
PHYSICAL REVIEW A 100, 060102(R) (2019)
Rapid Communications

Mesoscopic two-mode entangled and steerable states of 40 000 atoms in a
Bose-Einstein-condensate interferometer

B. Opanchuk,1 L. Rosales-Zárate,2 R. Y. Teh,1 B. J. Dalton,1,3 A. Sidorov,1 P. D. Drummond,1,4 and M. D. Reid1,4

1Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Australia
2Centro de Investigaciones en Óptica A.C., León, Guanajuato 37150, México

3Centre for Cold Matter, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
4Institute of Theoretical Atomic, Molecular and Optical Physics (ITAMP), Harvard University, Cambridge, Massachusetts 02138, USA

(Received 17 September 2018; published 31 December 2019)

Using criteria based on superselection rules that apply to massive bosons but not to photons, we analyze
the quantum correlations between the two condensate modes of a Bose-Einstein condensate interferometer
[described in Egorov et al., Phys. Rev. A 84, 021605 (2011)]. We show that the observation of interference fringes
can only be explained by Einstein-Podolsky-Rosen steering correlations between the two modes. Moreover,
the size of the two-mode correlation linked to the fringe visibility will place a lower bound on the mean
number of atoms of the (pure) two-mode steerable state. In order to determine the two-mode correlations, we
develop a multimode theory describing the dynamics of the condensate atoms and the thermal fraction through
the interferometer sequence, in agreement with the experimentally measured fringe visibility. We thus present
experimental evidence for two-mode entangled states genuinely involving 40 000 87Rb atoms, and for two-way
steerability between two groups of 20 000 indistinguishable atoms.
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In the Einstein, Podolsky, and Rosen (EPR) paradox, a
measurement made by an observer at one location can ap-
parently instantaneously affect the quantum state at another
[1]. This effect was called “steering” by Schrödinger [2,3].
States that give the correlations of an EPR paradox are called
steerable, or EPR steerable if the two locations are spatially
separated [3–6]. Although well verified for optical systems
[7,8], it is a challenge to demonstrate EPR steering correla-
tions between large massive systems. To resolve paradoxes
associated with macroscopic quantum objects, decoherence
theories propose to modify quantum mechanics by including
gravitational effects [9,10], thus distinguishing between mas-
sive and massless systems. For these reasons, the detection
of EPR steering correlations between mesoscopic groups of
atoms is an important milestone.

There has been success in entangling massive systems
[11–19]. Yet entanglement does not imply steering, which is a
stronger form of quantum correlation. Steering is a necessary
(though not sufficient) requirement for all systems that show
Bell nonlocality [20], and is useful for certain quantum infor-
mation tasks [21]. Several experimental groups have inferred
Bell or steering correlations between atoms within an atomic
ensemble [11–13], and there has been a demonstration of Bell
correlations involving optomechanical oscillators [22]. In a
further step, EPR steering has been observed between spa-
tially separated clouds of several hundreds of atoms formed
from a Bose-Einstein condensate (BEC) [14,15,19].

However, there is a difference between states with many
mutually entangled atoms, and states built of multiple smaller
entangled units, such as independent pairs of entangled atoms.
This distinction has motivated experiments that rigorously
quantify the number of atoms genuinely involved in the entan-

gled unit (called the “depth of entanglement” [23,24]), leading
to evidence of states with a few hundred atoms mutually
entangled in a BEC [25,26], a few thousand in a thermal
atomic ensemble [27], and up to a few million in a crystal
lattice [28]. Yet, entanglement does not imply steering, and
so far atomic experiments have not addressed the size of
steerable units. Moreover, most experiments have considered
entanglement shared between distinguishable particles. This
contrasts with a BEC, where atoms are indistinguishable parti-
cles occupying distinct modes. Since modes can be separated,
demonstrating mode entanglement for highly occupied modes
is promising for obtaining nonlocality between spatially sepa-
rated mesoscopic groups of atoms. While mode entanglement
has recently been observed [14,15,19], the maximum number
of atoms involved has been limited to several hundred.

In this Rapid Communication, we present experimental
evidence for atomic two-mode steerable entangled states gen-
uinely involving 40 000 atoms, with 20 000 atoms localized in
each condensate mode. The states are created in a multimode
87Rb BEC Ramsey interferometer of ∼55 000 atoms at a
temperature of ∼37 nK and prepared on an atom chip in
a magnetic trap [29,30]. Steering is a directional form of
entanglement, because one can consider a nonlocal effect one
way, on one system due to measurements on the other, and
vice versa. Two-way steering is required for Bell nonlocality
[3,5]. Here, we demonstrate that the correlations between
two atomic condensate modes are two-way steerable, thereby
inferring the steerability of 20 000 indistinguishable atoms.

It is important to clarify the meaning of “entangled states
genuinely involving N atoms,” in the context of mode entan-
glement. The entanglement depth is not simply the number
of atoms in the experiment, nor the number of atoms in
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the two condensate modes. This is because the system may
be in a mixed state where large numbers of atoms are in
separable (nonentangled) two-mode states. Furthermore, at
finite temperature, a significant number of atoms are lost into
thermal modes. We define the “mode-entanglement (steering)
depth” as the number of atoms N in the part of the density
operator associated with two-mode entanglement (steering).
Specifically, we will confirm that the entanglement cannot be
explained, if we allow that the number N is reduced. In this
Rapid Communication, we measure a mode-entanglement and
mode-steering depth of 40 000 atoms.

Mode versus particle entanglement. We may first ask how
to compare the mode-entanglement depth with the particle-
entanglement depth investigated in previous experiments. In-
deed, there has been controversy about the meaning of particle
entanglement when particles are indistinguishable, and hence
not individually localizable, as in a BEC [31–33].

To illustrate, consider bosons incident on a Ramsey BEC
interferometer. For two atomic bosonic modes, superselection
rules apply that fix the total particle number N for a pure state
[31,34–37]. The most general pure two-mode state is then of
the form (N is a constant)

|ψN 〉 = N
N∑

n=0,1,...

dn

√(
N

n

)
|n〉a|N − n〉b, (1)

where dn are complex amplitudes. Here, |n〉a|N − n〉b denotes
n particles in mode a with spin 0, and N − n particles in mode
b with spin 1. The state is mode entangled for any dn, provided
dn �= 0 for at least two values of n. Following Ref. [32],
we write |n〉a|N − n〉b = 1√

(N
n )

S|0〉1 · · · |0〉n|1〉n+1 · · · |1〉N ,

where S denotes symmetrization of the particle state in first
quantization. If we view the pseudolabels 1, . . . , N of the
symmetrized wave function as corresponding to N distin-
guishable particles, then it is straightforward to show that
the mode-separable state |n〉a|N − n〉b for n = 1, . . . , N − 1
is both N-particle entangled and N-particle steerable [38–40].
This is also true in general for the mode-entangled state |ψN 〉,
except for some singular choices such as dn = 1. Details are
given in the Supplemental Material [40,41].

This provides a link between the mode-entanglement
depth, and the pseudolabel particle-entanglement depth in-
ferred in earlier experiments [25,26]: A pure two-mode entan-
gled state with a mode-entanglement (steering) depth of N is
also pseudolabel particle entangled (steerable) with depth N ,
except in the singular cases. In those cases, once we determine
the value N of the mode-entanglement (steering) depth, a state
with pseudolabel N-particle entanglement (steering) can be
prepared by a local operation that projects onto a definite local
mode number n [31]. Although such N-particle entanglement
is without direct operational meaning (since pseudolabeled
systems are not independently measurable [31–33,42]), such
particle entanglement can be transformed into multipartite
mode entanglement by expanding and splitting the BEC
[14,15,32]. An N-partite entanglement can only be realized,
however, once each atom is localizable.

The observation of any degree of spin squeezing is suffi-
cient to imply a (pseudolabel) N-particle entanglement, once
the mode-entanglement depth N has been determined. The

FIG. 1. Schematic of a two-mode Mach-Zehnder interferometer.
Entangled modes a and b are prepared by means of a number state
|N〉a incident on the first beam splitter BS1.

result follows because the particles are indistinguishable [40].
In our experiment, we do not measure spin squeezing. In
fact, |ψN 〉 with dn = 1 is an approximate model for the state
generated. While such a state is separable with respect to
the pseudolabels, we argue that such separability has limited
meaning because the subsystems are not distinguishable, and
our interest here is simply to confirm the mode-entanglement
depth [31].

Steering. We begin by defining the concept of steering for
two subsystems a and b [3]. Where each system is a single
mode, we introduce boson creation and destruction operators
â†, â, b̂†, b̂ for a and b, respectively. The two systems are
entangled if the quantum density operator ρ of the composite
system cannot be described according to a separable model
ρ = ∑

R PRρR
a ρR

b . Here, ρR
a and ρR

b are density operators for
a and b, and PR are probabilities satisfying

∑
R PR = 1 and

PR > 0. If the modes are at different locations, EPR steering
of b by a is demonstrated if there is a failure of all local
hidden state models, where the averages for locally measured
observables Xa and Xb are given as [3,4]

〈XbXa〉 =
∫

λ

P(λ)dλ〈Xb〉ρ,λ〈Xa〉λ. (2)

The states symbolized by λ are the hidden variable states
introduced in Bell’s local hidden variable models, with prob-
ability density P(λ) satisfying

∫
λ

P(λ)dλ = 1. 〈Xa〉λ is the
average outcome of Xa given the system is in the state λ. The
ρ subscript denotes that the average 〈Xb〉ρ,λ is generated from
a local quantum state with quantum density matrix ρλ

b .
Entangled modes of an interferometer. The entangled states

reported in this Rapid Communication can be understood
by using a simple model of a Mach-Zehnder interferometer
(Fig. 1). Consider two field modes impinging on a 50/50 beam
splitter BS1. The input state for mode a is a Fock number
state |N〉a describing N bosons. The input to b is the vacuum
state |0〉b. The output of the beam splitter is the two-mode
entangled state |ψN 〉 (1) where dn = 1, N = 1/

√
2N [43].

Equivalent predictions are given for a BEC atom Ramsey
interferometer. For an atom interferometer, superselection
rules apply that fix the total particle number for a pure state
[31–37], meaning superpositions of states with different num-
bers of atoms in a single mode are excluded. Therefore the
single-mode input state to an atom interferometer is consid-
ered to be a mixture of pure states with a fixed atom number.
Considering the single-mode input state |N〉a, the most gen-
eral pure two-mode state describing the propagation through
the interferometer is of the form (1). The incident mode |N〉
represents N atoms of a single-component BEC prepared in
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an atomic hyperfine level |1〉 = |F = 1, mF = −1〉 (spin 0). A
π/2 microwave pulse creates a two-component BEC associ-
ated with two hyperfine levels |1〉 and |2〉 = |F = 1, mF = 1〉
(spin 1). This produces the action of the beam splitter BS1,
creating the mode-entangled state |ψN 〉. The components |1〉
and |2〉 correspond to well-defined spatial condensate modes
a and b. After an evolution time T , a second interrogating
microwave pulse is applied with a phase lag ϕ, producing the
action of a second beam splitter. Immediately after, the atoms
are released and the two-component population difference
〈N̂−〉 is measured by atom imaging. The nonlinearity χ of the
BEC gives rise to spin squeezing, defined as a noise reduction
(�N̂−)

2
< N/4 [26,46] for some choice of ϕ [23–26,44–

48], and an N-particle entanglement with respect to particle
pseudolabels [23–26,44–48].

Our interest is in the entanglement between the modes
of |ψN 〉. This operational entanglement between a and b as
measured by the entropy of entanglement is of order N (or
1
2 log N for |ψN 〉 with dn = 1), illustrating a cooperative effect
due to all N bosons, directly related to the mode-entanglement
depth [31]. The size of the moment 〈â†b̂〉 can be used to detect
the entanglement between the modes [47,49,50]. As an ex-
ample, a sufficient condition for entanglement (steering a by

b) is |〈â†b̂〉|2 > 〈â†âb̂†b̂〉 [49] (|〈â†b̂〉|2 > 〈â†âb̂†b̂〉 + 〈â†â〉/2
[47,50]). It is not feasible, however, to use existing criteria
[24,47,49,50], due to the difficulty of preparing a state with
an exact atom number N , for large N values.

Superselection rules and criteria for steering. Two-mode
entanglement and steering can regardless be inferred if the
bosons are atoms, using an alternative two-mode criterion〈

â†b̂
〉 �= 0 (3)

sufficient to confirm both entanglement and a two-way steer-
ing between modes a and b. The criterion is based on the
superselection rules that forbid superpositions of eigenstates
of different single-mode atom numbers [31,33–37,51]. Fol-
lowing Refs. [34,51], we give proof of the condition (3).
The density operator for any separable state can be written
ρ = ∑

R PRρR
a ρR

b . According to the superselection rule, the
single-mode atom coherences 〈â〉R and 〈b̂〉R vanish, for any
local single-mode quantum states ρR

a and ρR
b . Thus, the sep-

arable model implies 〈â†b̂〉 = ∑
R PR(〈â〉R)〈b̂〉R = 0, as does

the local hidden state model (2). Unless we allow that the
individual modes violate the superselection rule, the observa-
tion of 〈â†b̂〉 �= 0 is sufficient to confirm entanglement, and a
“two-way” steering (b by a, and a by b) between the modes.

Ultimately, we envisage detecting 〈â†b̂〉 �= 0 using local-
ized measurements on each of the modes, in the spirit of
the Einstein-Podolsky-Rosen argument [1]. This is possi-
ble using quadrature phase amplitudes X̂a = â + â†, P̂a =
(â − â†)/i and X̂b = b̂ + b̂†, P̂b = (b̂ − b̂†)/i, since one
can expand 〈â†b̂〉 = (〈X̂aX̂b〉 + 〈P̂aP̂b〉 − i〈P̂aX̂b〉 + i〈X̂aP̂b〉)/4
[11,14,18]. As a preliminary step to such an observation,
we show that 〈â†b̂〉 �= 0 can be inferred, based on inter-
ferometry. Introducing a phase shift ϕ, the two-mode out-
puts of the interferometer are described by operators ĉ =
(â − b̂ expiϕ )/

√
2, d̂ = (â + b̂ expiϕ )/

√
2. Defining N̂± =

d̂†d̂ ± ĉ†ĉ and assuming N+ to be fixed, the normalized av-
erage population difference Pz = N−/N+ at the output is Pz =

FIG. 2. The plot shows the experimentally observed interference
at T = 20 ms, T = 200 ms, T = 350 ms. The Pz = N−/N+ is the
normalized population difference after a correction φ(N+, T ) is
added as explained in Ref. [29] to account for the effect of fluctuating
population number N+. Here, N+ ∼ 104 atoms. The solid line is the
best fit to the data. The observed fringe amplitude is larger than that
predicted by just the two condensate modes, due to the presence of
thermal atoms.

2(Re〈â†b̂〉 cos ϕ − Im〈â†b̂〉 sin ϕ)/N+ (N± are the outcomes
of N̂±). By adjusting ϕ, |〈â†b̂〉| can be inferred from the
interference fringe amplitude ν, (ν = 2|〈â†b̂〉|) [29,30,40].

The experimental fringe pattern of our multi-mode BEC
interferometer [29,30] is given in Fig. 2, but as this includes
thermal atoms, further calculations are required to infer the
two-mode moment 〈â†b̂〉. While T and ϕ can be controlled
experimentally, there are run-to-run fluctuations in the total
atom number N+. The criterion 〈â†b̂〉 �= 0 is, however, valid
for all mixed two-mode states and hence applies to fluctuating
number inputs.

Depth of mode steering. We next address how to deter-
mine the number of atoms in the steerable unit—the “mode-
steering depth nst” [24,40]. This is not given by the mean
number 〈N〉 of particles because the system is generally a
mixture of pure states |ψR〉, according to a density operator
ρ = ∑

R PR|ψR〉〈ψR| (
∑

R PR = 1, PR > 0). While laboratory
preparations of a BEC are near-pure states, a mixed-state
analysis is required because of finite temperatures and fluc-
tuations in the atom number. Each pure state |ψR〉 has a fixed
number of atoms (according to superselection rules) that we
denote by nR = 〈ψR|N |ψR〉. However, not all the |ψR〉 need
be steerable. Each |ψR〉 either satisfies the local hidden state
(LHS) model given by (2) and that obtained by exchanging
a ←→ b, or not. We thus write the density operator in the
form ρ = Plhsρlhs + Pstρst where Plhs, Pst are probabilities such
that Plhs + Pst = 1, and ρlhs is a density operator for states
described by at least one of the LHS models. The two-way
steerable part that does not satisfy either LHS model is written
ρst = ∑

R′ PR′ |ψR′ 〉〈ψR′ |, where
∑

R′ PR′ = 1 and each |ψR′ 〉 is
an EPR steerable pure two-mode state with nR′ particles.

The “depth of mode steering” is defined by the number of
particles in the steerable part of the density operator,

nst = Pst Tr(Nρst ) = Pst

∑
R′

PR′nR′ . (4)
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From the results earlier, we see that 〈â†b̂〉 = 0 for all LHS
models. Hence, for ρ we have 〈â†b̂〉 = Pst

∑
R′ PR′ 〈â†b̂〉R′

where 〈â†b̂〉R′′ is the mean value for â†b̂ calculated for a
steerable state |ψR′ 〉. It follows that

|〈â†b̂〉| � Pst

∑
R′

PR′ |〈â†b̂〉R′ | � Pst

2

∑
R′

PR′nR′ . (5)

We have used that for any |ψR′ 〉, |〈â†b̂〉|2 � 〈â†â〉〈b̂†b̂〉. For
such a state 〈â†â〉 + 〈b̂†b̂〉 = nR′ , and therefore the maximum
value for |〈â†b̂〉|2 is (nR′ )2/4. Hence

nst � 2|〈â†b̂〉|. (6)

This gives a lower bound on the total number of particles in
the two-way steerable part of the quantum state, and hence
also a lower bound on the maximum number of atoms in any
of the pure states R′. We note the decomposition of ρ in terms
of pure states is not unique, but the inequality is true for all
decompositions, and is hence a general result.

We might apply the criterion to known experimental sys-
tems, e.g., the creation of two steerable modes is possible
for a BEC in a double-well potential [46,47]. In order to
properly quantify the two-mode correlation 〈â†b̂〉 for larger
BECs, however, a full multimode model is necessary. This
is particularly true for higher temperatures, and is necessary
because the extra modes involving thermal atoms contribute to
the measured fringe contrast. Some atom interferometers have
large fringe visibilities and yet comprise multiple thermally
excited modes, with a small occupation of each mode (see
Refs. [13,52,53]).

Multimode BEC interferometer. To infer a steerable state of
thousands of atoms, we calculate the condensate fractions in
the BEC interferometer using the Onsager-Penrose criterion
[54]. The quantum dynamics are evaluated using a multimode
field-theoretic phase-space method based on the Wigner func-
tion [29,40,55]. The effective Hamiltonian for the two-mode
condensate system is [44,45,55–57]

Ĥ =
∫

d3x
2∑

k, j=1

{
�̂

†
i Ki j�̂ j + gi j

2
�̂

†
i �̂

†
j �̂i�̂ j

}
, (7)

where �̂ j describes a bosonic quantum field operator with
internal spin orientation labeled j = 1, 2 for the two levels
|1〉, |2〉 (corresponding to spin states |0〉 and |1〉). Here,
gjk = 4π h̄2a jk/m gives the S-wave scattering interaction
strength, and the single-particle Hamiltonian operator is Ki j =
[−h̄2∇2/2m + V (x)]δi j + h̄i j (t ). The important terms are
the atomic mass m, a trap potential V (x) = m

∑
j ω

2
j x

2
j /2, and

an interlevel Rabi cycling matrix i j . Previous work calculat-
ing a static condensate fraction used both the semiclassical
Hartree-Fock (SHF) approximations and Monte Carlo meth-
ods [58], showing excellent agreement of these methods in
thermal equilibrium, far from the critical point. This has also
been accurately verified experimentally [59].

To obtain the initial density matrix ρinitial we use the SHF
method. This describes the initial finite-temperature ensemble
of a three-dimensional, trapped BEC as a coherent condensate
φ j (x) surrounded by a thermal cloud with occupation n(T )

j (x)
(Fig. 3). The thermal fraction density n(T ) and the condensate

FIG. 3. The three-dimensional model gives details of the initial
condensate fraction along the axial coordinates of the interferometer.
The slices shown are taken along the long axis of the trap, and
give the densities of the initial condensate (lower) and thermal (top)
fractions. The total atom population (thermal and BEC fractions) is
55 000. The initial total condensate population is N = 48 325.

fraction density n(c) ≡ |φ|2 for the first component are found
self-consistently.

Since the state is no longer in thermal equilibrium after
the action of the first beam splitter, the condensate evolves
dynamically until rotated back to finish the experiment. To
solve the evolution, it is necessary to go beyond Hartree-Fock
approximations. Due to thermal atoms which form a halo
around the central condensate at finite temperature (Fig. 3),
there are large numbers of field modes participating both
in the initial quantum ensemble and its evolution, as well
as atomic losses. To model these effects, the quantum field
dynamics is mapped into a phase space using a master equa-
tion and truncated Wigner approximation valid at large atom
number N [60–62]. Each quantum field �̂ j is transformed
into an equivalent ensemble of complex stochastic fields ψ j

FIG. 4. The black points give the experimentally observed fringe
contrast ν vs the evolution time T . The blue curve is the fringe
visibility predicted by the multimode theoretical model. The initial
temperature is TBEC = 0.45Tc, where Tc is the critical temperature at
which the atoms form a condensate. The red line shows visibilities
obtained with the assumption of an enhanced-density two-mode
model. The thickness of the blue curve corresponds to the range
produced from the values T = 0.4Tc and T = 0.5Tc to demonstrate
the error due to the initial temperature estimate.
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FIG. 5. The curves show the number of atoms 〈â†â〉 and 〈b̂†b̂〉
in the condensate modes a and b of each atomic component, and
the two-mode moment 〈â†b̂〉, inferred from the model. The curves
in each pair correspond to the values T = 0.4Tc and T = 0.5Tc to
demonstrate the error due to the initial temperature estimate.

that obey a stochastic partial differential equation which is
numerically solved.

The initial condition is assumed to be a grand canon-
ical ensemble in one of the two components, with an
approximately Poissonian number distribution. For compari-
son purposes, we consider two initial states. In Fig. 4, the solid
line is the multi-mode theory. For the dotted line, we use a
coherent state with average density equal to the solution of the
mean-field Gross-Pitaevskii equation with all atoms present
[40]. We call this an enhanced-density two-mode model.

The absolute temperature is obtained by fitting to the
observed fringe visibility (Fig. 3). This yields an upper bound
to the temperature, expressed as a fraction of the ideal gas
critical temperature Tc at the same atom number, since there
are other technical noise effects that may slightly degrade the
visibility as well. We find TBEC = (0.45 ± 0.05)Tc ≈ 37 nK,
where Tc = (h̄ω̄/kB)[N/ζ (3)]1/3 ≈ 83 nK is the nominal criti-
cal temperature below which the BEC starts to form for a non-
interacting gas with mean trap frequency ω̄ = (ω1ω2ω3)1/3.

Our model includes the spatial evolution of the wave
functions, and thus accounts for the experimentally observed

oscillation of the fringe visibility as a function of T (Fig. 4).
One mode decays more quickly due to inelastic scattering
(Fig. 5). Interatomic repulsion is larger for different states,
leading to the fringe visibility oscillation as the two modes
move apart—thus reducing fringe contrast—and then back
together, due to the trap potential.

The data shown in Fig. 4 give the value of the two-mode
moment as |〈â†b̂〉| = 20 000. Using the bound nst � 2|〈â†b̂〉|,
this implies a depth of mode steering (and entanglement)
of at least nst = 40 000 atoms. Moreover, using the criterion
based on |〈â†b̂〉|, we see the steering is “two way.” We thus
demonstrate the steering of an atomic system of at least 20 000
atoms by another.

Conclusion. We note that in the experiment the two con-
densate modes spatially separate at time T ∼ 0.2 s, due to
the excitation of collective oscillations [29,30], before being
brought back together with minimal loss of quantum coher-
ence and a revival of interference contrast, at T ∼ 0.35 s.
A similar spontaneous separation of two-mode functions and
associated revival of the Ramsey contrast has been recently
reported in a BEC interferometer with 5000 atoms [63], to
give evidence of spin squeezing. Assuming mechanisms for
decoherence with spatial separation of the modes would likely
destroy EPR correlations irreversibly, these results are promis-
ing that mesoscopic EPR steering correlations involving thou-
sands of atoms would be detected at full spatial separation of
the modes. Magnetic fields could be used to achieve greater
spatial separations, since the modes correspond to different
spin states.
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