by step
considering the channels given by & (unitary), &; (unitary followed
by local isometries), and &; = £.

and B’ systems. By the Stinespring dilation theorem, these
local CPTP maps can be seen as local isometries followed
by partial traces, and the local isometries can be seen as
the introduction of an ancilla in a pure state followed by a
joint unitary on the system and ancilla. This is illustrated
in Fig. 2 and is compatible with the definition of quantum
common causes presented in [47]. In other words, a system
C can be said to be a complete (quantum) common cause of
systems A and B if the corresponding channel £ : S(H¢) —
S(Ha ® Hp) can be decomposed as in Fig. 2 for some choice
of unitaries U’, Uy, and U and pure states |@)g, and [¢)g,.
Note that a more general set of channels than we use here
fits the definition of quantum common cause in [47]; whether
the theorems here extend to this case we leave as an open
question.

In [47] it is shown that whenever a system C is a com-
plete common cause of systems A and B then the Shannon
conditional mutual information evaluated on the state T4gc+ =
ipAB\C satisfies /(A : B|C*); = 0 where pspc is the Choi
state of the channel from C to A and B. We generalize
this result to Tsallis entropies for g > 1 for certain types
of channels. We present the result in three cases, each with
increasing levels of generality. These are explained in Fig. 2
and correspond to the cases where the map from the complete
common cause C to its children A and B is (i) unitary (£ =
U"), (ii) unitary followed by local isometries (&), and (iii)
unitary followed by local isometries followed by partial traces
on local systems (& = &).

Lemma 2. Let & : S(H¢) - S(Ha @ Hp) be a unitary
quantum channel, i.e.,

&) =U'CU",

where U’ : He — Ha ® Hp is an arbitrary unitary operator.
If pap|c is the corresponding Choi state, then the Tsallis
conditional mutual information evaluated on the state

Y chpA'ch € S(Ha ® Hp ® Hc-) satisfies
I,(A": B'IC*); = f(q,dy,dp) Yq > 0.

Proof. The conditional mutual information I,(A’ : B'|C*),
can be written as

) 1
1,(A" : B'|C*), = qu( Tragc: Thyee + Tres Tl

— TrA/C* ‘CZ’C* — Trch* tg’C*)' (AS)

We will now evaluate every term in the above expression for
the case where the channel that maps the C system to the A’
and B’ systems is unitary. In this case, T4+ is a pure state
and can be written as T4 = |T){T|apc+ Where

) 1 > U'lie ® 1i) (A6)
T)ABCr = —F=— l)c @ |t)c*-
Ve &

This means that Trapcs Tfper = Trapc: Tape: Yg > 0.
Since t4pc+ 1s a valid quantum state, it must be a trace-1
operator and we have

Trapcs Thper =1 Vg > 0. (A7)
Further, we have tc« = Trap tapcr = ]%C* and hence
4 1 1
Tre- tpe = (A8)

-1 = q-1 q-1°
it dldy

The second step follows from the fact that U’ : He — Ha ®
‘Hp is unitary so dc = dadp.

Now, the marginals over A" and B are twu =
Trgc- tapce- = 3—:,/ and tp = Trace Taper = 3—2 By the
Schmidt decomposition of 74p ¢+, the nonzero eigenvalues of
T4 are the same as those of 7p¢-. Since the Tsallis entropy
depends only on the nonzero eigenvalues, S,(A") = S,(B'C*)
and hence

Trgcs T = dy(%i/) = #. (A9)
By the same argument it follows that
Teve 0. = dB,<diq) - @
7)) an

Combining Egs. (A5)-(A10), we have

LA :B|C*, = ! (1 + ! ! ! )
q : T =1 9—1 — =1 41
g—1\" g as Tt a4l

(Al1)

|
Lemma 3. Let &; : S(He) = S(H; ® Hp) be a quantum
channel of the form

= f(q,dx,dp) VYq=>0.

Ei() = (Ua @ Up)llg)(@lp, ®U' (DU
Q1Y) (¥, 1(Us ® Up)',

where U’ : He — Ha @ Hp, Us : Hg, ® Ha — Hyi, and
Up : Hp @ Hg, — Hjp are arbitrary unitaries and |¢)g, and
|Y¥)E, are arbitrary pure states. If pgpc is the corresponding
Choi state, then the Tsallis conditional mutual information
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evaluated on the state 7550 = dLCpAT?\C eSH; @ Hp ® Her)
satisfies

1,(A : BIC*); = f(q.du,dp) Vg > 0.

Proof. Note that the map &; is the unitary map &(-) =
U'(-)U'T followed by local isometries V4 and V3 on the A’
and B’ systems, respectively. Since the expression for the
conditional mutual information Iq(A : B|C*); can be written
in terms of entropies, which are functions of the eigenvalues of
the relevant reduced density operators, and since the eigenval-
ues are unchanged by local isometries, this conditional mutual
information is invariant under local isometries. The rest of the
proof is identical to that of Lemma 2, resulting in

LA : BIC*), = I,(A" : B'|C*), = f(q.dx.dp) ¥q> 0.
(A12)

|
For the last &i(-) = Trarp [(Us ®

Up)llg)(¢le, ® U'()U' @ [¥)(¥|e,](Ua ® Up)T], one could
intuitively argue that tracing out systems could not increase
the mutual information and one would expect that

I,(AA" : BB"|C*), > I,(A : BIC*),. (A13)

Since I,(AA” : BB"|C*), = I,(A : BIC*); + I,(AA” : B"|
BC*); +1,(A” : BJAC*),, Eq. (Al13) would follow from
strong subadditivity used twice, i.e., I,(AA” : B"|BC*); > 0
and I,(A” : BJAC*), > 0. However, it is known that strong
subadditivity does not hold in general for Tsallis entropies for
g > 1 [53]. Reference [53] also provides a sufficiency
condition for strong subadditivity to hold for Tsallis
entropies. In the following lemma, we provide another,
simple sufficiency condition that also helps bound the Tsallis
mutual information [,(AA” : B|C), [or I,(A:BB"|C).]
corresponding to the map &; where only one of A” or B” is
traced out but not both.

Lemma 4 — sufficiency condition for strong subadditivity of
Tsallis entropies. If pspc is a pure quantum state, then for all
q = 1 we have I,(A : B|C), > 0.

Proof. We have

I, (A : B|C) = §,(AC) + S§,(BC) — §4,(ABC) — S,(C).

case Wwhere

Since papc is pure we have S,(ABC)=0 Vg >0 and
(from the Schmidt decomposition argument mentioned ear-
lier) S,(AC) = §4(B), S4(BC) = S,(A), and S,(C) = S,(AB).
Thus,

I(A : BIC) = S,(A) + S,(B) — S,(AB) = I,(A: B) > 0,

which follows from subadditivity of quantum Tsallis en-
tropies for g > 1 [44]. In other words, for pure pspc, strong
subadditivity of Tsallis entropies is equivalent to their subad-
ditivity, which holds whenever g > 1. |

Corollary 3. Let Eilii :S(He) — S(H; ® Hp) be a quan-
tum channel of the form

EL() = Trp{(Us @ Up)lI$) (ple, ® U' (YU @ |¥) (W5,
(Us ® Up)'},

where U':He — Ha @ Hp, Us:Hg, @ Ho — Hi =
Ha Q@ Har, and Up : Hp ® HEB — Hz = Hp ® Hpr are
arbitrary unitaries and |¢)g, and |y)g, are arbitrary pure

states. If pgpc is the corresponding Choi state, then the

Tsallis conditional mutual information evaluated on the state

Tiger = iPAB\c € S(Hz ® Hp @ Hc-) satisfies

I,(A: BIC*) := I,(AA" : BIC*). < f(q, du. dp)
Proof. Since I,(AA" : BB"|C*), = I,(AA" : B|C*); +

I,(AA” : B"|BC*),, the purity of Ti3c = Taavpprc- and

Lemma 4 imply that

Vg > 1.

I,(AA" : BB|C*), > I,(AA" : BIC*),, Vg >1,

or (equivalently) in more concise notation
I,(A: BIC*), > I,(A: BIC*), Vg=>1.

Finally, using Lemma 3 we obtain the required result. ]
Now, for Eq. (A13) to hold, we do not necessarily need
strong subadditivity. Even if I,(A” : BJAC), > 0 does not
hold, Eq. (A13) would still hold if I,(AA” : B"|BC), + 1,(A” :
B|AC); > 0. This motivates the following conjecture.
Conjecture 1. Let E;; : S(He) — S(Ha ® Hp) be a quan-
tum channel of the form

&i(-) = Trarp {(Ua ® Up)[19) (915, ® U'(HU"" @ [¥) (|, ]

(Us ® Up)'},
where U':He — Ha @Hp, Us:Hg, @ Hay — Ha ®
Har, and Up:Hp @ Hp, > Hp ® Hpr are arbitrary

unitaries and |¢)g, and |Y)g, are arbitrary pure states.
If papic is the corresponding Choi state, then the Tsallis
conditional mutual information evaluated on the state
TABC = dLC,OAB\C € S(Ha ® Hp @ Hc+) satisfies

1,(A: BIC*), < f(q,da,dp) Yg=1.

Notice that in Corollary 3 and Conjecture 1 the bounds
are functions of dy and dp and not of the dimensions of
the systems A and B (those in the quantity on the left-hand
side). In the case that dy > dy and dp > dp, the fact that
f(q, da, dp) is a strictly increasing function of d4 and dg Vg >
0 allows us to write Iq(A :BIC*); < f(q,dg, dp) and I,(A :
B|C*); < f(q,da,dp) under the conditions of Corollary 3
and Conjecture 1, respectively. However, if d4 < dy and/or
dp < dp, the bounds f(q, ds, dg) and f(q, da, dp) are tighter
than the bound f (g, da, dp) and so not implied. However,
based on the several examples that we have checked, we
further conjecture the following.

Conjecture 2. Under the same conditions as Conjecture 1,

I,(A: BICY): < f(g.da.dp) Vg > 1.

Further, it is shown in [47] that if C is a complete common
cause of A and B then the corresponding Choi state pap|c
decomposes as papic = (pajc @ 1p)(1a ® ppic) Or papc =
paicppic in analogy with the classical case where if a classical
random variable Z is a common cause of the random vari-
ables X and Y then the joint distribution over these variables
factorizes as pyy|z = px|zPy|z- Then we have that t4pc+ =
ipABIC = dlCPAICPB\C- By further analogy with the classical
results of Sec. IV, one may also consider instead a state
of the form 64pcc = oc ® %pmcpg‘c = oc ® Tapc+, Where
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oc € S(Hc).2! Note that 64pcc+ is a valid density operator on
Ha @ Hp ®@ He @ He-.

Lemma 5. The state 64pcc+ = oc ® Tapce+ defined above
satisfies

I4(A : BICCY)s < f(q. da, dp),

whenever I,(A : B|C*); < f(q,da,dp) holds for the state
TAgCr = iPABICa where pypc represents the quantum channel
from C to A and B and o¢ is the input quantum state to this
channel.

Proof. Since 6 is a product state between the C and
ABC”* subsystems, by the pseudoadditivity of quantum Tsallis
entropies and the chain rule we have

I,(A : BICC*); = S,(ACC*) + S,(BCC*)
— S,(ABCC*) — 5,(CC*)

2 This is the analog of the statement pagc = pcpajcPsic for proba-
bility distributions.

= S,(AC*) + S,(BC*) — S,(ABC*) — 5,(C*)
— (g = DSOS, (AC™) + S,(BC*)
— S,(ABC*) — §,(C")]

=[1 = (1 —@)S;(C)(A: BIC")

= Tr(cd)I(A : B|C*).

Now let p. be the distribution the entries of which are the
eigenvalues of oc. We have Tr(o?) = Y, pl. Thus, if ¢ > 1,
Y. pl < 1 with equality if and only if p. = 1 for some value
of c. It follows that

I,(A : BICC*)s < I,(A : B|C*),.

Therefore, if I,(A : B|C*). < f(q, da, dg), we also have (A :
B|CC*)s < f(q. da, dp). u
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