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The coefficients D̄ and f̄ in our original paper are incorrect. A corrected version of the derivation on the coefficients is given
here. However, for two models in our original paper, the reduced density matrix, calculated with the corrected D̄ and f̄ is very
much the same as the results in the original paper. So the evolution figures of the reduced density matrix do not need to be
corrected, and they are not replotted here. And, none of the discussions and conclusions were affected by the errors.

We start with correcting the coefficient f̄ . The calculating strategy of D̄ and f̄ are given in Fig. 1.
According to our original paper, f̄ is a integral,
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In order to calculate the integral, we consider a contour integral,
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with
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It is clear that F2(z) has simple poles z = i� and i2nπ
β

(n = 0–3, . . .). The contour integral can be broken down into the sum of
four integrals as ∮
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According to Jordan’s lemma, we have
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So, according to the residue theorem, we have
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For the simple pole z = i�, we have
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and for the simple poles z = i2nπ/β (n = 1, 2, . . .),
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FIG. 1. The computing strategy of the coefficients D̄ and f̄ .

Thus, when � �= 2kπ/βk, [k ∈ (n = 1, 2, . . .)], the contour integral can be written as
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When � = 2kπ/β, [k ∈ (n = 1, 2, . . .)], the simple pole z = i� and the simple pole z = i2kπ/β are the same point, it means
that the pole becomes the second-order pole z = i� = i2kπ/β, thus, we can calculate the residues as [1]
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And, the contour integral can be written
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So, when � �= 2kπ/β, [k ∈ (n = 1, 2, . . .)], we have
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here ω̄n = 2nπ/β. When � = 2kπ/β, [k ∈ (n = 1, 2, . . .)], we have
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∫ ∞
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Next, we consider the convergence of this series. Assuming � � �, we have∑
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Here, ζ (3) is a Riemann function [2], and it is convergent. We can approximately calculate the value of the series in n3 � η� �β2

4π2 .

Namely, we can take any number n � ( η��β2

4π2 )
1/3

in the calculations.
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Finally, we correct the coefficient D̄:
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∫ ∞
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When � �= 0, we have
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and when � = 0 and � �= 2kπ/β, [k ∈ (n = 1, 2, . . .)], we have
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Now, we consider the convergence of this series,∑
n=1,2,...
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Here, ζ (2) is the Riemann function, and it is convergent. We can approximately calculate the value of the series in n2 � η�ω̄1β
2

4π2 =
η�β/2π . Namely, we can take any number n � √

η�β/2π in the calculations.
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