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Tripartite realism-based quantum nonlocality
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From an operational criterion of physical reality, a quantifier of realism-based nonlocality was recently
introduced for two-part quantum states. This measure has been shown to capture aspects that are rather different
from Bell nonlocality. Here we take a step further and introduce a tripartite realism-based nonlocality quantifier.
We show that this measure reduces to genuine tripartite entanglement for a certain class of pure tripartite states
and manifests itself in correlated mixed states even in the absence of quantum correlations. A case study for noisy
Greenberger-Horne-Zeilinger (GHZ) and W states points out the existence of scenarios where the realism-based
nonlocality is monogamous.
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I. INTRODUCTION

One of the most astonishing aspects of nature is unveiled by
Bell’s theorem, which proves that the predictions of quantum
mechanics are incompatible with physical theories relying
upon the local causality hypothesis [1], which is mathemat-
ically formulated as

p(a, b|A, B) =
∑

λ

pλ p(a|A, λ) p(b|B, λ). (1)

This relation assumes that the joint probability p(a, b|A, B) of
finding the outcomes a and b in measurements of observables
A and B, respectively, is factorable into local probability
distributions, p(a|A, λ) and p(b|B, λ), by virtue of the spec-
ification of a hidden variable λ governed by a probability
distribution pλ. Today, it is a fact firmly backed by solid
experimental evidence [2–8] that nature does not submit itself
to such a hypothesis. This suggests that “spooky actions”
may take place at a distance, a phenomenon known as Bell
nonlocality [9].

Quantum mechanics provides accurate accounts for exper-
imental data. On the one hand, it is known that separable
states ρsep = ∑

λ pλ ρA
λ ⊗ ρB

λ on HA ⊗ HB produce distribu-
tions p(a, b|A, B) = Tr(Aa ⊗ Bb ρsep) admitting the factoriza-
tion prescribed by the local causality hypothesis, for pro-
jectors Aa on HA and Bb on HB. In this case, no Bell
inequality is violated and ρsep is said to be Bell local. On
the other hand, quantum mechanics predicts that all entan-
gled pure states are Bell nonlocal [10,11]. For mixed states,
Bell nonlocality is known to demand entanglement, while
the converse is not true [9], which implies that the class of
Bell nonlocal states form a subset of the entangled states.
The existence of maximally entangled states that are not
maximally Bell nonlocal [12–15]—the so-called anomaly—
reveals how tricky the quantification of Bell nonlocality may
be. In effect, unlike entanglement quantification [16], the task
of quantifying Bell nonlocality still elicits debate. Some of
the recent approaches make reference to maximal violations
of Bell inequalities [17], performances in communication
tasks [18–22], noise resistance [23,24], and the volume of

violation [25], the latter solving the anomaly problem for
specific states.

Even though the local causality hypothesis is often referred
to as synonymous of “local realism,” one may argue that
its mathematical formulation (1) contains no clear link with
any formally stated notion of realism (see Ref. [26] for a
related discussion). In particular, if we confine our analysis
to the quantum mechanical framework, then we immediately
see that a separable state ρsep, which satisfies local causality,
implies no aspect of realism per se. In effect, it does not pass
the test imposed by some criteria of realism (as is illustrated
in the next section). On the other hand, it is intuitive that
the irrealism—the antithesis of realism—is necessary for the
manifestation of nonlocal aspects. The example conceived in
Ref. [27] illustrates this point. Suppose that two qubits share a
singlet state, that is, a physical preparation that constrains the
total spin as sz = sAz + sBz = 0. The definiteness of the total
spin allows us to say that it is an element of reality, even
though the spins of the parts are not. This conservation law
is preserved as the particles are sent to far distant locations.
Now, if sAz is measured and becomes an element of reality,
the conservation law forces sBz to instantaneously become so.
Since the emergence of reality in part B is caused by a remote
disturbance, some aspect of “nonlocal causality” must have
taken place. Hence, irrealism is necessary for the occurrence
of nonlocality. Inspired by the lack of such a clear link be-
tween realism and violations of the local causality hypothesis,
a notion of nonlocality has recently been put forward that
makes explicit use of a criterion of realism [27]. This aspect of
nonlocality counts with a nonanomalous quantifier, is remark-
ably more resilient to noise than other quantum resources, and
reduces to bipartite entanglement for pure states [28,29].

While on the Bell nonlocality side, a significant literature
exists concerning multipartite settings [30–35], it is still not
clear whether it is possible to extend the notion of realism-
based nonlocality even to tripartite scenarios. This work aims
at starting this research program. Our basic strategy consists
of performing a slight adaptation of the current measure of
realism-based nonlocality so as to make it applicable to all
possible bipartitions of a tripartite state. Then, we construct a
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quantifier of genuine tripartite realism-based nonlocality, de-
rive its properties, and prove that it reduces to genuine tripar-
tite entanglement for a given class of pure states. In addition,
we discuss whether the introduced measure is monogamous.

II. PRELIMINARY CONCEPTS

Here we present a brief review of the realism-based non-
locality. As seminally introduced by Einstein, Podolsky, and
Rosen (EPR) [36], the concept of “elements of reality” was
related to the idea of full predictability without disturbance.
This criterion, however, fails to diagnose situations where
the elements of reality cannot be predicted because of mere
subjective ignorance. For instance, if Alice measures the z
spin of a particle but does not let Bob know the outcome,
one would not say that the measured spin is not an element
of reality just because Bob cannot predict the result before the
next measurement on this particle. To overcome this difficulty,
Bilobran and Angelo introduced an operational criterion to
identify elements of reality for a generic preparation ρ on
HA ⊗ HB [27]. Their key premise is that, once a discrete-
spectrum observable A = ∑

a aAa is measured, there must
be an element of reality associated with A, even when the
measurement outcome is not revealed. In this case, the post-
measurement state reads∑

a

(Aa ⊗ 1B ) ρ (Aa ⊗ 1B ) =
∑

a

paAa ⊗ ρB|a =: �A(ρ),

(2)

where pa = Tr(Aa ⊗ 1B ρ), ρB|a = TrA(Aa ⊗ 1B ρ)/pa, and
AaAa′ = Aaδaa′ . The unrevealed measurement of A is hence-
forth denoted by �A, which is a completely positive trace-
preserving unital map. Bilobran and Angelo then consider
any state in the form �A(ρ) as an A-reality state, that is, a
state for which A is an element of reality. Next, the authors
take �A(ρ) = ρ as a criterion of realism with basis on the
following rationale: if measuring A and not revealing the
outcome do not effectively change the state of the system,
then this state is just an epistemic description of the part
A, where A is already an element of reality. In effect, in
such a scenario one has �A�A(ρ) = �A(ρ), meaning that
successive applications of an unrevealed measurement of A
over an A-reality state does not create “irreality” for A. It is
then proposed the measure

IA(ρ) := S(�A(ρ)) − S(ρ) (3)

of the irreality of A for a given preparation ρ, where S denotes
the von Neumann entropy. Clearly, IA quantifies violations of
the realism criterion �A(ρ) = ρ. It can be shown that irreal-
ity is non-negative, vanishes if and only if ρ = �A(ρ), and
is nonincreasing under completely positive trace-preserving
maps. By use of IA, an information-reality complementarity
relation was recently derived for generic unrevealed measure-
ments [37], with some results having being experimentally
verified through a photonic platform [38]. Also, in Ref. [39]
it was shown that irreality can be adapted to the continuous-
variable case and satisfies the “uncertainty relation”

IA(ρ) + IA′ (ρ) � S

(
ρ||1A

dA
⊗ ρB

)
, (4)

where dA = dim HA, A and A′ are arbitrary observables on
HA, S(�||σ ) := Tr[�(ln � − ln σ )] is the relative entropy of �

and σ , and ρB = TrA(ρ) is the reduced state of part B. This
inequality shows that, in general, no two observables can have
simultaneous reality. Besides giving to IA handling mathe-
matical properties, the “entropic metric” adopted to compute
violations of the realism criterion through formula (3) offers
insightful links with other concepts of quantum information
science. For example, as pointed out in Ref. [27], one can
show that IA(ρ) = IA(ρA) + DA(ρ), where IA(ρA) (local ir-
reality) is directly related to coherence [40] and waviness [41],
and DA(ρ) = IA:B(ρ) − IA:B(�A(ρ)) is the (nonminimized)
quantum discord [42].

It is instructive to compare, through some simple examples,
the introduced criterion of realism (3) with that of EPR. Take
the aforementioned separable state ρsep. Since no certain pre-
diction can be made for the measurement outcomes of generic
observables A or B, then EPR’s criterion would not ensure that
either A or B is an element of reality. Concerning Bilobran
and Angelo’s criterion, since �A(B)(ρsep) is generally different
from ρsep, then IA(B)(ρsep) > 0 and no realism is likewise pre-
dicted for A or B. The conclusions are, though, dramatically
conflicting for the singlet state |s〉 = (|+−〉 − |−+〉)/

√
2.

Using EPR’s original argument, which is firmly based on
postmeasurement predictions and the assumption of local
causality, one finds that the spin observables Sx,z (on HA)
are simultaneous elements of reality, whereas, via Eq. (3), one
verifies that ISx,z (|s〉 〈s|) = ln 2, so Sx,z are maximally unreal.
Finally, consider the preparation ρ = Aa (an eigenstate of A).
Because it gives full predictability for the outcome before the
actual measurement of A, then EPR’s criterion indicates A as
an element of reality. Since �A(Aa) = Aa one has IA(Aa) =
0, meaning that A is real. In this case, the criteria agree.
Now, consider the mixture ρmix = ∑

a paAa representing an
ensemble of A-reality states. Presumably, a combination of
A-reality scenarios should render an A-reality scenario; after
all, the probability pa merely reflects subjective ignorance.
Nevertheless, unpredictability for A outcomes implies, via
EPR’s criterion, A-irrealism, whereas IA(ρmix) = 0 implies
A-realism. This instance puts the latter criterion in conceptual
advantage (not to mention that it also is quantitative). To fairly
appreciate these results, one should note that EPR’s criterion
was not originally devised to assess mixed states. However,
even in the case of a pure state, like |s〉, such a criterion has
the drawback of claiming, in contrast with common belief and
result (4), simultaneous reality for incompatible observables.

In the same work [27], Bilobran and Angelo propose to
use measure (3) to quantify by how much the irreality of an
observable A in the site A changes due to unrevealed measure-
ments of an observable B acting on part B. The authors then
introduced the contextual realism-based nonlocality

ηA|B(ρ) := IA(ρ) − IA(�B(ρ)), (5)

where B = ∑
b bBb and �B(ρ) = ∑

b(1A ⊗ Bb) ρ (1A ⊗ Bb),
for projectors Bb. Here the context is defined by the pair
{A, B}. It has been shown that ηA|B(ρ) � 0, with equality
holding for product states, ρ = ρA ⊗ ρB, and for states of
reality, that is, ρ = �A(ρ), ρ = �B(ρ), or ρ = �A,B(ρ) ≡
�A�B(ρ).
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By maximizing the contextual realism-based nonlocality
over all possible contexts, Gomes and Angelo then introduced
the bipartite realism-based nonlocality [28]

N2(ρ) := max
{A,B}

ηA|B(ρ), (6)

which diagnoses the nonlocality of the state ρ on HA ⊗ HB.
This quantity has shown to be nonanomalous, since for maxi-
mally entangled bipartite states, |ψ〉 = ∑d

i=1 |i〉 |i〉 /
√

d , it re-
duces to the entanglement E of |ψ〉, that is, N2(�) = S(�R) ≡
E (�), where R ∈ {A,B}, � = |ψ〉 〈ψ |, and �A(B) = TrB(A)�.
A distinctive feature of N2 can be readily appreciated for
the classical-classical state ρcc = ∑

i piA′
i ⊗ B′

i, where A′ =∑
i a′

iA
′
i and B′ = ∑

i b′
iB

′
i. As shown in Ref. [29] this state

has none of the well-established nonclassical features, namely,
Bell nonlocality, EPR steering, entanglement, and quan-
tum discord. Still, by choosing a context {A, B} maximally
incompatible with {A′, B′} we find N2(ρcc) = ηA|B(ρcc) =
H ({pi}) > 0, where H ({pi}) is the Shannon entropy of the
probability distribution pi. Since ηA′|B′ (ρcc) = 0, one sees
that N2 is able to capture aspects of incompatibility which
suffice to produce realism changes at distance. Moreover, this
quantity has no direct link with Bell nonlocality.

III. TRIPARTITE REALISM-BASED NONLOCALITY

With basis on Bilobran and Angelo’s approach to realism
and nonlocality, we now construct the notion of genuine
tripartite realism-based nonlocality. Hereafter, for the sake
of notational simplicity, we reserve the term nonlocality for
referring to the bi- and tripartite versions of the realism-based
nonlocality, in distinction to Bell nonlocality. Consider a tri-
partite preparation ρ ∈ HA ⊗ HB ⊗ HC such that the parts of
the system are sent to distinct laboratories, A, B, and C, which
are far apart from each other. Let R ∈ {A, B,C} on HR be an
observable accessible only in the laboratory R ∈ {A,B, C}.
We then introduce the bipartite contextual nonlocality

ηA|B,C (ρ) := IA(ρ) − IA(�B,C (ρ)), (7)

where �B,C = �B�C . This formula applies for any permu-
tations of A, B, and C. Being a natural extension of defi-
nition (5), ηA|B,C captures changes in the reality of A given
that local unrevealed measurements �B and �C are conducted
in the remote laboratories B and C. Because irreality never
increases upon completely positive trace-preserving maps, it
follows that ηA|B,C (ρ) � 0, the equality applying for states of
reality ρ = �A(ρ) and ρ = �B,C (ρ), for the full realism state⊗

R=A,B,C
1R
dR

≡ 1
d , where d = dAdBdC , and for uncorrelated

states as ρ = ρA ⊗ ρBC . From this we see that irreality and
correlations are prerequisites for nonlocality. It is also note-
worthy that ηA|B,C (ρAB ⊗ ρC ) = ηA|B(ρAB ), which is desirable
since part C is fully irrelevant in this case. The same applies if
B is uncorrelated.

By maximizing over all trios {A, B,C} of local observables,
we introduce the amount of nonlocality NA|BC associated with
realism changes in part A induced by local measurements in
parts B and C for a given preparation ρ, that is,

NA|BC (ρ) := max
{A,B,C}

ηA|B,C (ρ). (8)

When NA|BC (ρ) > 0 we are certain that there exists at least
one setting {A, B,C} through which one is able to spot a
change in the reality of A when B and C are measured. It
can be verified that NA|BC (ρ) vanishes when ρ = 1/d or ρ =
ρA ⊗ ρBC . In addition, one has NA|BC (ρAB ⊗ ρC ) = N2(ρAB ).

Now, to build our quantifier of genuine tripartite nonlocal-
ity, we invoke Bennett et al.’s proposal [43] for the identifica-
tion of genuine multipartite correlations: “A state of n particles
has genuine n-partite correlations if it is nonproduct in every
bipartite cut.” As shown by Ma et al. [44], this approach is
able to produce, for instance, a measure of genuine tripartite
entanglement for pure states, namely,

E3(ρ) := min{EA|BC (ρ), EB|AC (ρ), EC|AB(ρ)}, (9)

where EA|BC (ρ) = S(ρA) is the entanglement entropy of the
partition A|BC, with a similar interpretation for the other
terms. Being different from quantum discord, NA|BC cannot
be termed a strict measure of quantum correlations. Still,
since it makes reference to nonlocal connections between the
parts, the above rationale involving bipartite cuts is applicable.
This allows us to introduce the quantifier of genuine tripartite
realism-based nonlocality:

N3(ρ) := min{NA|BC (ρ),NB|AC (ρ),NC|AB(ρ)}. (10)

From what we have for measure (8), it follows that N3

vanishes for states like 1/d and ρA ⊗ ρBC (including states
with permuted indexes).

We now prove an interesting result with respect to the
special class of pure states |ϕ〉 admitting a Schmidt decom-
position |ϕ〉 = ∑

i

√
ξi |αi〉 |βi〉 |γi〉 [45], for bases connected

with the observables α = ∑
i αi |αi〉 〈αi|, β = ∑

i βi |βi〉 〈βi|,
and γ = ∑

i γi |γi〉 〈γi| acting on respective spaces HA,B,C . We
start by plugging definition (3) into the contextual nonlocal-
ity, (7), with ς = |ϕ〉 〈ϕ|, to write

ηA|B,C (ς ) = S(�A(ς )) + S(�B,C (ς ))− S(�A,B,C (ς ))− S(ς ).

(11)

For pure states, S(ς ) = 0. Given the entropy monotonic-
ity, S(�R(ς )) � S(ς ), which implies that S(�R,Q(ς )) �
S(�R(ς )) and S(�A,B,C (ς )) � S(�R,Q(ς )), with R, Q ∈
{A, B,C}, we find

2S(�A,B,C (ς )) � S(�A(ς )) + S(�B,C (ς )), (12)

which saturates when �A,B,C (ς ) = �B,C (ς ) = �A(ς ). Com-
bining this inequality with Eq. (11) gives

ηA|B,C (ς ) � 1
2 [S(�A(ς )) + S(�B,C (ς ))]. (13)

Therefore, the maximization of ηA|B,C (ς ) will come by
the saturation of this inequality. This is accomplished
by the choice A = α, B = β, and C = γ , which can
be shown to give �α (ς ) = �β,γ (ς ) = �α,β,γ (ς ) =∑

i ξi |αi〉 〈αi| ⊗ |βi〉 〈βi| ⊗ |γi〉 〈γi|. Hence, NA|BC (ς ) =
ηα|β,γ (ς ) = S(�α (ς )) = H ({ξi}). Given the symmetry of |ϕ〉,
one does not expect different results for the other bipartitions,
so that N3(ς ) = H ({ξi}). The entanglement of the cut A|BC
is given by EA|BC (ς ) = S(TrAς ) = H ({ξi}). Using symmetry
again and definition (9), we obtain E3(ς ) = H ({ξi}), which
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finally gives

N3(ς ) = E3(ς ) (ς = |ϕ〉 〈ϕ|). (14)

This implies that, as far as the class |ϕ〉 of tripartite pure
states is concerned, N3 is surely nonanomalous with respect to
genuine tripartite entanglement as measured by formula (9).

Consider now a classical-classical-classical state, de-
fined as ρccc = ∑

i piA′
i ⊗ B′

i ⊗ C′
i , with A′ = ∑

i a′
iA

′
i, B′ =∑

i b′
iB

′
i, and C′ = ∑

i c′
iC

′
i . It is clear that this is a separa-

ble state, thus possessing no form of entanglement. Yet, it
does present tripartite nonlocality. To see this, let the context
{A, B,C} be maximally incompatible with {A′, B′,C′}. Since
�A(A′

i ) = 1A/dA, with similar relations for the other parts, di-
rect calculations give ηA|B,C (ρccc) = H ({pi}). This guarantees
that NA|BC (ρccc) > 0 and, via symmetry, that N3(ρccc) > 0.
In other words, just as N2, tripartite nonlocality may manifest
itself even when no quantum correlation is present.

IV. APPLICATIONS

Here we calculate N3 for the noisy three-qubit states

ρχ
n := n

1

8
+ (1 − n) |�χ 〉 〈�χ |, (15)

where n ∈ [0, 1] gives the noise (or impurity) added to the
tripartite pure state |�χ 〉, which, with χ ∈ {GHZ,W } (where
GHZ stands for Greenberger-Horne-Zeilinger), assumes

|�GHZ〉 = 1√
2

(|000〉 + |111〉), (16a)

|�W 〉 = 1√
3

(|100〉 + |010〉 + |001〉). (16b)

Even for these relatively simple states, the evaluation of the
genuine tripartite nonlocality N3 is a hard computational
problem due to the optimizations demanded by definitions (8)
and (10). Incidentally, due to the subsystem-permutation sym-
metry, we have N3 = NA|BC = NB|AC = NC|AB, which sim-
plifies our task and makes it numerically feasible. To obtain
NA|BC via maximization of ηA|B,C , we considered spin op-
erators A = â · 	σ with â = (sin θa cos ϕa, sin θa sin ϕa, cos θa)
and 	σ = (σx, σy, σz ), for Pauli matrices σx,y,z. Similarly, we
parametrized B and C with unit vectors b̂ and ĉ, respectively,
thus getting the angles θa,b,c ∈ [0, π ] and ϕa,b,c ∈ [0, 2π ],
over which the optimizations were performed. We then de-
fined a grid by letting these angles vary in their domain with
increments of π/8, which yielded a set of 2 985 984 distinct
settings {A, B,C}. We computed ηA|BC for each setting of the
set and then picked the maximum. This process was repeated
for each value n of noise, which ranged in the domain [0,1]
with increments of 0.01, and for χ = {GHZ,W }. Our results
are presented in Fig. 1. Such numerical analysis was realized
also for 106 randomly generated settings {A, B,C} and no
appreciable difference was found, meaning that these results
are statistically reliable. Throughout our numerical investiga-
tions, we found some noteworthy settings. For the GHZ state
(n = 0), we found that ηA|B,C reaches the maximum value
ln 2 when A = σz and at least one of the observables B and
C is equal to A. The contextual nonlocality is also maximal
when (A, B,C) assumes (σx, σx, σx ), (σy, σy, σx ), (σy, σx, σy),

FIG. 1. Genuine tripartite nonlocality N3(ρχ
n ) for the noisy

three-qubit states (15) as a function of the noise amount n. Blue cir-
cles correspond to the noisy GHZ state (χ = GHZ) and red squares
to the noisy W state (χ = W ). Tripartite nonlocality monotonically
decreases with noise.

or (σx, σy, σy), a set of measurement operators that when
acting over a GHZ state is known to provide predictions that
are in conflict with the local realism hypothesis [46]. For the
W state, the maximum contextual nonlocality, 0.6364, was
found for A = B = C = σz.

Notably, the genuine tripartite nonlocality N3 is a mono-
tonically decreasing function of the noise n, strictly vanishing
only in the scenario of no purity whatsoever (n = 1). This
points out the stronger resilience of N3 in comparison with
other measures of nonclassicality which abruptly vanish under
high levels of noise. For instance, as far as ρGHZ

n is concerned,
it is known that tripartite entanglement disappears for n �
4/5 [47,48], Bell nonlocality for n > 1/2 (from two up to five
measurements per site) [49], and steering for n � 0.225 [50].
For ρW

n , entanglement vanishes for n � 0.8220 [51], Bell
nonlocality for n > 0.3558 (0.3952) with two (three) mea-
surements per site [49], and steering for n � 0.1634 [50]. An
equivalent noise resilience was verified for N2 in Ref. [28].

V. MONOGAMY OF NONLOCALITY

A monogamy inequality QA|BC � QA|B + QA|C for a given
resource measure Q gives an upper bound to the shareability
of the related resource among the parts of the system. We now
assess whether the genuine tripartite nonlocality N3 exhibits
this property. In fact, we want to test the relation

N α
3 (ρABC ) � N α

2 (ρAB) + N α
2 (ρAC ), (17)

where ρAB and ρAC are reduced states, and α ∈ R>0 is a
parameter intended to give to a further measure N α

3 , monoton-
ically related with N3, an extra chance to satisfy monogamy.
This strategy has proven successful in establishing monogamy
for general measures of nonclassicality [52].

We start by proving that N α
3 is not monogamous in gen-

eral. Consider the tripartite GHZ state ρABC = ρGHZ
n=0 , whose

reduced states read ρAB = ρAC = (|00〉 〈00| + |11〉 〈11|)/2 ≡
ρcc. We then find N3(ρABC ) = N2(ρAB) = N2(ρAC ) = ln 2,
which, for all α, can never satisfy the monogamy relation (17).
Interestingly, however, violations of monogamy for the state
ρ

χ
n tend to be relatively rare in the parameter space. To show
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FIG. 2. Contour plots for the normalized monogamy witness
δN α

3 (ρχ
n )/Nχ (see color code), with the respective normalization

factors NGHZ
∼= 0.019997 and NW

∼= 0.073296, for the state ρχ
n , as

a function of the parameters α and n. Monogamy holds in the whole
colored regions, where δN α

3 � 0, and does not apply for the pure
GHZ state (left panel with n = 0 and ∀α > 0).

this, we present in Fig. 2 numerical results for the quantity

δN α
3 (ρABC ) := N α

3 (ρABC ) − [
N α

2 (ρAB) + N α
2 (ρAC )

]
, (18)

with ρABC = ρ
χ
n . This is a quantifier that, whenever non-

negative, witnesses monogamy for the measure N α
3 (see the

colored region in Fig. 2). The results show that monogamy
is prevented for small values of {n, α} and is saturated for
large values. Also, they confirm that the pure GHZ state
does not allow for monogamy and that for the pure W state

monogamy holds for α � 2.1641, with δN α
3 (ρW

n=0) peaking at
α ∼= 3.8372.

VI. CONCLUDING REMARKS

With basis on the criterion of reality proposed in Ref. [27],
we introduce a bipartite realism-based nonlocality measure
that applies for three parts and, from that, a genuine tripartite
realism-based nonlocality measure. This quantifier is shown
to reduce, for a given class of pure states, to genuine tripartite
entanglement and to manifest itself even in cases where
no quantum correlations are present. In addition, genuine
tripartite realism-based nonlocality turns out to be greatly
resistant to noise and deformable into further monogamous
quantities for some states. This work paves the way to in-
cursions on the unexplored realm of n-partite realism-based
nonlocality.
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