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Analog quantum simulation of superradiance and subradiance in trapped ions
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We discuss a protocol for the analog quantum simulation of superradiance and subradiance using a linear chain
of N trapped qubit ions with a single sympathetic cooling ion. We develop a simple analytic model that shows the
dynamics of the qubit subspace converge to those of a cloud undergoing Dicke superradiance and subradiance.
We provide numerical simulations of the full ion chain and show that they converge to the dynamics predicted
by our analytic model with no fitting parameters. We also map out the parameter regime needed to reach this
convergence.
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I. INTRODUCTION

Trapped ions are one of the most promising platforms
for quantum simulations [1–5]. Using either lasers [4–7] or
microwaves [8–16] to generate spin-motion coupling, they
offer the ability to create a large range of effective Hamil-
tonians that have controllable spin-spin interactions [17,18]
and environmental coupling [19]. This has enabled analog
quantum simulations of important many-body phenomena
such as superradiant phase transitions [20], quantum transport
[21], and the Dirac equation [22]. There has yet to be an
analog quantum simulation, however, of superradiance and
subradiance [23], which are essential parts of many physical
processes, including atomic, biological, and condensed matter
systems [24–45]. While the study of coherent emission from
quantum systems has yielded important results in its tenure,
the Hilbert space describing a typical system of interest will
grow exponentially with its size. This has prompted physi-
cists to create simplified theoretical frameworks by making
physical approximations such as assuming a low [31,35,46]
or high [30] fraction of the atoms to be excited, or by leverag-
ing symmetries in interparticle interactions [47]. To explore
larger and less constrained systems, a quantum simulation
for coherent radiation will likely be needed. In this work, we
will show that such a simulation is possible in a trapped ion
system, where the photon emission from a single auxiliary
sympathetic cooling ion in an N qubit system [see Fig. 1(a)],
converges to the exact photon emission of an N atom cloud
exhibiting Dicke superradiance [23], with an effective single
atom decay rate that depends on (controllable) field strengths.

In its original formulation, Dicke superradiance is repre-
sented by a cloud of N two-level atoms confined to a space
that is small compared to the atoms’ transition wavelengh
[23], ignoring the strong dipole-dipole interactions present
in this regime [24,48]. If all the two-level atoms are placed
in the excited state, the system only decays into symmetric
superpositions of every possible state with a given number
of excitations. Here, using the parallel between two-level
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and spin-1/2 systems, we represent these Dicke states as
|N/2, m〉. In this notation, m is the spin projection onto the
z axis of an N spin-1/2 system with total angular momen-
tum N/2. As the system decays, correlations between the
atoms build, causing the enhanced decay rate of the system
to be �′( N

2 + m)( N
2 − m + 1), as opposed to the �′( N

2 + m)
rate expected in the absence of correlations, where �′ is the
single atom decay rate. The increase in emission rate as the
system evolves gives the signature ∝ N2 photon intensity
pulse associated with superradiance. This has been shown
to be equivalent to an ensemble of two-level atoms sym-
metrically coupled to a lossy cavity [44,45,49]. It has also
been shown that this lossy cavity effect may be generated by
sympathetically cooling a Coulomb mode of a mixed-species
Penning trap, where the mechanism may be used to effec-
tively create steady-state superradiance [50]. In this work, we
will use a similar underlying physical mechanism, to create
an analog quantum simulation of the superradiant cascade
effect described in Dicke’s original work [23] in a linear
chain of ions with a single auxiliary ion (same or different
species) used for sympathetic cooling. We will show that,
when the motion is cooled significantly faster than the rate of
spin-motion coupling, the temporal dependence of the qubit
evolution, as well as the scattered radiation of the auxiliary
ion, converges to that expected from Dicke superradiance
and subradiance. We expect that the work shown here can
be expanded to include effective spin-spin interactions, and
eventually be used for simulations that are unfeasible on a
classical computer.

II. THEORY

We consider a system of trapped ions that is comprised of
N qubit ions, a single motional mode, and an auxiliary ion for
sympathetic cooling [see Fig. 1(a)]. The elements of the initial
representation of the system are written as

|ψ〉 = |qubit〉 |aux〉 |n〉 , (1)

where |qubit〉 ≡ |↑↑↓ . . . ↑〉 represents the internal qubit
states, |aux〉 represents the internal state of the auxiliary ion,
and |n〉 represents a motional mode containing n phonons.
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FIG. 1. (a) Illustration of the trapped ion system to be used as an
analog quantum simulation of superradiance and subradiance. The
system consists of N qubit ions (orange), symmetrically coupled
to the motion with a field gradient (green arrows). The motion is
also coupled to an auxiliary ion with a laser (pink arrow) and emits
radiation (red arrow). (b) Illustration of a photon decay for Dicke su-
perradiance. Here the Dicke state with N

2 + m excitations, |N/2, m〉,
emits a single photon and is projected onto the Dicke state with N

2 +
m − 1 excitations |N/2, m − 1〉. (c) Illustration of the protocol used
to mimic superradiance. The system, initially in the |N/2, m〉 |g〉 |0〉
state, is symmetrically driven to the |N/2, m − 1〉 |g〉 |1〉 state, which
is quickly driven to the |N/2, m − 1〉 |e〉 |0〉 state, the system then
radiates to the |N/2, m − 1〉 |g〉 |0〉 state; the qubit subspace follows
the trajectory described in (b).

Here, |↑〉 (|↓〉) is the excited (ground) state of an individual
qubit. The auxiliary ion is either in the strongly radiating state
|e〉 or the nonradiating ground state |g〉; this is achieved with a
laser-driven cycling transition on an ion that may or may not
be the same species as the qubits. We assume a system initially
cooled to the motional ground state n = 0, where the auxiliary
ion is in the |g〉 state. The qubits are then symmetrically
driven on the red sideband with a continuous field, while a
separate red sideband drive is applied to the auxiliary ion. The
Hamiltonian for this system is

Ĥ = h̄�s{Ŝ+â + Ŝ−â†} + h̄�a{σ̂+â + σ̂−â†}. (2)

Note that we are working in the rotating frame with respect
to the qubit and motional frequency, and have made the
rotating wave approximation. Here, â(â†) are the phonon an-
nihilation(creation) operators, Ŝz,+,− ≡ ∑N

j σ̂
j

z,+,− represents

a collective spin operator on the qubit subspace, where σ̂
j

z,+,−
is a Pauli spin operator for the jth qubit, and σ̂+(σ̂−) are Pauli
spin operators for the auxiliary ion. The amplitudes in this
equation are the Rabi frequencies of the red sidebands acting
on the qubits �s and the red sideband acting on the auxiliary
ion �a.

To perform the many-ion calculations in Sec. III A, we
simplify the equations by noting that when the operator Ŝ+,−
acts on a superradiant state, given by

|N/2, m〉 ≡
{

(N − m)!m!

N!

}1/2 ∑
qubits

|↑↓↓↑ . . . ↑〉 , (3)

where the sum in the above equation is over all states
with N

2 + m qubits in the excited state, it only couples
to |N/2, m ± 1〉 with nonzero matrix elements. Note that

|N/2, m〉 is an eigenstate of Ŝ2 and Ŝz. This allows us to greatly
reduce the qubit subspace from the 2N original elements to the
N + 1 possible |N/2, m〉 states. We can then rewrite Eq. (2) as

Ĥ = h̄�s{D̂+â + D̂−â†} + h̄�a{σ̂+â + σ̂−â†}, (4)

where we rewrote the qubit operators as

D̂− ≡
∑

m

{(
N

2
+ m

)(
N

2
− m + 1

)}1/2

× |N/2, m − 1〉〈N/2, m|, (5)

and D̂+ = D̂†
−, thereby greatly reducing the complexity of the

above equations. We assume that the radiation from the qubits
themselves is negligible. The auxiliary ion, however, is taken
to radiate quickly. We account for this using the Lindblad
formalism for a single two-level system’s decay, where the
photon bath has been traced over. The full master equation for
the density operator of the system ρ̂ is

˙̂ρ = − i

h̄
[Ĥ, ρ̂] + �

{
σ̂−ρ̂σ̂+ − 1

2
σ̂+σ̂−ρ̂ − 1

2
ρ̂σ̂+σ̂−

}
, (6)

where � is the decay rate of the auxiliary ion. Note that the full
Eq. (6) is used for all the numerical calculations of trapped
ions in this work, with no further approximations.

Analytic model

The superradiant cascade is where the Dicke state |N/2, m〉
emits a photon into a Markovian bath and is projected onto
|N/2, m − 1〉 at a rate of �′( N

2 + m)( N
2 − m + 1) [Fig. 1(b)].

We simulate the dynamics of this system using trapped ions
with the protocol illustrated in Fig. 1(c). Initially, the qubit
subspace is in the |N/2, m〉 state, the auxiliary ion is in
the |g〉 state, and the motional mode is in the |0〉 state,
making the overall state |N/2, m〉 |g〉 |0〉. The red sideband
of each of the qubits is then driven with a rate �s so
that the system evolves into the |N/2, m − 1〉 |g〉 |1〉 state.
Simultaneously, the red sideband of the |g〉 ↔ |e〉 transition
is driven at �a, a much faster rate than �s, taking the system
from |N/2, m − 1〉 |g〉 |1〉 to |N/2, m − 1〉 |e〉 |0〉. Finally, at a
rate � much faster than �s, the auxiliary ion decays, taking
the state from |N/2, m − 1〉 |e〉 |0〉 to |N/2, m − 1〉 |g〉 |0〉, re-
peating this cycle until |N/2,−N/2〉 |g〉 |0〉 is reached. Note
that we are assuming the transition |N/2, m − 1〉 |g〉 |1〉 ↔
|N/2, m − 2〉 |g〉 |2〉 can be ignored because we are exploring
a regime where sympathetic cooling is much faster than this
process.

The authors or Ref. [23] derived the rate that the
population in |N/2, m〉 decays into |N/2, m − 1〉 [Fig. 1(b)].
Similarly, we wish to determine the effective decay
rate �eff representing the transfer of population from
|N/2, m〉 |g〉 |0〉 to |N/2, m − 1〉 |g〉 |0〉 [Fig. 1(c)]. To do
this, we assume an initial population in |N/2, m〉 |g〉 |0〉,
and calculate the rate of decay out of the entire
{|N/2, m〉 |g〉 |0〉 , |N/2, m − 1〉 |g〉 |1〉 , |N/2, m − 1〉 |e〉 |0〉}
subspace. We represent the density matrix for this subspace
as ρ̂sub.

To begin, we note that Ĥ only couples terms within ρ̂sub,
resulting in no entanglement with the rest of the system. We
can therefore focus on the decay of an initial population out of
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ρ̂sub to determine �eff . The �σ̂−ρ̂σ̂+ term in Eq. (6) represents
the transfer of population into ρ̂sub, which is not a component
of the process that we currently wish to analyze; we can thus
ignore this term for our analytic model. These considerations
allow us to write Eq. (6) for the subspace as

˙̂ρsub = − i

h̄
(Ĥcρ̂sub − ρ̂subĤ†

c ), (7)

where Ĥc ≡ Ĥ − i h̄�
2 σ̂+σ̂− is a non-Hermitian Hamiltonian

acting on ρ̂sub [51]. The above equation is equivalent to a
density matrix for a wave function being propagated by Ĥc.
We use this fact to simplify the analytic calculation of �eff ,
considering only a wave function for the subspace acting
under Ĥc.

Letting c0, c1, and c2 be the probability amplitudes of the
|N/2, m〉 |g〉 |0〉, |N/2, m − 1〉 |g〉 |1〉, and |N/2, m − 1〉 |e〉 |0〉
states, respectively, we can find the equation of motion for c1:

ċ1 = −i�s

{(
N

2
+ m

)(
N

2
− m + 1

)}1/2

c0 − i�ac2. (8)

We now assume that (upon reaching quasi-equilibrium) ċ1 

0 relative to �a and �. This allows us to set the left-hand side
of Eq. (8) to 0 and solve for c2 in terms of c0:

c2 = −�s
{(

N
2 + m

)(
N
2 − m + 1

)}1/2
c0

�a
, (9)

where we can now easily solve for �eff , defined by
�eff ( N

2 + m)( N
2 − m + 1)|c0|2 = �|c2|2. This results in a final

equation:

�eff =
(

�s

�a

)2

�. (10)

This is analogous to an N atom system undergoing super-
radiance with an effective single atom decay rate of �′ = �eff .

III. RESULTS

A. Superradiance

For an ensemble exhibiting the form of superradiance
described in Ref. [23], a Dicke state |N/2, m〉 decays at
a rate given by �′( N

2 + m)( N
2 − m + 1). This indicates that

if an ensemble is initialized to the |N/2, N/2〉 state then
the photon emission rate of the ensemble, γ = �〈σ̂+σ̂−〉 =
Tr{�σ̂+σ̂−ρ̂}, will initially increase with time, followed by a
rapid decrease, when the system runs out of energy, emitting
a pulse of photons with intensity ∝ N2. In this subsection,
we demonstrate that γ from a single auxiliary ion in an N
qubit ion chain converges to the exact time dynamics expected
in a superradiant system with a single atom decay rate of
�′ = �eff , when � � �s and �2

a/� � �s.
The convergence of our trapped ion system to Dicke super-

radiance is shown in Fig. 2 for systems of N = 1, 5, 10, 20,

and 30. This is done using Eq. (6) without approximation. We
here show the temporal evolution of γ normalized by �′ and
N , γ ′ ≡ γ /N�′. We compare γ ′ for the entire superradiant
cloud to γ ′ from the auxiliary ion in an N qubit trapped ion
system, and set �′ to �eff for comparison. For the trapped ion
system, we choose values of �a 
 81.2�s and � = 200�s,
chosen to be well within the regime of convergence (discussed

FIG. 2. Comparison between simulations of the original N par-
ticle system exhibiting superradiance [23], and the full simulation
[Eq. (6)] of the analog quantum simulator described in this work.
For the calculation that uses the original equations (dotted lines), we
show the photon emission rate γ of the entire system normalized
by the single atom decay rate �eff and the number N of particles
γ ′ ≡ γ /N�eff . For the calculation of our trapped ion system (solid
lines), we show γ ′ from the auxiliary ion for an N qubit system.
This shows that after an initial ramp-up time (see inset), our protocol
converges Dicke superradiance and our analytic model gives an exact
prediction of �eff .

below). At very short times, γ ′ from the auxiliary ion in the
trapped ion system is close to zero. However, at a timescale
∝ 1/�, the system reaches quasi-equilibrium, and, as a result,
follows the dynamics discussed in Sec. II. This initial “ramp-
up” time is shown in the inset of Fig. 2. Here, after a time t that
is short compared to �s, each system of N qubits converges to
the system they are supposed to simulate.

In order for γ ′ versus t from the auxiliary ion to converge
to that of Dicke superradiance, the parameters of the system
must be set up such that the system reaches quasi-equilibrium
on a timescale that is fast compared to the system’s overall
evolution (∝ 1/�eff ), and that, at quasi-equilibrium, the pop-
ulation is removed from the motional mode at a rate that is
fast compared to �s such that there is no back-action into the
initial state. As we show in Fig. 3, these two conditions are
met when � � �s and �2

a/� � �s, respectively.
The first condition � � �s is due to the fact that the

damping provided by the photon emission from the auxiliary
ion will cause the system to reach quasi-equilibrium at a
rate ∝ �. Since the auxiliary ion will mimic superradiant
emission when it has reached quasi-equilibrium (see Sec. II),
it must reach quasi-equilibrium on a timescale that is much
shorter than the overall evolution of the system. Also, if the
system is not damped at a much faster rate than the population
is put in, back-action will lead to Rabi oscillations; this
will significantly complicate the dynamics. We show this in
Fig. 3(a), a system of N = 10 qubits coupled to an auxiliary
ion that decays at a rate �. Note that we choose a set value
of �2

a/� = 30�s in this graph, so that (as will be discussed
below) the population is removed from the motional mode at
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FIG. 3. Calculations for N = 10 qubit systems. (a) Time evolu-
tion of the photon emission rate from the auxiliary ion γ , normalized
by the effective single atom decay rate �eff , and the number of
qubits N , i.e., γ ′ = γ /N�eff . The calculations shown here are for
�2

a/� = 30�s and for varying values of �, converging to Dicke
superradiance when � � 75�s. Note that, while the � = 10�s cal-
culation appears to radiate faster than those for larger values of �,
it actually radiates more slowly; this is an artifact of normalizing by
�eff , whose derivation is no longer valid for the calculation. (b) For
both auxiliary atom decay rates of � = 400�s (solid) and � = 800�s

(thick dashed), the emission rate versus t falls on the same line
for the same values of �2

a/�, converging to Dicke superradiance
(purple dotted) for �2

a/� � 20�a. This shows that when � is large
the dynamics of the system is determined entirely by �2

a/� and N .

a rate that is large enough to reach convergence [see Fig. 3(b)].
Here it can be seen that for values of � � 75�s the evolution
converges to that expected from Dicke superradiance, but for
smaller values of � the system deviates from the desired
evolution.

The second condition �2
a/� � �s is that once the sys-

tem has reached quasi-equilibrium, the population must be
removed from the motional mode (|N/2, m − 1〉 |g〉 |1〉 state)
at a rate that is significantly faster than it is put in. We can
quantify this rate by using a similar argument as was used
to obtain Eq. (10), but for the reduced Hilbert space of just
|N/2, m − 1〉 |g〉 |1〉 and |N/2, m − 1〉 |e〉 |0〉. As we originally
assumed that the population of |N/2, m〉 |g〉 |0〉 was fixed in
Eq. (8), we now do the same for |N/2, m − 1〉 |g〉 |1〉. This
gives

ċ2 = −i�ac1 − �

2
c2. (11)

Setting the left-hand side to 0, we get an effective decay rate
out of c1 of 4�2

a/�; this means that, at quasi-equilibrium,

FIG. 4. Fidelity F versus time t of a trapped ion system
where the N = 2 qubits are initialized to a state 2−1/2(|↑↓〉 +
eiφ |↓↑〉) |g〉 |0〉. This illustrates how the state the system is initialized
to determines its decay; the ion chain can act as simulator of a
superradiant φ = 0 and subradiant φ = π system.

the value of �2
a/� must be large compared to �s, so that

the transfer of the population from the motional mode to the
quickly radiating state is fast enough for the former to act as
a lossy cavity. This is shown in Fig. 3(b), where we can see
that our calculations converge to Dicke superradiance only for
values of �2

a/� � 20�s; for larger values of �2
a/�, except for

Rabi oscillations at small t , we find that the system converges.
Figure 3 also shows that when � � �s, the dynamics of the
system is entirely dictated by the value of �2

a/�. This is
here seen in the fact that calculations for systems such that
� = 200�s and � = 400�s fall on the same lines, reaching
convergence when �2

a/� � 20�s.
In terms of measuring the properties of our superradiant

system, one could directly measure the photon emission from
the auxiliary ion; for illustrative purposes, we show this
for the figures in this section. Depending on the particular
experiment, however, it may be easier to directly measure the
internal states of the qubits using standard techniques [1]. This
will be particularly useful when measuring systems that do not
radiate strongly, as discussed in the next subsection.

B. Subradiance

The trapped ion system we describe in this work can mimic
the dynamics of subradiance as well. Since subradiance is
a significantly harder effect to probe experimentally (due to
its diminished emission) [52], this simulation offers a unique
opportunity to probe subradiant effects; due to the exceptional
readout capabilities of trapped ions [1], one could generate a
system that behaves in a subradiant manner, and probe it by
simply measuring the internal states of the qubits; this is likely
the optimal way to probe this simulation due to the fact that
γ ′ is small and thus hard to measure when the system mimics
subradiance.

To demonstrate the capacity of our system to simulate
subradiance, Fig. 4 shows the fidelity, F ≡ 〈ψ0| ρ̂ |ψ0〉, versus
�efft for a two-qubit system placed in the initial state

|ψ0〉 ≡ 1√
2
{|↑↓〉 + eiφ |↓↑〉} |g〉 |0〉 . (12)

This can be generated using a two-qubit entangling gate
to create a Bell state followed by a single qubit rotation
[6,7,11,12]. Note that, here, we simulate the system in the
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original qubit basis, see Eq. (2), since |ψ0〉 is outside of the de-
scribed |N/2, m〉 basis. Here we change the value of φ to vary
the state from superradiant (φ = 0), where the state decays at
twice the single particle decay rate [F (t ) = exp{−2�efft}) to
subradiant (φ = π ), where the initial state does not decay at
all F (t ) = 1]. Even though, in the (idealized) latter case, the
auxiliary ion does not emit any radiation, this effect should be
observable through the direct measurement of the qubits.

IV. EXPERIMENTAL IMPLEMENTATIONS

The two parameter regimes required to generate Dicke
superradiance (� � 75�s and �2

a/� � 20�s) can, in prin-
ciple, be met for any choice of � and �a by making �s

sufficiently weak. This could, of course, result in a small �eff

which would lead to a long experimental run time, so it is
important to determine what this time would be in a typical
experiment. Assuming that �2

a/� 
 20�s, we find �eff 

�2

a/400�, and that this condition automatically enforces � �
75�s for typical values of �. As an example, if the auxiliary
ion is 9Be+ the value of � would be approximately 2π ×
20 MHz [53], corresponding to the P3/2 → S1/2 transition.
For a value of �a = 2π × 500 kHz, this would make the
convergence criteria for �s 
 2π × 625 Hz and the timescale
of the experiment 1/�eff 
 5 ms. The speed of this scheme is
limited by the fact that a typical sympathetic cooling transition
decays quickly and requires a strong laser to sufficiently drive
the red sideband. The timescale of a potential experiment as
well as the required �a could be decreased if one had access
to a cooling transition with a smaller value of �.

V. CONCLUSION

In this work, we showed that a trapped ion chain can be
made to exhibit Dicke superradiance and subradiance, in a
manner that converges to the exact results from the original
system. This offers the opportunity to study the phenomena
in a way that allows experimentalists to control the effective
single atom decay rate �eff by adjusting the field amplitudes of
the system. One could even stop the decay of the system at any
time and probe any of its particles. For illustrative purposes,
we focused on the simulation of the system originally envi-
sioned by Dicke in Ref. [23] since its symmetries allow us to
compare our analog to the exact answer. Going forward, these
ideas could be combined with existing techniques that used
trapped ions to create analog quantum simulations of other
interesting systems [2,17,18,20–22,54]. Finally, with various
theoretical and technical advances, it could be used to explore
the physics of systems not easily probed experimentally or
simulated on a classical computer.
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