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We present the explicit analytic formulas for the electromagnetic (optical) eigenmodes propagating in a
lamellar grating. Then, we analytically calculate a mutual transformation of the wave’s spatial harmonics due to
diffraction in the course of propagation through the grating as well as the matrices of the eigenmode reflectance
and transmittance at the grating boundaries. Finally, we develop a theory of the nonadiabatic transformation
of the eigenmodes in the inhomogeneous gratings. It allows one to disclose the effects which go beyond the
geometrical optics of eigenmodes. We show that in a transition layer of a thick nonlamellar grating such effects
occur due to mode coupling of just a few lower-band eigenmodes. This approach allows one to find the overall
optical response of the nonlamellar gratings fully and efficiently. The results are given for both transverse electric
and transverse magnetic polarizations, as well as for any absorptive permittivity.
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I. INTRODUCTION: THE EIGENMODES
AND THE GRATINGS

A concept of the normal modes, or the eigenmodes, has
been widely used in the theory of wave propagation in elec-
trodynamics and condensed matter physics since the first
decades of the 20th century due to the works by Born, Bloch,
and many others. This is especially true for the cases of
the periodically inhomogeneous media and light or electronic
waves in crystals [1–3]. In fact, the gratings constitute one of
the most important components of the numerous modern high-
tech devices, and diffraction by grating has been studied in the
fields of optics (see, e.g., [4–14]), photonic crystals (see, e.g.,
[15–20]), lasers and optoelectronics (see, e.g., [21–23]), etc.,
for decades. For the purpose of the gratings’ design, various
numerical methods and codes have been developed, including
the one based on the concept of eigenmodes [4,5,20].

The analytic description of the eigenmodes propagating in
a lamellar grating constitutes one of the most basic and im-
portant element of the diffraction-grating theory. An excellent
recent review on the exact modal method for various lamellar
structures can be found in Ref. [4] (chapters 7 and 10),
where a general formalism is presented and applied for the
numerical algorithms, in particular, the case of a stack of
lamellar layers, each of which could have the unit cell made
of many rods of different widths and permittivities. That
review contains a general scheme of how to determine the
eigenmodes associated with a lamellar layer in a very general
case and a note that all of the related matrices can be computed
analytically in order to eliminate the numerical instabilities.
However, the corresponding solutions were not provided.

In the present paper, we do not use that formalism, but
derive the transverse electric (TE) and transverse magnetic

(TM) eigenmodes directly from Maxwell’s equations. One
of the purposes of the present paper is to give the analytic,
concise formulas for the propagation, transformation to or
from the plane waves, reflection, and transmission of the
eigenmodes in a simple lamellar grating in the form that
would be the most suitable for the development of a theory
of nonadiabatic mode coupling [24] for the gratings with
varying parameters. We formulate the geometrical optics of
the eigenmodes and clarify a remarkable fact that just a very
few lower-band eigenmodes perfectly describe the diffraction
in the relatively thick gratings. Finally, we present the theory
of linear mode coupling of the co- and/or counterpropagating
eigenmodes in gratings with inhomogeneous permittivity and
groove profiles and illustrate it by two generic examples of
mode transformation in a trapezoidal grating, shown in Fig. 1
(see Sec. VIII).

In this respect, the present paper intents to advance the
papers [10–13] that have been pioneering on the subject.
Simultaneously, the present paper aims to set a stage for
the theory’s application to a new, grating-outcoupled surface-
emitting laser (GOSEL) design of the semiconductor diode
lasers generating mid- or far-IR radiation via the intracavity
nonlinear mixing [25–36].

As is illustrated below, the exact analytic solution for
eigenmodes is especially advantageous and efficient for prac-
tical calculations when the gratings are relatively deep and/or
the permittivity contrast is high (for instance, in the case
of a metal-dielectric grating), which is exactly when the
standard Fourier, plane-wave expansion method encounters
considerable numerical difficulties. The analysis of the sim-
ple analytic solution could facilitate finding the eigenmodes
for the 2D and 3D photonic crystals, a very important
problem that still remains unsolved. The point is that the
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FIG. 1. An inhomogeneous, nonlamellar grating with trapezoidal
grooves of a thickness L. Two alternating dielectric layers are made
of the dielectric media of constant permittivities ε1, ε2 and have the
widths d1(z), d2(z) varying along the z axis. A grating period, λg =
d1 + d2, is a constant.

photonic-crystal structures can be viewed as the gratings
with a very large thickness of the order of several tens of
wavelengths.

Originally, the most important applications of the diffrac-
tion gratings in optics were related to various spectrally
selective filters, monochromators, beam splitters, reflectors,
polarizers, spectrographs, and other devices for spectroscopy
and astronomy. In the last four decades, the range of ap-
plications of the grating-like structures has been greatly ex-
panded due to novel applications in the photonic crystal
technologies, integrated optics, optical communication sys-
tems, and optoelectronics. The examples include engineering
effective-medium properties in the periodic metamaterials,
control of light propagation and light-matter interaction in
photonic nanostructures, engineering photonic-band-gap ma-
terials, omnidirectional mirrors which reflect light in a certain
frequency range for all directions of incidence and all po-
larizations [37–39], fiber Bragg gratings [40], 1D lattices of
rib waveguides [41–43], chirped mirrors used for dispersion
compensation of ultrashort laser pulses inside and outside
laser cavities, a wavelength multiplexer based on a superprism
(an unusually dispersive prism) [44,45], wavelength-division
multiplexing in telecommunications by means of an add-
drop filter based on a high-finesse microcavity coupled to
a waveguide in a 2D photonic-crystal slab waveguide [46],
fabricating the 3D photonic crystals with photonic band gaps
at telecommunication wavelengths by means of a woodpile
stacking of the gratings made of the III–V direct-gap semicon-
ductors GaAs or InP [47], quantum information processing
based on the quantum dots or vacancies embedded into the
photonic crystals, etc.

The application of gratings for making new laser sources
is particularly interesting. An analysis of surface-emitting
semiconductor lasers was started in the 1980s and is given,
e.g., in [21,74–81]. Recently, the concept of the GOSELs saw
an amazing burst of interest. In particular, it has led to creation
of the high-power surface-emitting quantum cascade lasers

(QCLs) [22,23,48–53] and photonic-crystal surface-emitting
lasers (PCSELs) capable of a vertical single-mode emission
over a large area [54–60] and demonstrating other remark-
able properties [61–67]. Note that in the near-IR frequency
range, the high-power semiconductor lasers are mostly the
vertical-cavity surface-emitting lasers (VCSELs) [68], which
do not involve the grating-outcoupled design. In the mid-
and far-IR and THz frequency ranges, the QCLs cannot be
based on the VCSEL design since their intersubband tran-
sitions generate the IR fields of the TM polarization. So,
the grating-outcoupled design is used for surface emission
[69–73]. The GOSEL design has numerous important advan-
tages over the standard edge-emitting design in power scaling,
radiation beam shaping (low divergence) and steering, optical
alignment, preventing facet damaging, frequency stability,
packaging, assembling the laser arrays, etc.

It is worth noting that sometimes the similar theoretical
techniques for solving one and the same diffraction prob-
lem have been independently developed by different research
communities. For instance, the rigorous coupled wave anal-
ysis (or the Fourier modal method) of the diffractive optics
community [4–9,14] is more often known as the scattering-
matrix approach in the photonic-crystal community [15–19].

Currently, the theoretical analysis and system design in
all these fields of the diffraction-grating applications are
mostly focused on the development and implementation of
various numerical methods [4,5,15–17,20]. This is also true
for the GOSEL electrodynamics and optics: The ad hoc
numerical simulations, for example, based on the codes
for the layered periodic structures [82], the finite-difference
time-domain (FDTD) method [83], or various finite-
element modeling softwares like the commercially available
software COMSOL [84] dominate the analysis and design of
the surface-emitting semiconductor lasers. Many efforts of the
photonic–crystal community are devoted to developing the
new design-optimization numerical schemes and algorithms.
Remarkably, the examples of successfully optimized struc-
tures look somewhat disordered and could possibly never have
been guessed on the basis of the existing analytic results and
intuition [16,85–87]. The latter fact points to a necessity of a
further progress in the analytic theory of the photonic-crystal
structures.

The present paper is devoted to the analytic theory. In
Sec. II, we derive the explicit formulas for the spatial profiles
and the spectrum of the TE and TM eigenmodes. A calculation
of the diffraction conversion of the wave’s spatial harmonics
propagating through the grating via an expansion over the
eigenmodes is given in Sec. III. In Sec. IV, we calculate the
reflectance and transmittance coefficients of the TE and TM
eigenmodes at a grating boundary in the form that explicitly
generalizes the well-known formulas for the reflection and
transmission of a plane wave incident on a boundary between
two homogeneous media. In Sec. V, we outline a geometrical
optics approximation based on the adiabatic propagation of
the eigenmodes. In Secs. VI–IX, we develop a theory of
linear mode coupling and transformation in the inhomoge-
neous gratings. A generalization of the results for the TE
and TM eigenmodes to the case of a grating with a complex
(absorptive) permittivity is given in Appendix A.
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FIG. 2. The profiles of the permittivity ε(x) and Kronig-Penney
potential V (x) = [ε2 − ε(x)]/ε1 for a lamellar grating made of two
alternating dielectric layers of the widths d1, d2 and permittivities
ε1, ε2. The grating period is λg = d1 + d2.

II. EIGENFUNCTIONS AND PROPAGATION CONSTANTS
OF THE TRANSVERSE ELECTRIC AND

TRANSVERSE MAGNETIC MODES

Let us consider propagation of monochromatic (e−iωt )
electromagnetic waves in a simple lamellar grating made of
two alternating layers (with isotropic permittivities) which are
homogeneous in the plane perpendicular to the x axis (Fig. 2).
The primary question is how the waves are transmitted along
the dielectric planes, i.e., along the z axis (see Fig. 1). For
simplicity’s sake, we will assume that the electromagnetic
fields are homogeneous along the third orthogonal y axis. A
generalization to the case when the grating has more than
two layers per period and/or the fields depend on y as eikyy

(a conical case of diffraction [13]) is straightforward.
It is sufficient to consider a wave with a definite wave

number kx directed along the x axis and limited to the first
Brillouin zone, kx ∈ [−kg/2, kg/2], along with all of its Bragg
harmonics k(p)

x = kx + pkg coupled together by diffraction on
the grating. Here the grating wave number kg = 2π/λg is de-
fined by the grating period λg = d1 + d2, and p = 0,±1, . . .

is an integer. The point is that the waves with different
wave numbers kx are not transformed into each other by the
diffraction grating. Thus, an entire field can be always found
as a superposition of the kx waves via a simple integration
over kx.

The wave inside the grating is generated either by a wave
incident from outside or by a monochromatic current density
j(x, z) distributed inside the grating. The x dependence of the
amplitudes of both sources could be assumed harmonic, i.e.,
ei(kx+pkg)x. In the first scenario considered in the pioneering
papers [10–13], the wave penetrated inside the grating can be
found via the transmittance coefficients (see Sec. IV). In the
second scenario, it is enough to consider a thin current sheet
with a complex amplitude localized, say, at z = 0 along the
z direction as a Dirac δ function and represented by one

Fourier harmonic oscillating in the x direction,

j(x, z) = ipδ(z)eik(p)
x x, k(p)

x = kx + pkg, kx ∈
[
−kg

2
,

kg

2

]
,

(1)

where the integer p enumerates various Bragg sidebands.
Contrary to the previous works [10–13], we will follow

the second scenario that is relevant, e.g., to the GOSEL lasers
with a nonlinear mixing taking place in the bulk of the grating
heterostructure. In virtue of a homogeneity of the lamellar
grating along the z axis, the dependence of the eigenmode
fields on the z coordinate can be factored out. Hence, the
contributions of the different δ-current sheets, like in Eq. (1),
located at the different positions z′ along the z axis can be
accounted for by a simple convolution integral over z′ with a
well-known 1D Green’s function

G(z, z′) = eikz |z−z′ |/(2ikz ), (2)

where kz is the propagation constant along the z axis.
The electric, E, and magnetic, H, fields propagating in the

grating can be found from Maxwell’s equations

curl E = −1

c

∂B
∂t

, curl H = 1

c

∂D
∂t

+ 4π

c
j, D = εE, (3)

where c is the velocity of light in vacuum. For the sake of a
clear physical interpretation, they are written in the Gaussian
system of units (assuming that a magnetic permittivity equals
unity, μ = 1, so that B = H) and only for the case of an
isotropic permittivity. An analysis that follows can be easily
generalized to the case when the permittivity is anisotropic
and/or has a spatial dispersion.

For the diffraction grating layout stated above, Maxwell’s
equations have two independent solutions—with the trans-
verse electric or magnetic polarizations of the propagating
fields. For the sake of clarity, each of these solutions is dealt
with separately below.

A. Transverse electric eigenmodes

The TE wave is generated by the y component of the
current and has only one, y component of the electric field,
Ey(x, z). It satisfies the partial differential equation

∂2Ey

∂x2
+ ∂2Ey

∂z2
+ ω2

c2
εEy = −4π iω

c2
jy, (4)

which follows from Eq. (3). The magnetic field has the x and
z components given by the partial derivatives of Ey:

Hx = ic

ω

∂Ey

∂z
, Hz = − ic

ω

∂Ey

∂x
. (5)

In order to find the solution to the Helmholtz equation
(4), we first assume that the source current has a form jy =
δ(z) f (x) with an x profile given by some function f (x) to
be determined later on. Then, using the homogeneity of the
lamellar grating along the z axis, let us plug in a factorized
form of the solution Ey = Ey(z) f (x) with the same x profile
f (x) into the Helmholtz equation (4) and, following the
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standard method of separation of variables, split it into a
system of two equations

L̂ f (x) = k2
z f (x), L̂ = d2

dx2
+ εω2

c2
, (6)

d2Ey(z)

dz2
+ k2

z Ey(z) = −4π iω

c2
δ(z) (7)

with an additional term k2
z Ey(z) f (x) being added to the first

equation and subtracted from the second equation. Obviously,
in order to get a nontrivial solution, one has to equate the
newly introduced parameter k2

z to one of the eigenvalues
of the operator L̂ in Eq. (6), k2

z = k2
zn, and to identify the

function f (x) with the corresponding TE eigenmode, f (x) =
fn(x), n = 1, 2, . . .. The amplitude of this solution, Ey(z) =
Eyn(z), is determined by the source current in Eq. (7) via the
Green’s function (2).

Thus, representing the x profile of the source current jy as
an expansion over a set of the eigenfunctions fn(x), we can
find the solution to the Helmholtz equation (4) in the region
free of the source current in Eq. (1) at z > 0 as a superposition
of the factorized contributions from the TE eigenmodes as
follows:

Ey(x, z) =
∞∑

n=1

Eyn(z) fn(x), Eyn(z) = Eyn(0)eikznz. (8)

The amplitude, Eyn(z), of each eigenmode is transferred along
the z axis independently from the other eigenmodes in ac-
cordance with its propagation constant kzn which has a non-
negative imaginary part, Imkzn � 0, since the grating is made
of a nonamplifying medium and the radiation boundary condi-
tions are assumed. The solution in Eq. (8), after a substitution
kzn → −kzn, also describes waves propagating in the opposite,
negative direction of the z axis at z < 0.

The x profile of the nth eigenmode is a superposition of the
counterpropagating sinusoidal or exponential waves,

fn(x) = b+
q eikq (x−d1 ) + b−

q e−ikq (x−d1 ), kq =
[
ω2εq

c2
− k2

zn

] 1
2

,

(9)
where the index q equals 1 or 2 depending on whether x is
inside the grating layer with the permittivity ε1 or ε2, respec-
tively. The amplitudes of these counterpropagating waves are
explicit simple functions of the wave numbers

b±
1 = ±[(−k2 ± k1)eik2d2−ikxλg/2

+ 2k2e±ik1d1+ikxλg/2 − (k2 ± k1)e−ik2d2−ikxλg/2],

b±
2 = ±[(k1 ± k2)eik1d1+ikxλg/2

− 2k1e∓ik2d2−ikxλg/2 + (k1 ∓ k2)e−ik1d1+ikxλg/2]. (10)

The wave amplitudes b±
q inside a given layer may be obtained

from each other by changing the sign of the wave number
kq → −kq and the amplitude’s sign, that is,

b−
q = −b+

q [kq → −kq], q = 1, 2. (11)

Equation (10) for the amplitude of the wave in one layer
coincides with Eq. (10) for its counterpropagating counterpart
in the other layer if one changes the sign of the wave number,

kx → −kx, and interchanges the indexes, 1 → 2 and 2 → 1,
in all wave numbers k1, k2 and widths d1, d2:

b±
2 = b∓

1 [kx → −kx and 1 → 2 and 2 → 1]. (12)

The symmetry relations in Eqs. (11) and (12) immediately
follow also from the physical meaning of the amplitudes.

The result in Eq. (10) for the amplitudes is the solution to
the system of four linear algebraic equations

b+
1 + b−

1 = b+
2 + b−

2 ,

k1(b+
1 − b−

1 ) = k2(b+
2 − b−

2 ),

[b+
1 e−ik1d1 + b−

1 eik1d1 ]eikxλg = b+
2 eik2d2 + b−

2 e−ik2d2 ,

k1[b+
1 e−ik1d1 − b−

1 eik1d1 ]eikxλg = k2[b+
2 eik2d2 − b−

2 e−ik2d2 ],
(13)

which express continuity of the eigenmode x profile and its
derivative at the borders between the layers at x = d1, d1 +
d2 and follow from the well-known property of the tangential
components Ey and Hz of electric and magnetic fields to be
continuous at the jumps of permittivity.

The nontrivial solution (10) exists only if the determinant
of a matrix of Eqs. (13) equals zero. The latter condition
constitutes the characteristic equation

cos(kxλg) = cos(k1d1) cos(k2d2)

− [(
k2

1 + k2
2

)
/(2k1k2)

]
sin(k1d1) sin(k2d2) (14)

determining the eigenvalues of the propagation constant
kzn, n = 1, 2, . . ., for a given x wave number kx through the
dependence of the wave numbers k1,2 on kzn, Eq. (9). The
eigenmode dispersion law kzn(kx ) has a Bloch-type band-gap
structure illustrated in Fig. 3 for the parameters relevant to the
grating in a GaAs heterostructure. Usually, only a few (or even
none if n0 = 0) lower-band modes n = 1, . . . , n0 propagate
along the z axis with the real-valued wave numbers kzn =
Re(kzn) while all higher-band eigenmodes are evanescent and
exponentially decay due to imaginary wave numbers kzn =
iIm(kzn). The higher the band order n > n0 the steeper the
decay.

In accordance with the Floquet-Bloch theorem [2], the
eigenmode profile in Eq. (9) can be written in a canonical
form as a product of an exponential quasiperiodic factor and a
periodic function of the variable x as follows:

fn(x, kx ) = eikxx f̃n(x, kx ), f̃n(x + λg, kx ) = f̃n(x, kx ), (15)

where ikx is a Floquet, or characteristic, exponent. Let us
introduce an inner product in the space of x profiles,

〈F (x), f (x)〉 = 1

2X
lim

X→∞

∫ X

−X
F ∗(x) f (x)dx (16)

(where a star ∗ means the complex conjugate), for the profiles
which are square-integrable on a period λg of the grating, that
is, have a finite norm defined as follows:

|| f (x)|| =
[

1

λg

∫ λg

0
| f (x)|2dx

]1/2

. (17)

Equations (9) and (10) allow us to calculate explicitly the
norm squared of the TE-eigenmode x profile as a sum of the
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FIG. 3. A typical band-gap structure of the TE-eigenmode dis-
persion law: The scaled propagation constant squared, k2

znc2/(ω2ε1),
as a function of the scaled x wave number, kxλg, within the positive
half of the first Brillouin zone. The dielectric layers have equal
widths but different permittivities ε1 = 12, ε2 = 1; the grating period
is twice the wavelength in the first layer, namely, d1 = d2 = λg/2 =
2πc

√
ε1/ω.

contributions from the two grating layers per period:

|| fn(x, kx )||2 =
∑

q=1,2

dq

λg

{|b+
q |2ν1(−Imζq) + |b−

q |2ν1(Imζq)

+ 2Re[b+
q b−∗

q ν1(iReζq)]
}
;

ζq = (−1)q 2dqkq, (18)

where the elementary function ν1(u) = (eu − 1)/u behaves
analytically and tends to unity, ν1(0) = 1, when u → 0.

In the case of the real-valued permittivities, it is easy to
prove that any two eigenmode x profiles corresponding to the
different wave numbers, k′

x �= kx, or bands, n′ �= n, are orthog-
onal. Moreover, for a given wave number kx ∈ [−kg/2, kg/2]
within the first Brillouin zone, the discrete set of the TE-
eigenmode x profiles scaled by the norm (17) and (18) and
enumerated by the band index n is a complete orthonormal
basis in this function space:

〈 fn, fn′ 〉
|| fn(x, kx )||2 = δn′,n ∀ fn, fn′ ∈ { fn(x, kx )|n = 1, 2, . . .}.

(19)

In a general case of the absorptive (complex-valued) per-
mittivities, it is necessary to use the biorthonormal basis
described in Appendix A.

B. Transverse magnetic eigenmodes

The TM wave is generated by the x and z components of
current and has only one, y component of the magnetic field,

Hy(x, z). It satisfies the partial differential equation

∂

∂x

[
∂Hy

ε∂x

]
+ ∂

∂z

[
∂Hy

ε∂z

]
+ ω2

c2
Hy = 4π

c

[
∂

∂x

[
jz
ε

]
− ∂

∂z

[
jx
ε

]]
,

(20)

which follows from Eq. (3). The electric field has the x and z
components given by the partial derivatives of Hy:

Ex = − ic

εω

∂Hy

∂z
, Ez = ic

εω

∂Hy

∂x
. (21)

The analysis of the TM eigenmodes is very similar to that
presented above for the TE eigenmodes. The only main dif-
ference is the presence of an additional factor 1/ε in Eq. (21)
and under the external partial derivative ∂/∂x in the Helmholtz
equation (20); cf. Eqs. (4) and (5). It can be taken care of via
introducing a new variable

x̄(x) =
∫ x

0
ε(x)dx, i.e., x̄(x) = ε1x if 0 � x � d1,

x̄(x) = ε1d1 + ε2(x − d1) if d1 � x � d2. (22)

Below, we present the TM counterparts of Eqs. (6)–(19).
Again, in order to find the solution to the Helmholtz equa-

tion (20), we first assume that the source on the right-hand side
has the form (−4π iω/c2)δ(z)ϕ(x)/ε with an x profile defined
by some function ϕ(x) to be determined later on. Then, using
the grating’s homogeneity along the z axis and the method
of separation of variables, we plug in a factorized form of
the solution Hy = Hy(z)ϕ(x) with the same x profile ϕ(x) into
the Helmholtz equation (20) and split it into a system of two
equations

L̂Mϕ(x) = k2
z ϕ(x), L̂M = ε

d

dx

(
d

εdx

)
+ εω2

c2
, (23)

d2Hy(z)

dz2
+ k2

z Hy(z) = −4π iω

c2
δ(z), (24)

with an additional term k2
z Hy(z)ϕ(x) being added to the first

equation and subtracted from the second equation. Obviously,
in order to get a nontrivial solution, one has to equate the
newly introduced parameter k2

z to one of the eigenvalues of
the operator L̂M in Eq. (23), k2

z = k2
zn, and to identify the

function ϕ(x) with the corresponding TM eigenmode ϕ(x) =
ϕn(x), n = 1, 2, . . .. The amplitude of this solution, Hy(z) =
Hyn(z), is determined by the source in Eq. (24) via the Green’s
function (2).

An expansion of the x profile of the source in Eq. (20)
over the set of the eigenfunctions ϕn(x) yields the solution
to the Helmholtz equation (20) in the region free of the
source current in Eq. (1) at z > 0 via a superposition of the
contributions from TM eigenmodes:

Hy(x, z) =
∞∑

n=1

Hyn(z)ϕn(x), Hyn(z) = Hyn(0)eikznz. (25)

Here the TM-eigenmode propagation constant kzn has a non-
negative imaginary part, Im(kzn) � 0, since the grating is
made of a nonamplifying medium and radiation boundary
conditions are assumed. The solution in Eq. (25), after a sub-
stitution kzn → −kzn, also describes TM waves propagating in
the negative direction at z < 0.
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The x profile of the nth eigenmode is a superposition of the
counterpropagating waves

ϕn(x) = b+
q eikq (x−d1 ) + b−

q e−ikq (x−d1 ), kq =
[
ω2εq

c2
− k2

zn

] 1
2

,

(26)

where again the index q equals 1 or 2 depending on whether
x is inside the grating layer with the permittivity ε1 or ε2,
respectively. The explicit formulas for the amplitudes of these
counterpropagating waves in the TM eigenmodes can be
written in the form that also includes the similar formulas for
TE eigenmodes in Eq. (10):

b±
1 = ±

[(
−k2

εs
2

± k1

εs
1

)
eik2d2−ikxλg/2

+ 2k2

εs
2

e±ik1d1+ikxλg/2 −
(

k2

εs
2

± k1

εs
1

)
e−ik2d2−ikxλg/2

]
,

b±
2 = ±

[(
k1

εs
1

± k2

εs
2

)
eik1d1+ikxλg/2

− 2k1

εs
1

e∓ik2d2−ikxλg/2 +
(

k1

εs
1

∓ k2

εs
2

)
e−ik1d1+ikxλg/2

]
.

(27)

Namely, one should set s = 1 for the TM-eigenmode ampli-
tudes, while setting s = 0 reduces these formulas to Eq. (10)
for the TE-eigenmode amplitudes b±

q . The symmetry relations
analogous to those in Eqs. (11) and (12) are valid for the
TM-eigenmode amplitudes as well:

b−
q = −b+

q [kq → −kq], q = 1, 2; (28)

b±
2 = b∓

1 [kx → −kx and 1 → 2 and 2 → 1]. (29)

In the latter equation, the permutation of the indexes, 1 → 2
and 2 → 1, refers to all wave numbers k1, k2, widths d1, d2,
and explicitly present permittivities ε1, ε2.

The result in Eq. (27) for the TM amplitudes is the solution
to the system of four linear algebraic equations

b+
1 + b−

1 = b+
2 + b−

2 ,

k1

ε1
b+

1 − k1

ε1
b−

1 = k2

ε2
b+

2 − k2

ε2
b−

2 ,

[b+
1 e−ik1d1 + b−

1 eik1d1 ]eikxλg = b+
2 eik2d2 + b−

2 e−ik2d2 ,

k1

ε1
[b+

1 e−ik1d1 − b−
1 eik1d1 ]eikxλg = k2

ε2
[b+

2 eik2d2 − b−
2 e−ik2d2 ],

(30)

which express the continuity of the eigenmode x pro-
file, ϕn(x), and its derivative divided by the permittivity,
ε−1∂ϕn/∂x, at the borders between the layers at x = d1, d1 +
d2 and follow from the well-known property of the tangential
components Hy and Ez of magnetic and electric fields to be
continuous at the jumps of permittivity.

The nontrivial solution (27) exists only if the determinant
of a matrix of Eqs. (30) equals zero. Here, again, we write
down this condition in the form unified for the cases of the
TM and TE polarizations (similarly to [15]) by introducing
the index s that should be set s = 1 or s = 0 in order to
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FIG. 4. A typical band-gap structure of the TM-eigenmode dis-
persion law: The scaled propagation constant squared, k2

znc2/(ω2ε1),
as a function of the scaled x wave number, kxλg, within the positive
half of the first Brillouin zone. The parameters of the grating are the
same as in Fig. 3.

get the dispersion equation for the TM- or TE-eigenmode
propagation constants kzn, respectively:

cos(kxλg) = cos(k1d1) cos(k2d2)

− (ε2/ε1)sk2
1 + (ε1/ε2)sk2

2

2k1k2
sin(k1d1) sin(k2d2).

(31)

The characteristic equation (31) determines the series of
eigenmode propagation constants kzn, n = 1, 2, . . ., for a
given x wave number kx via the dependence of the wave
numbers k1,2 on kzn in Eq. (26). The Bloch-type structure of
the TM-eigenmode bands and gaps kzn(kx ) is very similar, but
quantitatively different from the TE Bloch-type structure as
is clearly seen from comparing the TE spectrum in Fig. 3
with the TM spectrum in Fig. 4 plotted for the same grat-
ing parameters. In the case of the TM polarization, again
only a few (or even none if n0 = 0) lower-band eigenmodes
n = 1, . . . , n0 propagate along the z axis with the real-valued
wave numbers kzn = Re(kzn) while all higher-band eigen-
modes are evanescent and exponentially decay due to their
purely imaginary wave numbers kzn = iIm(kzn). The higher
the band order n > n0, the steeper the eigenmode decay.

In accordance with the Floquet-Bloch theorem [2], the
eigenmode profile in Eq. (26) can be written in a canonical
form as a product of an exponential quasiperiodic factor [that,
contrary to Eq. (15) for the TE eigenmodes, includes the new
variable x̄(x) in Eq. (22), not the original x0] and a periodic
function of the variable x as follows:

ϕn(x, kx ) = eik̄x x̄(x)ϕ̃n(x, kx ),
(32)

ϕ̃n(x + λg, kx ) = ϕ̃n(x, kx ), k̄x(ε1d1 + ε2d2) = kxλg,

where ik̄x is called a Floquet, or characteristic, exponent.
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It is convenient to introduce a modified inner product in the
space of TM-wave x profiles (see chapter 10 in [4], and [13])

〈φ(x), ϕ(x)〉M = 1

2X
lim

X→∞

∫ X

−X

φ∗(x)ϕ(x)

ε(x)
dx (33)

for all profiles which have a finite norm squared

||ϕ(x)||2M = 1

λg

∫ λg

0

|ϕ(x)|2
ε(x)

dx, (34)

i.e., are square-integrable on a period λg of the grating.
Equations (26) and (27) allow us to calculate explicitly the
norm squared of the TM-eigenmode x profile as a sum of the
contributions from the two grating layers per period:

||ϕn(x, kx )||2M =
∑

q=1,2

dq

λg

{|b+
q |2ν1(−Imζq) + |b−

q |2ν1(Imζq)

+ 2Re[b+
q b−∗

q ν1(iReζq)]
}
/|εq|,

ζq = (−1)q 2dqkq, (35)

where the elementary function ν1(u) = (eu − 1)/u behaves
analytically and tends to unity, ν1(0) = 1, when u → 0.

In the case of the real-valued permittivities εq > 0,
it is easy to prove that any two eigenmode x profiles
corresponding to different wave numbers, k′

x �= kx, or bands,
n′ �= n, are orthogonal. Moreover, for a given wave number
kx ∈ [−kg/2, kg/2] within the first Brillouin zone, the operator
L̂M in Eq. (23) is self-adjoint (Hermitian) with respect to the
modified inner product (33). The latter is easy to prove,
similarly to the self-adjointness of the 1D operator of a
particle kinetic energy in quantum mechanics, i.e., −d2/dx2,
by means of rewriting the modified inner product (33) in
terms of the new variable x̄(x) in Eq. (22) and employing an
integration by parts:〈

φ, ε
d

dx

[
d

εdx

]
ϕ

〉
M

≡ 1

λg

∫ x̄(λg)

0
φ∗ d2ϕ

dx̄2
dx̄

= 1

λg

∫ x̄(λg)

0

d2φ∗

dx̄2
ϕ dx̄

≡
〈
ε

d

dx

[
d

εdx

]
φ, ϕ

〉
M

. (36)

Hence, the discrete set of TM-eigenmode x profiles scaled
by the norm (34) and (35) and enumerated by the band index
n is a complete orthonormal basis in this function space:

〈ϕn, ϕn′ 〉M

||ϕn||2M
= δn′,n ∀ϕn, ϕn′ ∈ {ϕn(x, kx )|n = 1, 2, . . .}. (37)

The latter fact allows us to use the set of TM eigenmodes as
the orthonormal basis for an expansion of the TM waves and
the source current density as the functions of the coordinate x
in the grating instead of or in addition to the standard Fourier
expansion over the plane waves. It is the main reason for
introducing the modified (by an extra factor 1/ε under the
integral) inner product (33).

Note that it is inconsistent to interpret the modified inner
product of functions ϕ and φ in Eq. (33) as the standard inner
product (16) of functions φ/

√
ε∗ and ϕ/

√
ε,

〈φ(x), ϕ(x)〉M =
〈

φ(x)√
ε∗(x)

,
ϕ(x)√
ε(x)

〉
. (38)

In particular, a function set {ϕn(x, kx )/
√

ε} is not a basis
suitable for the expansion of the tangential magnetic field
Hy(x) (which is a continuous function of the coordinate x
even at the borders between the layers) similarly to Eq. (25)
since, contrary to the continuous TM-eigenmode x profiles
ϕn(x, kx ), the functions ϕn(x, kx )/

√
ε(x) are not continuous at

the discontinuities of permittivity at the layers’ borders, i.e.,
at x = d1 and x = d1 + d2.

Note also that the x profile of TE and TM eigenmodes in
Eqs. (9) and (26) is the same as that of the Kronig-Penney
solution [88] for the wave function ψn(x) of a particle of mass
m moving in a 1D periodic potential Ṽ (x):

Ĥψn = Ẽnψn, Ĥ = −(h̄2/2m)(d2/dx2) + Ṽ (x), (39)

where Ĥ is the Hamiltonian and Ẽn is the eigenenergy.
A discussion of an analogy between these solutions can be

found in [3]. In the pioneering papers on diffraction gratings
[10–13], the eigenmode solution was presented without a
reference to the Kronig-Penney one. This analogy agrees with
a well-known interpretation of the rays in geometrical optics
as the paths of mechanical particles of mass m moving in
an effective potential Ṽ (x) determined by the permittivity
ε(x) of a dielectric medium. Namely, a region with a larger
permittivity corresponds to a region with a lower potential
energy, as is shown in Fig. 2 for the case of TE waves. So,
the optical rays tend to turn toward and to concentrate into
an optically thick region, like the mechanical particles which
tend to move toward a minimum of the potential energy.

This analogy can be stated in terms of the dimensionless
counterparts of the energy, potential, and coordinate:

En = ε2

ε1
− c2k2

zn

ω2ε1
, V (x) = ε2 − ε(x)

ε1
, X = xω

√
ε1

c
.

(40)

Then, Eq. (6) for the TE eigenmodes coincides with its
dimensionless Kronig-Penney counterpart of Eq. (39),

−d2 fn

dX 2
+ [V (x) − En] fn(X ) = 0. (41)

Equation (23) for the TM eigenmodes has a similar form,

−d2ϕn

dX̄ 2
+ VMϕn = 0, VM = V (x) − En

(ε(x))2
, X̄ = x̄ω

√
ε1

c
,

(42)

to the Schrödinger equation for the eigen-wave-function of a
particle moving in a modified 1D potential VM along the scaled
axis x̄(x), Eq. (22), and possessing zero energy.

In this interpretation, the latter (zero) energy of the particle
is the eigenvalue of the Hamiltonian ĤM = −d2/dX̄ 2 + VM

that equals zero only at the particular discrete values of the
parameter En defined in Eq. (40) and considered as a pa-
rameter of the modified potential VM . In other words, instead
of searching for the eigenvalues of the Hamiltonian, we are
searching for the discrete set of the modified potential profiles
VM (x) (determined by the discrete values of the parameter En)
such that they have the discrete energy level with exactly zero
energy. The same interpretation is valid for the usual Kronig-
Penney eigenvalue problem in Eq. (6) for the TE eigenmodes
if one considers VE = V (x) − En as a potential and looks for
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the discrete values of the potential’s parameter En that ensure
an appearance of the zero-energy level among the eigenvalues
of the Hamiltonian ĤE = −d2/dX 2 + VE .

Thus, we come to the problem of eigenpotentials with the
zero-energy level for the given Hamiltonian, which is ĤE or
ĤM for the TE or TM eigenmodes, respectively.

This can be viewed as a generalization of the standard
eigenvalue problem. In the lossless case of the real-valued
permittivities εq > 0, the eigenpotential problem is well de-
fined since in this case both Hamiltonians ĤE and ĤM are self-
adjoint, or Hermitian, operators and the real-valued eigenpa-
rameters En provide the solution to the problem. In the case of
the absorptive permittivities, the complex eigenparameters En

are needed (Appendix A).

III. DIFFRACTION OF FOURIER HARMONICS
PROPAGATING THROUGH THE GRATING

The TE and TM eigenmodes constitute the natural basis
for the solution to the problem of the wave propagation in a
lamellar grating since they propagate without any diffraction,
that is, without changing their x profiles. Let us use this re-
markable fact to calculate the diffraction of Fourier harmonics
of the TE- or TM-polarized field,

Ey(x, z) =
∞∑

p=−∞
gp(z) ei(kx+pkg)x,

(43)

Hy(x, z) =
∞∑

p=−∞
gp(z) ei(kx+pkg)x,

due to its propagation through the grating in the +z direction.
The amplitudes gp of the Fourier harmonics in the plane z = 0
could be set either by the current sheet embedded into the
grating, such as in Eq. (1), or by a wave incident from an out-
side region z < 0 (including the case when z = 0 is the grating
boundary as discussed in the next section, Sec. IV). We must
now determine the coefficients of diffraction conversion t p′

p (z)
from the p′ harmonic of the field, say, at the boundary layer
z = 0, into any p harmonic at a deeper layer z > 0, that is, the
transfer matrix P(z) = {t p′

p }, which gives the column vector of
amplitudes g(z) = {gp(z)} at z > 0 via the boundary value of
this vector g(z = 0) = {gp(0)}:

gp(z) =
∞∑

p′=−∞
t p′
p (z)gp′ (0), or g(z) = P(z)g(0). (44)

The problem can be easily solved in three steps. First, we
transform the x-profile expansion of the field in Eq. (43) at
z = 0 from the Fourier basis to the biorthogonal basis of TE
or TM eigenmodes as per Eqs. (A7) and (A9),

ei(kx+p′kg)x =
∞∑

n=1

cp′
n fn(x) or

∞∑
n=1

cp′
n ϕn(x),

cp′
n = 〈 f †

n , ei(kx+p′kg)x〉
〈 f †

n , fn〉
(TE wave),

cp′
n = 〈ϕ†

n , ei(kx+p′kg)x〉M

〈ϕ†
n , ϕn〉M

(TM wave). (45)

Next, we find the field at any layer z > 0 located deeper
inside the grating as a simple superposition of the nondiffract-
ing eigenmodes which propagate in accord with the pure
exponential factors eikznz, as in Eq. (8) or (25):

Ey(x, z) =
∞∑

p′=−∞
gp′ (z = 0)

∞∑
n=1

cp′
n eikznz fn(x),

Hy(x, z) =
∞∑

p′=−∞
gp′ (z = 0)

∞∑
n=1

cp′
n eikznzϕn(x). (46)

Finally, we return back to the expansion via Fourier basis:

fn(x) or ϕn(x) =
∞∑

p=−∞
c̃n

pei(kx+pkg)x,

c̃n
p = 〈ei(kx+pkg)x, fn〉 (TE wave),

c̃n
p = 〈ei(kx+pkg)x, ϕn〉 (TM wave). (47)

Note that Eq. (47) involves the standard, not modified (33),
inner product (16) even for the case of the TM wave.

Thus, the harmonic amplitudes (44) of the propagating
field (43) are given by the following transfer matrix of the
diffraction-conversion coefficients:

t p′
p (z) =

n∗∑
n=1

c̃n
peikznzcp′

n ,

P(z) = C−1(z)C,  = diag{eikznz}. (48)

Here we use the fact that the matrix C̃ = {c̃n
p} is the inverse

of the matrix C = {cp
n}, C̃ = C−1, due to completeness and

biorthogonality of the eigenmode basis, Eq. (A7). The diago-
nal matrix  has the entries eikznzδn′,n.

We find the explicit formulas for the entries of the basis-
transformation matrices C and C̃ as follows:

cp
n =

2∑
q=1

ie
i
2 kxλg

λgNsεs
q

∑
j=+,−

⎡
⎣ bj†

q (e−ik†
q dq − e−ik(p)

x dq )(
k(p)

x − jk†
q
)
ei(1−q)

(
k†

q dq−k(p)
x d1

)
⎤
⎦

∗

,

c̃n
p = ie− i

2 kxλg

λg

2∑
q=1

∑
j=+,−

bj
q(e−ikqdq − e−ik(p)

x dq )(
jkq − k(p)

x
)
ei(1−q)

(
kqdq−k(p)

x d1

) , (49)

where k(p)
x = kx + pkg, N0 = 〈 f †

n , fn〉, N1 = 〈ϕ†
n , ϕn〉M , and

s = 0 or 1 for TE or TM eigenmodes, respectively.
The explicit analytic result in Eqs. (48) and (49) turns out

to be amazingly efficient for the calculation of the diffraction
conversion in the lamellar grating. The point is that only
a small number n∗ of the lower-band eigenmodes have a
relatively small imaginary part of the propagation constant
kzn. The contribution from all other, higher-band eigenmodes
vanishes exponentially with increasing propagation distance z.
Hence, in order to find the coefficient of diffraction conversion
t p′
p (z) for a sufficiently thick grating (that constitutes the case

being the most difficult for an analysis), it is enough to keep
in the sum (48) only very few lower-band eigenmodes n ∈
[1, n∗]. The opposite case of a very thin grating can be easily
calculated by means of the perturbation theory within the
usual Fourier-Rayleigh expansion method [4–6].
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FIG. 5. The TM-wave coefficient of diffraction conversion t p′
p

from the p′ = 1 spatial Fourier harmonic into the p = 0 harmonic as
a function of the scaled distance zω/c that the TM wave propagates
inside the grating. The dashed and solid curves are the approximate
(n∗ = 3) and exact (n∗ = ∞) plots of the explicit analytic Eqs. (48)
and (49) for the grating whose eigenmode spectrum is shown in
Fig. 4. The Bloch x wave number of the TM wave is assumed to
be zero, kx = 0.

As an illustration, we plot the explicit result in Eqs. (48)
and (49) for the diffraction conversion coefficient, t1

0 (z), from
the p′ = 1 harmonic into the p = 0 harmonic, both with
the zero Bloch wave number kx = 0, as a function of the
dimensionless grating thickness, zω/c, for the same grating
parameters as the ones adopted in Figs. 3 and 4. It is shown in
Fig. 5 for the case of TM waves. The graph of t1

0 (z) for the case
of TE waves looks similar. As expected, since only the first
three lower-band eigenmodes do not attenuate strongly when
penetrating deeper inside this grating, it is enough keeping just
n∗ = 3 eigenmodes in the sum (48) to achieve an accuracy
on the order of 1% for all grating thicknesses except very
thin ones, zω/c � 1. The other reason for this convenient fact
is that the expansion (45) of the incoming p′ = 1 harmonic
over the eigenmodes contains the appreciable (with on the
order of unity amplitudes |c1

n| ∼ 1) contributions only from
the first three lower-band eigenmodes, while the amplitudes of
all other eigenmodes are very small, |c1

n| � 1. The latter is the
reason why the difference between the approximate (n∗ = 3,
the dashed curve) and exact (n∗ = ∞, the solid curve) values
of the diffraction conversion coefficient is much less than
unity even for a very thin grating thickness zω/c � 1.

Thus, the amplitude of each Fourier harmonic gp(z),
Eq. (44), inside the grating at the large propagation distances
is given by a simple explicit formula (48) as a quasiperiodic
interference of just three (n∗ = n0 = 3) lower-band eigen-
modes. This means that an amplitude modulation of the
Fourier harmonic g0(z), shown in Fig. 5 just within a small
distance interval zω/c ∈ [0, π ], will continue in a quasiperi-
odic pattern at larger distances. Such a phenomenon of inter-
fering eigenmodes is common for all gratings except the ones
which support just one (n0 = 1) or no (n0 = 0) nonevanes-
cent eigenmodes. In both latter cases, the amplitude of each
spatial Fourier harmonic does not experience the interference
oscillations but tends to a finite or zero constant when the
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FIG. 6. (a) TM-eigenmode propagation constant squared,
k2

znc2/(ω2ε1), as a function of the scaled x wave number, kxλg,
within the positive half of the first Brillouin zone. (b) TM-wave
coefficient of diffraction conversion t p′

p from p′ = 1 spatial Fourier
harmonic into p = 0 harmonic as a function of the scaled distance
zω/c that the TM wave propagates inside the grating. The dotted,
dashed, and solid curves are the approximate (n∗ = 1 and n∗ = 3)
and exact (n∗ = ∞) plots of the explicit analytic Eqs. (48) and (49).
The grating is the same as in Figs. 4 and 5, except that its period is
shorter, λg = 2πc

√
ε1/ω. The Bloch wave number is set to zero,

kx = 0.

amplitudes of all evanescent eigenmodes exponentially decay
with increasing propagation distance.

This propagation pattern is illustrated in Fig. 6 plotted
for the grating with the period two times shorter than that
of Fig. 5, with all other parameters being kept exactly the
same. From the analogy with the Kronig-Penney quantum
mechanical problem (see Sec. II) it follows that decreasing
the grating period makes the eigenmode propagation constants
squared, k2

zn, more negative since squeezing of the potential
wells pulls the energy levels En, Eq. (40), out of the wells
toward the higher energies. When a dimensionless energy
level crosses the critical value ε2/ε1, so that En > ε2/ε1, the
corresponding propagating eigenmode becomes evanescent.
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As a result, the grating in Fig. 6 supports only one propagating
eigenmode, n0 = 1, and the amplitudes of spatial Fourier
harmonics of the field propagating inside the grating tend
to the constant values proportional to the weights of the
harmonics in the Fourier expansion (47) of this eigenmode.
Remarkably, in this example, the approximation in Eqs. (48)
and (49) only takes into account three lower-band eigenmodes
(n∗ = 3, the dashed curve), yet is so good that it barely may
be distinguished from the exact numerical solution (n∗ = ∞,
the solid curve) in Fig. 6.

A comparison of the diffraction for the cases of the TE
and TM waves shows that qualitatively it behaves similarly
for both cases; however quantitatively the coefficients of
diffraction conversion of the TE and TM waves could be
significantly different. For the grating parameters adopted in
Fig. 6, they differ by about two times, with the TM-wave
diffraction conversion being stronger.

Note that there would be an additional attenuation of
the amplitudes of eigenmodes resulting in a decrease of the
oscillations and amplitudes of Fourier harmonics in the course
of propagation through the grating if a grating material is
absorptive; this case is discussed in Appendix A.

IV. REFLECTION AND TRANSMISSION OF
EIGENMODES AT A GRATING BOUNDARY

Let us consider the same, unbounded in the xy plane,
lamellar grating as the one discussed in the previous sections
(see Fig. 2) but occupying now only a finite layer z ∈ [0, L]
of a width L along the vertical axis z and surrounded by the
homogeneous substrate (z < 0) and cover (z > L) media with
the permittivities ε1 and ε2, respectively. Suppose the nth TE
eigenmode with a unity amplitude, Eyn = fn(x)eikzn(z−L), prop-
agates in the +z direction inside the grating and is incident on
a boundary surface z = L between the grating and the cover
medium. It produces a superposition of the TE eigenmodes
propagating in the −z direction inside the grating with the
amplitudes equal to the coefficients of reflection Rn

n′ ,

E (r)
y =

∞∑
n′=1

Rn
n′ fn′ (x)e−ikzn′ (z−L), (50)

as well as a superposition of the plane waves, or the spatial
Fourier harmonics, emitted from the grating into the cover
medium with the amplitudes equal to the coefficients of
transmission T n

p ,

E (t )
y =

∞∑
p=−∞

T n
p ei(kx+pkg)x+ik(2)

zp (z−L), (51)

where k(2)
zp = [ε2ω

2/c2 − (kx + pkg)2]1/2. As is well known,
the tangential components of the electric and magnetic fields
are continuous at the boundary. That means Eyn(z = L − 0) +
E (r)

y (z = L − 0) = E (t )
y (z = L + 0) and a similar condition

for the corresponding magnetic Hx fields given by Eq. (5).
Using the expansion (45) of the Fourier harmonic ei(kx+pkg)x

and equating coefficients in front of each eigenmode fn′ , we
rewrite these two conditions as the system of two matrix
equations

CT = R + I, Ck̂(2)
z T = k̂z(I − R) (TE wave). (52)

Here the matrix C = {cp
n} is defined in Eqs. (45) and (49), I =

{δn
n′ } is the unity matrix written via the Kronecker delta δn

n′ ;
k̂z = diag{kzn} and k̂(2)

z = diag{k(2)
zp } are the diagonal matrices

composed of the z wave vectors of the eigenmodes in the grat-
ing and the plane waves in the cover medium with permittivity
ε2, respectively; T = {T n

p } and R = {Rn
n′ } are the matrices

of the transmittance and reflectance coefficients, respectively.
The indices n and n′ refer to the eigenmodes { fn} and run over
the set of positive integers {1, 2, . . .}. The indices p and p′
refer to the spatial Fourier harmonics {ei(kx+pkg)x} and run over
the set of all integers {. . . ,−2,−1, 0, 1, 2, . . .}. The lower
and upper indices enumerate the rows and the columns of a
matrix, respectively. The product of two matrices is defined as
usual, e.g., (CT )n

n′ = ∑
p cp

n′T n
p .

Solving the matrix equations (52), we find the matrices of
the transmittance and reflectance coefficients for the case of
the outcoming from the grating TE eigenmode:

T = 2
(
k̂zC + Ck̂(2)

z

)−1
k̂z (TE wave),

R = (
k̂z + Ck̂(2)

z C−1
)−1(

k̂z − Ck̂(2)
z C−1

)
. (53)

Note that, as per Eqs. (50) and (51), the transmittance and
reflectance coefficients for the TE eigenmode incident onto
the cover-grating border from inside the grating are defined
via the corresponding amplitudes of the transmitted Fourier
harmonics and reflected TE eigenmodes in the tangential
component of the electric field Ey.

Remarkably, the derived formula (53) has exactly the same
form as that for the transmittance and reflectance coefficients
of a plane TE wave incident from a medium with permittivity
ε1 into a medium with permittivity ε2,

Et

Ei
= 2k(1)

z

k(1)
z + k(2)

z

,
Er

Ei
= k(1)

z − k(2)
z

k(1)
z + k(2)

z

, (54)

where Ei, Et , Er are the amplitudes of the incident, transmit-
ted, and reflected plane waves and k(1)

z and k(2)
z are their wave

vector components, orthogonal to the boundary, in the media
ε1 and ε2, respectively [89]. Obviously, the generalization of
these formulas to the case of transmission and reflection of
eigenmodes in Eq. (53) is achieved via replacing k(1)

z → k̂z

and multiplying the z wave vectors by the appropriate ma-
trices of transformation between the eigenmode and Fourier-
harmonic bases.

Repeating this analysis for the case of the TM eigenmode,
Hyn = ϕn(x)eikzn (z−L), incident onto the cover-grating border
from inside the grating and defining now the reflectance,
R̃n

n′ , and transmittance, T̃ n
p , coefficients via the corresponding

amplitudes of the reflected TM eigenmodes and transmitted
Fourier harmonics of the tangential component of magnetic
field Hy, that is,

H (r)
y =

∞∑
n′=1

R̃n
n′ϕn′ (x)e−ikzn′ (z−L), (55)

H (t )
y =

∞∑
p=−∞

T̃ n
p ei(kx+pkg)x+ik(2)

zp (z−L), (56)

we again obtain two matrix equations as the conditions of the
continuity of the tangential components of the magnetic and
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electric fields at the grating-cover boundary:

CT̃ = R̃ + I, MCk̂(2)
z T̃ /ε2 = k̂z(I − R̃) (TM wave).

(57)

Here we take into account a nonorthogonality of the TM-
eigenmode basis {ϕn(x)} with respect to the standard inner
product (16), despite its biorthogonality with respect to the
modified inner product (33) (see Sec. IV), by means of the
matrix M = {Mn′

n } with the entries

Mn′
n = 〈ϕ†

n , ϕn′ 〉
〈ϕ†

n , ϕn〉M

. (58)

The result for the transmission and reflection matrices for the
case of the outcoming from the grating TM eigenmode is

T̃ = 2
(
k̂zC + MCk̂(2)

z /ε2
)−1

k̂z (TM wave),

R̃ = (
k̂z + MCk̂(2)

z C−1/ε2
)−1(

k̂z − MCk̂(2)
z C−1/ε2

)
. (59)

Note that, as per Eqs. (55) and (56), the transmittance and
reflectance coefficients for the TM eigenmode incident onto
the cover-grating border from inside the grating are defined
via the corresponding amplitudes of the transmitted Fourier
harmonics and reflected TM eigenmodes in the tangential
component of the magnetic field Hy.

The result (59) is a direct generalization of the classical
optics formulas [89] for the transmittance and reflectance
coefficients of a plane TM wave incident from a medium with
permittivity ε1 into a medium with permittivity ε2,

Ht

Hi
= 2k(1)

z /ε1

k(1)
z /ε1 + k(2)

z /ε2

,
Hr

Hi
= k(1)

z /ε1 − k(2)
z /ε2

k(1)
z /ε1 + k(2)

z /ε2

, (60)

where Hi, Ht , Hr are the amplitudes of the magnetic field in
the incident, transmitted, and reflected plane waves.

The analysis of the TE or TM plane wave (i.e., the pth
spatial Fourier harmonic) with a unity amplitude,

Eyp or Hyp = ei(kx+pkg)x+ik(1)
zp z, p = 0,±1,±2, . . . , (61)

incident on a bottom border z = 0 of the grating from the
substrate with the z wave vector k(1)

zp = [ε1ω
2/c2 − (kx +

pkg)2]1/2 is very similar to the above analysis. The reflectance,
Rp

p′ or R̃p
p′ , and transmittance, T p

n or T̃ p
n , coefficients are

defined by the corresponding amplitudes of the reflected plane
waves and transmitted eigenmodes:

E (r)
y =

∞∑
p′=−∞

Rp
p′e

i(kx+p′kg)x−ik(1)
zp′ z (TE wave), (62)

H (r)
y =

∞∑
p′=−∞

R̃p
p′e

i(kx+p′kg)x−ik(1)
zp′ z (TM wave), (63)

E (t )
y =

∞∑
n=1

T p
n fn(x)eikznz (TE wave), (64)

H (t )
y =

∞∑
n=1

T̃ p
n ϕn(x)eikznz (TM wave). (65)

As a result, we find the transmittance and reflectance coeffi-
cients for the case of the incoming into the grating TE or TM

plane wave in the explicit matrix form as follows:

T = 2
[
k̂(1)

z C−1 + C−1k̂z
]−1

k̂(1)
z ,

R = [
k̂(1)

z + C−1k̂zC
]−1[

k̂(1)
z − C−1k̂zC

]
(66)

for the TE wave, or

T̃ = 2
[
k̂(1)

z C−1 + ε1(MC)−1k̂z
]−1

k̂(1)
z ,

R̃ = [
k̂(1)

z + ε1(MC)−1k̂zC
]−1[

k̂(1)
z − ε1(MC)−1k̂zC

]
(67)

for the TM wave. Again, they are the direct generalizations
of the classical optics formulas [89] for the transmission and
reflection of the wave incident from a medium with permittiv-
ity ε1 into a medium with permittivity ε2. However, now the
wave vector k(2)

z , not k(1)
z , corresponds to the eigenmode wave

vectors k̂z inside the grating and, hence, should be replaced by
k̂z in Eqs. (54) and (60).

V. GEOMETRICAL OPTICS: PROPAGATION
OF THE EIGENMODES IN A WEAKLY

INHOMOGENEOUS GRATING

In this and the following sections we consider gratings
similar to Fig. 1 which have a lamellar-type structure shown
in Fig. 2 for each xy plane at any particular z, but are inho-
mogeneous along the z axis. This means the parameters of the
grating ε1,2(z) and d1,2(z) are the functions of the coordinate
z; i.e., the permittivities of the grating layers vary along the z
axis, for instance, in virtue of a designed variation of the ma-
terial composition during the grating growth process, and/or
the groove profile is not strictly vertical but rather trapezoidal
or curved. Nevertheless, we still can use the complete basis
of the TE- or TM-eigenmode x profiles { fn(x, z)} or {ϕn(x, z)}
introduced in Sec. II and Appendix A, but now it is different at
different levels z. So, we can expand the electromagnetic field
of the TE or TM wave inside the grating over the eigenmode
x profiles similar to Eqs. (8) or (25):

Ey =
∞∑

n=1

Eyn(z) fn(x, z) or Hy =
∞∑

n=1

Hyn(z)ϕn(x, z).

(68)

However, the amplitudes of the eigenmode x profiles, Eyn(z)
or Hyn(z), now vary in the course of the wave propagation, or
diffraction, in a way that is different from a simple exponential
function e±ikznz. They should be calculated taking into account
the z inhomogeneity of the grating. We address this problem
in the case of a weakly inhomogeneous grating within the
geometrical optics approximation in this section and within
the theory of the nonadiabatic mode coupling in the following
sections.

Let us assume that the scale  of variation of the grating
parameters along the z axis is much larger than the wavelength
λzn corresponding to the wave vector kzn:

|dλzn/dz| = |λzn/| ≡ α � 1, λzn = 2π/kzn. (69)

Then, we can solve Maxwell’s Eq. (4) or (20) for the elec-
tromagnetic field of the TE or TM wave by means of its
rigorous asymptotic expansion in a power series over the small
parameter of weak inhomogeneity α � 1.
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The geometrical optics (WKB) approximation assumes
that each eigenmode propagates independently from the oth-
ers according to Eq. (7) or (24). Keeping only the zeroth- and
first-order terms (∼α0, α) in these equations, one finds the
solution for amplitudes Eyn(z) or Hyn(z) as a superposition of
counterpropagating eigenmodes:

Eyn or Hyn = �n(A+
n eiφn + A−

n e−iφn )

k1/2
zn

, φn =
∫ z

0
kzndz.

(70)

Here the geometrical optics TE- or TM-amplitude factor
�n(z)/k1/2

zn , where

�n(z) = exp

[
−

∫ z

0
ψnndz

]
, ψnm(z) =

〈
f †
n ,

∂ fm

∂z

〉
〈
f †
n , fn〉

(TE)

or

ψnm(z) =
〈
ϕ†

n ,
∂ϕm

∂z − ϕm

2ε
∂ε
∂z

〉
M

〈ϕ†
n , ϕn〉M

(TM), (71)

adiabatically follows a variation of wave vector kzn(z) and
incorporates (via �n) the effects of restructuring of the eigen-
mode and permittivity x profiles that go beyond the explicit
dependence of the eigenmode functions fn or ϕn on the z co-
ordinate in Eq. (68). Thus, the amplitudes of the eigenmodes
are not just the boundary-value constants A(±)

n , but rather
acquire an additional rescaling in the course of propagation
through the inhomogeneous grating along the z axis due to
the geometrical optics factor.

Importantly, the condition (69) of a weak inhomogeneity is
not enough for a validity of this solution. It is also necessary
that an inhomogeneity scale should be larger than the wave-
length of beating between the eigenmodes:

 � 2π/|kzn − kzn′ |, n �= n′. (72)

Otherwise, the eigenmodes lose their independence in a
region of the inhomogeneity-scale size if their parameters
significantly change over this region but the accumulated
phase difference between the eigenmodes |kzn − kzn′ | re-
mains less or on the order of 2π . In such regions those (close
to a degeneracy) eigenmodes may experience a significant
additional variation of their amplitudes that could be viewed
as if the eigenmodes exchange by their amplitudes due to a
mutual mode transformation [24]. We discuss this remarkable
effect in the next section.

VI. NONADIABATIC MODE COUPLING IN THE
NONLAMELLAR GRATINGS

The effect stated in the previous paragraph is known as
the nonadiabatic mode coupling [24] and is generic for all
nonlamellar gratings which could be viewed as the lamellar
gratings inhomogeneous along the z axis. It implies that the
amplitudes of the eigenmodes do not follow anymore the adi-
abatic WKB, or geometrical optics, law when propagate along
the z axis but vary differently in virtue of the so-called linear
mode coupling that appears due to the inhomogeneity along
the propagation path. In particular, the reflection and trans-
mission of the eigenmodes at the sharp grating boundaries
considered in Sec. IV are the limiting case of the nonadiabatic

mode coupling involving many, both counterpropagating (re-
flection) and copropagating (transmission), eigenmodes.

First, we elaborate on the other two simple cases of the
nonadiabatic mode coupling in inhomogeneous gratings:

(i) the mutual transformation (reflection) of the two coun-
terpropagating eigenmodes of the same band type n with z
wave vectors close to zero, ±kzn ≈ 0, as is the case, for ex-
ample, for the eigenmode n = 3 at kx ≈ 2/λg in Figs. 3 and 4
or n = 2 at kx ≈ π/λg in Fig. 6, as well as

(ii) the mutual transformation of the two copropagating
eigenmodes of the different but neighboring band types n and
n′ = n + 1 with z wave vectors close to a Bragg band gap at x
wave number kx ≈ 0 or π/λg, as is the case, e.g., at kx ≈ 0 for
the eigenmodes n = 4, n′ = 5 in Figs. 3 and 15 (at d2 ∼ 1) or
n = 2, n′ = 3 in Fig. 4.

The first case is common to most of the gratings and
occurs often in practice. However, it is special since the very
condition of a weak inhomogeneity (69) is violated for the
two degenerate (being reflected into each other and possessing
exactly the same x profiles) eigenmodes which are close (in
the parameters’ space) to the critical border kzn = 0 between
propagating and evanescent modes and could be either of
them. The second case is simpler since the copropagating
eigenmodes can efficiently transform into each other even
when the condition of a weak inhomogeneity (69) is fulfilled.

The equation describing the linear coupling (reflection) of
the two counterpropagating TE or TM eigenmodes with the
same x profile, fn or ϕn, can be obtained by plugging in their
combined field written in the form

Ey = Fn(z)�n(z) fn(x, z) or Hy = Fn(z)�n(z)ϕn(x, z) (73)

into the Maxwell equation (4) or (20) and projecting them
onto the eigenmode x profile by calculating the corresponding
scalar product 〈 f †

n , . . .〉 or 〈ϕ†
n , . . .〉M . The result is the second-

order ordinary differential equation for the field amplitude
F (z) as a function of the coordinate z in the form of the
canonical 1D Helmholtz equation

d2Fn/dz2 + k̃2
znFn = 0 (74)

with the renormalized propagation constant squared

k̃2
zn = k2

zn−ψ2
nn− dψnn

dz
+ηnn, ηnm =

〈
f †
n ,

∂2 fm

∂z2

〉
〈 f †

n , fn〉
(TE),

or ηnm =
〈
ϕ†

n , ε
∂
∂z

(
1
ε

∂ϕm

∂z

)〉
M

〈ϕ†
n , ϕn〉M

(TM). (75)

Introducing the amplitudes F+
n and F−

n of the counterprop-
agating eigenmodes related to their total field Fn and its
derivative dFn/dz as follows,

Fn = F+
n

k̃1/2
zn

eiφ̃n + F−
n

k̃1/2
zn

e−iφ̃n ,

dFn

dz
= ik̃1/2

zn F+
n eiφ̃n − ik̃1/2

zn F−
n e−iφ̃n , φ̃n =

∫ z

0
k̃zndz, (76)

we rewrite the equation of mode transformation for reflec-
tion (74) explicitly as the system of two coupled first-order

053854-12



EIGENMODES OF A LAMELLAR OPTICAL GRATING: … PHYSICAL REVIEW A 100, 053854 (2019)

differential equations for eigenmode amplitudes:

dF+
n

dz
= F−

n

2k̃zn

(
dk̃zn

dz

)
e−2iφ̃n ,

dF−
n

dz
= F+

n

2k̃zn

(
dk̃zn

dz

)
e2iφ̃n . (77)

The diagonal, self-coupling terms are absent because they
have been taking care of by the explicit factor �n(z) [see
Eqs. (71) and (73)]. Equation (77) yields the first-order non-
linear differential equation, the well-known Riccati equation,

dRn

dz
+ 2ik̃znRn = 1 − R2

n

2k̃zn

dk̃zn

dz
, (78)

directly for the coefficient of reflection

Rn(z) = F−
n (z)

F+
n (z)

e−2iφ̃n (z) (79)

at any cross section z inside the inhomogeneous grating.
The equation describing the linear coupling of the two

copropagating TE or TM eigenmodes with the different x
profiles, fn and fm or ϕn and ϕm, can be obtained by plugging
in their combined field written in the form

Ey = F+
n �neiφn

k1/2
zn

fn(x, z) + F+
m �meiφm

k1/2
zm

fm(x, z) (TE),

Hy = F+
n �neiφn

k1/2
zn

ϕn(x, z) + F+
m �meiφm

k1/2
zm

ϕm(x, z) (TM) (80)

into the Maxwell equation (4) or (20) and projecting them
onto the eigenmode x profiles by calculating the correspond-
ing scalar products 〈 f †

n , . . .〉 and 〈 f †
m, . . .〉 or 〈ϕ†

n , . . .〉M and
〈ϕ†

m, . . .〉M . For the coupling of the copropagating eigen-
modes, contrary to the case of reflection considered above,
we assume that the condition of a weak inhomogeneity in
Eq. (69) is fulfilled and, hence, keep only the first-order
terms ∼α, neglecting the second-order derivatives. As a result,
we obtain the linear system of the two coupled first-order
differential equations for the eigenmode amplitudes F+

n and
F+

m as follows:

dF+
n /dz = gm

n (z)F+
m , dF+

m /dz = gn
m(z)F+

n . (81)

This is similar to that in Eq. (77) for the two-mode coupling
due to reflection. However, the coupling coefficients for the
copropagating TE or TM eigenmodes,

gm
n (z) = −

〈
f †
n ,

∂ fm

∂z

〉
〈 f †

n , fn〉
�mk1/2

zm

�nk1/2
zn

ei(φm−φn ) (TE wave),

gm
n (z) = −

〈
ϕ†

n ,
∂ϕm

∂z

〉
M

〈ϕ†
n , ϕn〉M

�mk1/2
zm

�nk1/2
zn

ei(φm−φn ) (TM wave), (82)

originate now from the overlapping of one eigenmode x pro-
file, say, fn(x, z) or ϕn(x, z), in the cross section at coordinate
z with the other eigenmode x profile, say, fm(x, z + dz) or
ϕm(x, z + dz), in the neighboring cross section at coordinate
z + dz. Such a slipping of one eigenmode into the other
eigenmode in the course of propagation along the z axis

is the ultimate reason for the mode transformation in the
inhomogeneous gratings.

The ratio of the field amplitudes of the two eigenmodes
obeys the Riccati equation which is similar to Eq. (78) but
also includes the coupling coefficients (82). So, the method of
the Riccati equation is fully applicable for the analysis, both
qualitative and quantitative, of the mode coupling of the two
copropagating eigenmodes as well.

The derived Eqs. (74), (77), (78), and (81) are all of
the standard types. The methods for their analysis are well
developed and known from the theory of wave propaga-
tion and waveguides, quantum mechanics, etc. (see, e.g.,
[2,6,24,90,91] and references therein). The behavior of their
solutions is well understood, both mathematically and phys-
ically, by means of various analytic and numerical methods,
including a qualitative theory of linear mode coupling [24]
and a rich set of standard, exactly solvable (in terms of known
special functions) models like a transition layer with a linear
profile of permittivity solvable via the Airy functions. Besides,
there is a large number of well-studied analogous problems on
a nonadiabatic mode transformation in various nonstationary
processes where the time plays a part of the coordinate z along
a propagation path (see, e.g., [92–94]). A famous example is
an analytic solution to the Landau-Zener model of a transition
between the states of a two-level quantum mechanical system
governed by a time-dependent Hamiltonian.

In the case of the inhomogeneous lamellar gratings con-
sidered above, these equations can be studied in even greater
detail since there are explicit analytic formulas for the profiles
and other parameters of the eigenmodes. Obviously, such an
analysis can be generalized to the cases when not just two, but
a larger number of eigenmodes n = n1, n2, . . . , nQ experience
a mutual linear mode coupling or even when a few groups
of such coupled eigenmodes exist in the grating. Then, their
combined field

Ey(x, z) =
∑

n=n1,...,nQ

F+
n �neiφn

k1/2
zn

fn(x, z) (TE wave),

Hy(x, z) =
∑

n=n1,...,nQ

F+
n �neiφn

k1/2
zn

ϕn(x, z) (TM wave) (83)

can be described as a superposition of those Q eigenmode
fields whose amplitudes F+

n obey the system of coupled linear
first-order ordinary differential equations

dF+
n

dz
=

∑
m=n1,...,nQ

gm
n (z)F+

m , n = n1, . . . , nQ. (84)

VII. SIMULTANEOUS TRANSFORMATION AND
REFLECTION OF EIGENMODES IN THE

INHOMOGENEOUS LAMELLAR GRATINGS

Finally, we derive the system of the first-order differential
equations for the amplitudes F±

n of the co- and counter-
propagating eigenmodes that takes into account exactly the
mutual transformation and reflection between the eigenmodes
within a given subset of eigenmodes n = n1, n2, . . . , nQ. In
other words, we truncate the functional space of the field x
profiles to a subspace spanned by all superpositions of the
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selected eigenmode basis x profiles { fn(x, z)|n = n1, . . . , nQ}
or {ϕn(x, z)|n = n1, . . . , nQ} at any particular cross section z.
Thus, the only approximation made in deriving these equa-
tions is an omission of the contributions due to diffraction into
the eigenmodes which do not belong to the selected subset of
eigenmodes.

In order to get these equations, we represent the combined
electric or magnetic field of the Q eigenmodes as

Ey =
∑

m=n1,...,nQ

Fm(z)�m(z) fm(x, z) (TE wave)

or Hy =
∑

m=n1,...,nQ

Fm(z)�m(z)ϕm(x, z) (TM wave), (85)

plug in it into the Maxwell equation (4) or (20), and project
the latter onto each eigenmode x profile by calculating a scalar
product 〈 f †

n , . . .〉 or 〈ϕ†
n , . . .〉M that yields

d2Fn

dz2
+ k̃2

znFn =
∑
m �=n

�m

�n

[
2ψnm

(
ψmm − d

dz

)
− ηnm

]
Fm.

(86)

We then rewrite Eq. (86) in terms of the amplitudes (76) of
the counterpropagating eigenmodes F±

n . As a result, we find
the system of 2Q first-order differential equations describing
the linear mode coupling of the eigenmodes:

dF±
n

dz
= F∓

n

2k̃zn

(
dk̃zn

dz

)
e∓2iφ̃n ±

∑
m �=n

�mk̃1/2
zm

�nk̃1/2
zn

e∓iφ̃n

×
{

F+
m eiφ̃m

[
ψnm

(
−1 − iψmm

k̃zm

)
+ iηnm

2k̃zm

]

+ F−
m e−iφ̃m

[
ψnm

(
1 − iψmm

k̃zm

)
+ iηnm

2k̃zm

]}
,

n = n1, . . . , nQ, (87)

where the upper sign should be used in the equation for dF+
n

dz

and the lower sign for dF−
n

dz (Appendix B). These equations
for the cases of TE and TM polarization have exactly the
same form, although the parameters ψnm and ηnm defined in
Eqs. (71) and (75) are different.

Note that an explicit inclusion of the geometrical optics
factor �m(z) in the ansatz for the wave field (85) and its
particular cases in Eqs. (73), (80), and (83) is beneficial for
the analysis of the linear mode coupling in a transition layer.
This allows one to explicitly factor out the known [in the form
of a definite integral of a given function ψmm(z)] geometrical
optics scaling of the mode fields stated in Eqs. (70) and (71).
As a result, the left-hand side of the second-order differential
equation (86) for each mode field acquires a canonical (i.e.,
without a first-order derivative) form and, moreover, all self-
mode-coupling terms disappear from the right-hand side of
the system (87) of the first-order differential equations for the
mode amplitudes F±

n (z). So, Eqs. (87) acquire a canonical,
off-diagonal form and, most importantly, allow one to focus
on and describe the net, pure effect of the transformation of
the mode amplitudes F±

n (z), that is, their deviation from the
constant geometrical optics amplitudes A±

m of Eq. (70), due to

an inhomogeneity of the transition layer of the nonlamellar
grating along the propagation path.

A fundamental problem for any mode coupling is finding
the transmittance, T m

n , and reflectance, Rm
n , coefficients of

linear mode transformation that are equal to the amplitudes
of the copropagating, F+

n (z = L), and counterpropagating,
F−

n (z = 0), eigenmodes, respectively, at the exits from a given
transition layer z ∈ [0, L] of a thickness L generated by an
m eigenmode of the unit amplitude, F+

m (z = 0) = 1, entering
the layer in the +z direction at z = 0. Let us consider a
general case of mode transformation or reflection described
by Eqs. (87) for 2Q eigenmode amplitudes F±

n (z) assuming
that a grating is homogeneous outside the transition layer. Let
us introduce a column 2Q-vector F as a 2-block vector—a
column Q-vector F+ on top of a column Q-vector F−, where
each Q-vector F± = (F±

n1
, . . . , F±

nQ
)T contains the amplitudes

of the co- or counterpropagating eigenmodes, respectively.
(A superscript T denotes a transpose operation.) The values
of the amplitude vector F(z) at the opposite borders of the
transition layer, z = 0 and z = L, are related by a 2 × 2-block
state-transition matrix, or matriciant, M of the system of 2Q
linear differential equations (87),

F(L) = MF(0), M =
(

A B

C D

)
, F =

[
F+

F−

]
. (88)

The matriciant and its Q × Q-matrix blocks A, B,C, D can
be calculated analytically or numerically. The matriciant can
be represented as M = W (L)W −1(0) via a fundamental 2Q ×
2Q-matrix W (z) whose columns are linearly independent
solutions of the system and whose Wronski determinant is
nonzero, detW �= 0. Taking into account a radiation boundary
condition at the exit z = L from the transition layer, i.e.,
F−(L) = 0, we find the transmittance and reflectance coeffi-
cients due to linear mode transformation in the transition layer
as follows:

T m
n = (A − BD−1C)m

n , Rm
n = −(D−1C)m

n . (89)

They give the amplitudes of the eigenmodes at the exits
from the transition layer at z = L in the +z direction and at
z = 0 in the −z direction via the amplitudes of the eigenmodes
entering the transition layer at z = 0:

F+
n (L) =

∑
m

T m
n F+

m (0), F−
n (0) =

∑
m

Rm
n F+

m (0). (90)

Obviously, the result in Eq. (90) can be easily extended
to all eigenmodes participating in the optical response of the
grating, i.e., beyond the subset of the coupled eigenmodes
n, m = n1, . . . , nQ, since the transmittance and reflectance
coefficients for all of the decoupled modes are given by the
geometrical optics: T m

n = δm
n , Rm

n = 0.
Thus, in order to find the coefficients of transmittance, T m

n ,
and reflectance, Rm

n , by the entire transition layer for a given m
it is necessary to calculate the outcome amplitudes F+

n (z = L)
and F−

n (z = 0) of all modes for the special boundary condi-
tion of just one, mth mode entering the layer at z = 0 in the +z
direction: F+

m (z = 0) = δnm and F−
n (z = L) = 0 ∀n. Then,

for an arbitrary incident field represented by a combination of
all incident modes {F+

m (z = 0)}, the field exiting the transition
layer can be found in terms of the outcome mode amplitudes,
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F+
n (L) and F−

n (0), as a sum in Eq. (90) over all incident
modes.

The approach formulated above allows one to further sim-
plify calculations of the propagation and diffraction of waves
through the transition layer of a grating (within an already
simple picture of very few lower-band, propagating or weakly
evanescent, eigenmodes contributing to the transmitted field)
by accounting for the linear mode coupling, including mutual
reflections, between only some of those eigenmodes and
assigning the known geometrical optics amplitudes to all of
the other eigenmodes.

The equations for the reflection of a single eigenmode (77)
or for the mutual transformation between the copropagating
eigenmodes (81) and (84) follow from the general result in
Eq. (87) if the coupling with all other eigenmodes except the
counterpropagating one [i.e., the second and third lines in
Eq. (87)] or the coupling with all counterpropagating eigen-
modes [i.e., the first term and the third line in Eq. (87)] and the
second order [∼α2; see Eq. (69)] corrections, ∝ ψnmψmm and
ηnm, to the coupling coefficients, respectively, are negligible
for a particular transition layer in an inhomogeneous grating.

The details of an application of this mode-coupling ap-
proach to the engineering and design of various gratings,
in particular, a grating outcoupler for the nonlinear-mixing
semiconductor lasers, go beyond the scope of this paper and
will be presented elsewhere. However, we illustrate it below
by two generic examples.

VIII. TWO TYPES OF MODE COUPLING IN THE
WEAKLY INHOMOGENEOUS GRATINGS

We analyzed various possible scenarios of linear mode
coupling in the weakly inhomogeneous lamellar dielectric
gratings and came to the following practical observation. For
the propagating or weakly evanescent eigenmodes, a signif-
icant eigenmode coupling usually occurs via three particu-
lar generic scenarios: a self-reflection of one eigenmode, a
transformation between two copropagating eigenmodes [i.e.,
the cases (i) and (ii) introduced in Sec. VI above], and a
mixed scenario when two copropagating modes simultane-
ously transform into each other and reflect into two counter-
propagating modes of the same two eigenmode band types.
Here we elaborate on the self-reflection and mixed scenarios
by a detailed discussion of an example of the trapezoidal grat-
ing shown in Fig. 1. The results presented below constitute an
application of the theory of linear mode coupling developed
above and are based on a direct solution of Eqs. (87).

In order to focus on a net, pure effect of linear mode
coupling in a transition layer z ∈ [0, L] with a thickness L,
we do not consider any reflection and mode coupling at
the boundaries of the transition layer, in this section, say,
assuming that the grating is smoothly extending beyond the
transition layer so that the geometrical optics applies and the
reflection and mode coupling at the layer’s borders z = 0 and
z = L are absent. Below, we compute the transmittance and
reflectance coefficients (89) of the transition layer. In order to
accomplish this goal we need to solve Eqs. (87) for the special
boundary conditions stated next to Eq. (90) and explained in
Sec. VII.

Of course, reflection and mode coupling at the borders of
an actual inhomogeneous grating of thickness L can be easily
taken into account, in addition to the linear mode coupling
inside the volume of the nonlamellar grating, by means of the
explicit formulas derived in Sec. IV. Then, one can combine
these contributions and find an actual optical response of the
entire nonlamellar grating to an incident plane wave as is
outlined in Sec. IX.

A. Partial reflection of a single eigenmode converting
from propagating to evanescent regime in a transition

layer of total internal reflection

The first scenario is a partial reflection of an eigenmode
into the counterpropagating eigenmode of the same band type
in a transition layer where the eigenmode z wave vector
squared becomes zero and changes its sign while the z wave
vectors of all other eigenmodes are far from zero—in other
words, the case of a transition layer where only one eigen-
mode experiences a total internal reflection and changes its
character from propagating to evanescent or vice versa.

For a typical example, we consider a case of the TE
eigenmode of the band type n = 3 and x wave number kx =
π/(2λg) (see Fig. 3) propagating through the trapezoidal
transition layer of a grating which consists of two, alternating
in the x direction, dielectric-medium layers with permittivities
ε1 = 12, ε2 = 1 relevant to the case of a GaAs heterostructure
and has a constant grating period λg = 2λ1 with a groove
width d2(z) linearly increasing from d2(z = 0) = 4.8λ1/(2π )
at the transition layer entrance to d2(z = L) = 8.4λ1/(2π ) at
the exit from the transition layer (see Fig. 1). Here λ1 is the
wavelength of a plane wave in the medium with the permit-
tivity ε1. It is shorter than the wavelength λ2 of a plane wave
in the second medium, λ2 = √

ε2/ε1λ1 ≈ 3.5λ1, and corre-
sponds to the wave number k(0)

1 ≡ 2π/λ1 = ω/(c
√

ε1). Let
us consider a transition layer of a relatively large thickness,
say, L = 16λ1/(2π ), corresponding to a weak inhomogeneity
for all eigenmodes except the eigenmode n = 3, so that the
selected eigenmode is decoupled from the eigenmodes of all
other band types n �= 3. This decoupling is justified by a
fulfillment of the condition (72) of a large detuning between
the eigenmodes. For instance, the eigenmode n = 2 acquires
a relative change of its z wave vector �kz2/kz2 ∼ 1/2 at a
transition layer thickness L that amounts to an inhomogeneity
scale  ∼ 2L. Its detuning from the eigenmode n = 3 is
|kz2 − kz3| ∼ 0.7k(0)

1 . Hence, their beating phase shift, |kz2 −
kz3| ∼ 20, accumulated over the inhomogeneity scale  is
larger than 2π .

In the subsequent numerical simulations and graphs, we
will assume that the unit of length is equal to λ1/(2π ). This
implies the following values of the grating parameters: k(0)

1 =
1, λ1 = 2π, λg = 4π, L = 16, d2(z) = 4.8 + 3.6z/L.

For the first five lower-band eigenmodes existing in the
trapezoidal grating specified above, the dependence of the
eigenmode z wave vectors squared on the groove thickness
d2 varying along the inhomogeneous grating is shown in
Fig. 7, which presents the solutions to the dispersion equation
(14). Of course, one has to look only at the range of groove
thicknesses, 4.8 < d2 < 8.4, which are actually present in
the grating. Here we consider the TE eigenmode n = 3 with

053854-15



KOCHAROVSKY, REYNOLDS, AND KOCHAROVSKY PHYSICAL REVIEW A 100, 053854 (2019)

0 2 4 6 8 10 12

–1.0

–0.5

0.0

0.5

1.0
k

c
/(

)
zn

2
2
ω
ε2
1

Groove width, d2

n=1

n=2

n=3

n=4

n=5

FIG. 7. Dependence of the z wave vectors squared, k2
znc2

ω2ε1
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TE eigenmodes on the groove width d2 increasing from d2(z = 0) =
4.8 to d2(z = L) = 8.4 along the z axis: the case of the trapezoidal
grating of Sec. VIII A (Fig. 1), kx = π

2λg
. The unit of length is

λ1/(2π ).

kx = π/(2λg) whose propagation constant converts from the
real values kz3 = Re(kz3) at the groove widths d2(z) < d2(z0)
to the pure imaginary values kz3 = iIm(kz3) at the groove
widths d2(z) > d2(z0) as is shown in Fig. 8. The critical
groove width d2(z0) = 6.44 is achieved in the cross section
of a total internal reflection located at a level z0 = 7.288
where kz3(z0) = 0. This conversion means a transition of the
eigenmode from the propagating regime to the evanescent
regime.
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Re[k c/( )]z3 1ωε 1/2~
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~ z0

FIG. 8. The bare, ckz3/(ω
√

ε1) (dashed curve), and renormal-
ized, ck̃z3/(ω

√
ε1) [Eq. (75); solid curve], propagation constants of

the TE eigenmode n = 3 represented by their real and imaginary
parts below (z < z0 or z < z̃0) and above (z > z0 or z > z̃0) the
related bare [kz3(z0) = 0] or renormalized [k̃z3(z̃0) = 0] layers of
total internal reflection, respectively, as functions of the coordinate z
along the z axis for the case of the trapezoidal grating of Sec. VIII A
(Fig. 1). The unit of length is λ1/(2π ).

Note that due to a grating inhomogeneity and Eq. (75),
the propagation constant k̃z3 entering Eqs. (74) and (77) for
the amplitudes of the co- and counterpropagating modes is
renormalized, i.e., differs from the bare one kz3. This amounts
to a shift and deformation of the z profile of the propagation
constant, namely, from a dashed-curve profile to a solid-curve
profile in Fig. 8. In particular, the layer of a total internal
reflection shifts to a new position z̃0 = 6.94 set by condition
k̃z3(z̃0) = 0.

It is worthwhile to represent this change of the propagation
constant squared in Eq. (75) in a symmetric form

k̃2
zn − k2

zn = |ψnn(z)|2 − μnn(z) (91)

that does not involve the second derivative ∂2 fn/∂z2 of the
eigenmode profile fn(x, z), but includes only its first derivative
via its scalar product ψnn with the eigenmode profile in
Eq. (71) as well as its squared and scaled norm

μnn(z) =
〈
∂ f †

n

∂z
,
∂ fn

∂z

〉/
〈 f †

n , fn〉. (92)

Similarly to the eigenmode norm in Eq. (18), the latter can be
found analytically via the following explicit formula:〈

∂ f †
n

∂z
,
∂ fn

∂z

〉
= 1

λg

∑
q=1,2

∑
s=±1

∑
j=±1

{
dqc j

qcs∗
q ν1(u)

+ i(−1)qd2
q

[
jcs∗

q k′
qb( j)

q − sc j
qk′∗

q b(s)∗
q

]
ν2(u)

+ d3
q s j|k′

q|2b( j)
q b(s)∗

q ν3(u)
}
,

c j
q = db( j)

q

dz
− i jkqb( j)

q

dd1

dz
, (93)

where u = i( jkq − sk∗
q )(−1)qdq, k′

q = dkq/dz, b( j)
q = b±

q for
j = ±1. It is expressed via the elementary functions

ν1(u) = eu − 1

u
, ν2(u) = eu(u − 1) + 1

u2
,

(94)

ν3(u) = eu(1 − u + u2/2) − 1

u3
,

which behave analytically and tend to unity, one-half, and
one-third, respectively, when their argument tends to zero,
u → 0, that is, ν1(0) = 1, ν2(0) = 1/2, ν3(0) = 1/3.

It is easy to prove that the change (91) of the propagation
constant squared due to a grating inhomogeneity is invariant
under rescaling of the eigenmode profile fn → fn/c(z) by any
function c(z) which depends on z, but not on x. There is a
canonical scaling that gives

k̃2
zn − k2

zn =
∣∣∣∣
〈

f̄ †
n ,

∂ f̄n

∂z

〉∣∣∣∣
2

−
〈
∂ f̄ †

n

∂z
,
∂ f̄n

∂z

〉
, f̄n = fn

|| fn|| .
(95)

Due to the latter fact and advantages related to numerical
simulations, we employ the eigenmode profile f̄n with the
canonical normalization assuring the unity norm, || f̄n|| = 1,
for all subsequent calculations and graphs.

The profile of the TE(n = 3) eigenfunction, namely, its
absolute value | f̄3| as a function of the coordinates x ∈ [0, λg]
and z ∈ [0, L] in the trapezoidal grating, is shown in Fig. 9.
It is continuous everywhere, including the boundary between
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FIG. 9. A 3D plot of the TE(n = 3)-eigenmode profile, | f̄3(x, z)|,
for the case of the trapezoidal grating of Sec. VIII A (Fig. 1). The unit
of length is λ1/(2π ).

the ridge of optically thick material, ε1 = 12, and the groove
of optically thin material, ε2 = 1. This boundary crosses the
x-z plane along the straight line x = d1(z) = λg − d2(z) going
from the point x = 7.77 at z = 0 to the point x = 4.17 at
z = 16 following the shrinking width d1(z) of the ridge; cf.
Fig. 1.

The phenomenon of linear mode coupling takes place
around the critical layer z̃0 = 6.94 of a total internal reflection
where k̃z3(z̃0) = 0 (see Fig. 8) and manifests itself in a sig-
nificant variation of the co- and counterpropagating TE(n =
3)-eigenmode amplitudes F+

3 (z) and F−
3 (z). A violation of

the geometrical optics approximation of constant amplitudes
occurs due to an inhomogeneity of the grating along the z axis
and is strongly pronounced near the critical layer as is shown
in Fig. 10.

Both amplitudes grow to large values in a close vicin-
ity of the critical layer. However, their contributions to the
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0.5

1.0

1.5

2.0

2.5

3.0

|F |3
+

|F |3
–

zz0
~

FIG. 10. Spatial variation of the co- and counterpropagating
TE(n = 3)-eigenmode amplitudes |F+

3 (z)| (solid curve) and |F−
3 (z)|

(dashed curve) due to linear mode coupling in the course of propa-
gation through a layer of total internal reflection in the trapezoidal
grating of Sec. VIII A (Figs. 1, 7–9). An incoming-mode amplitude
equals unity, F+

3 (z = 0) = 1. The unit of length is λ1/(2π ).
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FIG. 11. A profile of the amplitude of the electric field |F3(z)|
that has emerged due to TE(n = 3)-eigenmode reflection in the
inhomogeneous (trapezoidal) grating of Sec. VIII A. It corresponds,
via Eqs. (73) and (76), to the linear mode coupling shown in Fig. 10.
The unit of length is λ1/(2π ).

amplitude of the combined field in Eq. (76) mostly cancel,
which results in a smooth profile of the total field shown
in Fig. 11. Actually, the co- and counterpropagating mode
amplitudes remain finite everywhere due to a presence of
a finite, relatively small absorption, Im(ε1,2) �= 0, which is
taken into account via formulas derived in Appendix A.
Immediately behind the critical layer, the amplitude of the
counterpropagating, reflected mode drops to zero in a steep
manner while the copropagating, transmitted mode amplitude
returns to the unity value. This pattern corresponds to an
exponential attenuation of the combined field of the two, co-
and counterpropagating modes at z > z̃0 due to a presence
of the geometrical optics factor exp[− ∫ z

0 Im(k̃z3)dz]. The
latter suppresses the field transmitted by the eigenmode which
acquires an evanescent wave number Im(k̃z3) > 0 at z > z̃0.
At the entrance to the trapezoidal grating layer, z = 0, the
amplitude of the reflected, counterpropagating mode is almost
equal to the unity amplitude of the incident mode since we
consider a relatively thick transition layer capable of a nearly
total reflection.

The resulting profile of the amplitude of the electric field
[given by Eqs. (73) and (76)] that emerges in the inho-
mogeneous grating is shown in Fig. 11. It demonstrates a
typical, nearly threefold amplification of the electric field
relatively close to, but notably in front of, the critical layer
of a total internal reflection. Obviously, the effect of linear
mode coupling in the inhomogeneous gratings is significantly
complicated by a nontrivial dependence of the eigenmode
profile fn and z wave vector kzn on the varying parameters
of the inhomogeneous grating.

At the same time, the linear mode coupling described
above for the case of a single-eigenmode reflection in the
inhomogeneous grating is similar to the one taking place
in the classical one-dimensional problem of a plane wave
propagating and reflecting along the z axis within a dielectric
medium which is homogeneous and unbounded in the x-y
plane, but inhomogeneous along the z axis, and which permit-
tivity is linearly decreasing from positive to negative values,
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FIG. 12. A profile of the amplitude of the electric field |Fn(z)|
that has emerged due to plane-wave reflection in the unbounded
dielectric medium whose permittivity is inhomogeneous only along
the z axis, ε(z) = ε′(z̃0)(z̃0 − z). The slope of the plane-wave wave
number squared, ε(z)ω2/c2, is the same as the slope of the eigenmode
wave number squared, k̃2

z3, in Figs. 10 and 11 for the trapezoidal
grating of Sec. VIII A at z = z̃0. An incoming-mode amplitude equals
unity, F+

n (z = −16) = 1. The unit of length is λ1/(2π ).

ε(z) = ε′(z̃0)(z̃0 − z), crossing zero value at the critical layer
z̃0 of a total internal reflection. The latter, classical problem
can be solved by means of the same equations of linear mode
coupling (73)–(77) if one sets fn(x, z) ≡ 1,�n(z) ≡ 1, k1 =
k2 = 0, ε1 = ε2 = ε(z), and k̃2

zn = εω2/c2, i.e., considers a
plane wave in a homogeneous medium instead of a nontrivial
eigenmode in a lamellar grading. The corresponding solution
for the absolute value of the total electric field is shown in
Fig. 12. We skip the graph for the amplitudes of the co- and
counterpropagating plane waves since it is almost the same as
the one shown in Fig. 10. The similarity of these plane-wave
graphs to the graphs in Figs. 10 and 11 for the eigenmode
reflection in an inhomogeneous grating is remarkable.

In particular, this means that the spatial profile of the co-
and counterpropagating mode amplitudes in the vicinity of the
critical layer of a total internal reflection in an inhomogeneous
grating can be described analytically in a universal form via
the Airy functions. The Airy functions constitute a well-
known solution to the Helmholtz equation (7) for the plane-
wave reflection in an unbounded medium. Note also that in
Fig. 12 we extended the considered layer of the dielectric
medium to a wider interval of z coordinate, z ∈ [−16, 16],
as compared to the trapezoidal grating’s interval z ∈ [0, 16]
depicted in Figs. 10, 11, in order to demonstrate a formation
of a standing wave in front of the total internal reflection layer
z̃0 = 6.94 due to an interference of the incident and reflected
waves whose amplitudes are almost equal at z < 0. Yet, we
employed the same boundary conditions at the layer’s borders,
namely, F+

n (z = −16) = 1, F−
n (z = 16) = 0.

The effect of the linear mode coupling in the grating
transition layer of a finite thickness L (see Fig. 1) can also
be presented in terms of (a) the amplitude F−

3 (z = 0) of
the reflected, counterpropagating mode exiting the grating
at the bottom border z = 0 in the −z direction which is
related to the internal reflectance coefficient R(L) = F−

3
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FIG. 13. Absolute values of the internal transmittance and re-
flectance coefficients, |T | (solid curve) and |R| (dashed curve),
which give the amplitudes of the co- and counterpropagating modes,
F+

3 (z = L) and F−
3 (z = 0), respectively, as functions of thickness L

of the trapezoidal grating transition layer of Sec. VIII A (Fig. 1) with
a fixed gradient of the groove width d2(z) = 4.8 + 3.6z/16. The unit
of length is λ1/(2π ).

(z = 0)/F+
3 (z = 0) and (b) the amplitude F+

3 (z = L) of the
transmitted, copropagating mode exiting the grating at the top
border z = L in the +z direction which is related to the inter-
nal transmittance coefficient T (L) = F+

3 (z = L)/F+
3 (z = 0).

The dependence of these reflectance and transmittance coeffi-
cients on the thickness L of the trapezoidal grating layer with a
fixed gradient of the groove width d2(z) = 4.8 + 3.6z/16, but
with the groove width at the top of the grating transition layer,
d2(L) = 4.8 + 3.6L/16, depending on the layer thickness L,
is shown in Fig. 13. With an increasing thickness L, the
reflectance accumulated in the grating transition layer is grow-
ing and reaches the maximum value |R| = 1 when the layer
of total internal reflection z = z̃0 = 6.94 appears inside the
grating transition layer. At the same time, the transmittance
drops from the maximum value |T | = 1 to zero at the grating
transition layer thickness close to the position of the total
internal reflection layer, L ≈ z̃0 = 6.94, and then returns to its
new maximum value when the layer of total internal reflection
enters deeper inside the grating.

Note that the transmittance coefficient shown in Fig. 13
is defined in terms of the amplitude of the copropagating
mode F+

3 (L). Of course, the value of the actual field pen-
etrating to the top of the grating transition layer, which is
given by Eqs. (73) and (76) at z = L and plotted in Fig. 14,
does not drop to zero at L = z̃0, but becomes exponentially
attenuated at L > z̃0 in virtue of the geometrical optics factor
exp[− ∫ L

z̃0
Im(k̃z3)dz] accumulated on a path z ∈ [z̃0, L] where

the eigenmode is evanescent. The field at the top of the
trapezoidal grating layer achieves a sharp, finite maximum
when the layer thickness is such that the layer of total internal
reflection is located near the top of the trapezoidal grating,
L ≈ z̃0.

B. Mutual transformation of two eigenmodes traversing
a region of their degeneracy and reflection

The second scenario takes place when two eigenmodes
of neighboring orders n, n + 1 and of an x wave vector kx
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FIG. 14. The amplitude, |F3(z = L)|, of the field penetrated to
the top of the trapezoidal grating transition layer (Fig. 1) with a fixed
gradient of the groove width d2(z) = 4.8 + 3.6z/16 as a function
of the layer thickness L. The amplitude of the mode which is entering
the layer at its bottom in the +z direction is unity, F+

3 (z = 0) = 1.
The unit of length is λ1

2π
.

near zero or ±π/λg have very close z wave vectors squared,
separated only by a relatively narrow band gap, and enter a
transition layer of total internal reflection. Thus, their z wave
vectors squared change their signs almost simultaneously and
the two eigenmodes experience a substantial mutual transfor-
mation into each other and reflection in the layer where both
of them are converting from propagating to evanescent or vice
versa. We are interested in the mode coupling at the transition
layer, so we just compute the transmittance and reflectance
coefficients (89) of the transition layer by solving Eqs. (87)
for the appropriate boundary conditions explained in Sec. VII
and skip a discussion of reflection and mode coupling at the
layer’s boundaries.

As a typical example, we consider two TE eigenmodes
of the band types n = 2, 3 and x wave number kx = 0 (see
Fig. 15) propagating through the trapezoidal transition layer
of a grating made out of GaAs similar to the one discussed in
Sec. VIII A (Fig. 1). However, we change some parameters of
the trapezoidal grating. Namely, now the constant grating pe-
riod is λg = 2.5λ1, the groove width d2(z) is linearly increas-
ing from d2(z = 0) = 9.3λ1/(2π ) to d2(z = L) = 14λ1/(2π )
from the transition layer entrance to its exit, and the thickness
of the transition layer is two times shorter, L = 8λ1/(2π ),
which makes the effect of the linear mode coupling more
pronounced but keeps the inhomogeneity relatively weak. In
this case the two selected eigenmodes n = 2, 3 are strongly
coupled between themselves, but are decoupled from the
eigenmodes of all other band types n �= 2, 3. This decou-
pling is justified by a fulfillment of the condition (72) of
a large detuning between the eigenmodes. For instance, the
eigenmode n = 1 acquires a relative change of its z wave
vector �kz1/kz1 ∼ 1/3 at a transition layer thickness L that
amounts to an inhomogeneity scale  ∼ 3L. Its detuning
from the eigenmodes n = 2, 3 is |kz1 − kz2,3| ∼ 0.4k(0)

1 , so the
beating phase shift |kz1 − kz2,3| ∼ 10 accumulated over the
inhomogeneity scale  is larger than 2π .
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FIG. 15. Dependence of the z wave vectors squared, k2
znc2

ω2ε1
, of the

TE eigenmodes on the groove width d2 increasing from d2(z = 0) =
9.3 to d2(z = L) = 14 along the z axis: the case of the trapezoidal
grating of Sec. VIII B (Fig. 1), kx = 0. The unit of length is λ1/(2π ).

We again set λ1/(2π ) to be the unit of length, which
implies the following values of the grating parameters: k(0)

1 =
1, λ1 = 2π, λg = 5π, L = 8, d2(z) = 9.3 + 4.7z/L.

The dependence of the eigenmode z wave vectors squared
on the groove thickness d2 varying along the inhomoge-
neous grating is shown in Fig. 15 for the first five lower-
band eigenmodes living in this trapezoidal grating. They
correspond to the first five solutions to the dispersion equa-
tion (14). Of course, one has to look only at the range of
groove thicknesses, 9.3 < d2 < 14, which are actually present
in the grating. The eigenmode n = 2 has the propagation
constant which converts from the real values kz2 = Re(kz2)
at the groove widths d2(z) < d2(z0) to the pure imaginary
values kz2 = iIm(kz2) at the groove widths d2(z) > d2(z0) as
is shown in Fig. 16. The critical groove width d2(z0) ≈ 12.72
is achieved in the cross section of the (n = 2)-mode total inter-
nal reflection located at a level z0 ≈ 5.83 where kz2(z0) = 0.
This conversion means a transition of the eigenmode n = 2
from the propagating regime to the evanescent regime. The
propagation constant of the eigenmode n = 3 is real-valued,
kz3 = Re(kz3), throughout the entire transition layer.

Due to the grating inhomogeneity and Eqs. (75) and (91),
the propagation constants k̃zn entering Eqs. (87) for the am-
plitudes of the coupled co- and counterpropagating modes
are renormalized, i.e., differ from the bare ones kzn. This
amounts to a shift and deformation of the z profile of the
propagation constants, namely, from the dashed-curve profiles
to the solid-curve profiles in Fig. 16. In particular, the layer of
total internal reflection for the n = 2 eigenmode shifts from
z0 = 5.83 to a new position z̃0 ≈ 5.2 set by the condition
k̃z2(z̃0) = 0.

In the subsequent calculations, we again employ the eigen-
functions f̄n with the canonical normalization, || f̄n|| = 1, as is
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FIG. 16. The bare, ckz2/(ω
√

ε1) and ckz3/(ω
√

ε1) (dashed
curves), and renormalized, ck̃z2/(ω

√
ε1) and ck̃z3/(ω

√
ε1) [Eq. (75);

solid curves], propagation constants of the TE eigenmodes n = 2, 3
represented (i) by the real and imaginary parts of the eigenmode z
wave number below (z < z0 or z < z̃0) and above (z > z0 or z > z̃0)
the related bare [kz2(z0) = 0] or renormalized [k̃z2(z̃0) = 0] layers of
total internal reflection, respectively, for the eigenmode n = 2, and
(ii) by the real-valued z wave number for the eigenmode n = 3 as
a function of the coordinate z along the z axis for the case of the
trapezoidal grating of Sec. VIII B (Fig. 1). The unit of length is
λ1/(2π ).

defined in Eq. (95). Importantly, the spatial profiles of these
eigenfunctions for the TE eigenmodes n = 2 and n = 3 are
different from each other even at the critical level zd ≈ 5.5
where their propagation constants become degenerate, that is,
kz2(zd ) = kz3(zd ). The latter point corresponds to an intersec-
tion of the dispersion curves n = 2 and n = 3 in Fig. 15 at
the groove width d2(zd ) ≈ 12.53. Qualitatively, the profiles of
the eigenfunctions f̄2 and f̄3 look similar to the one shown in
Fig. 9, and we skip their plots here.

The phenomenon of a cross-band transformation between
the amplitudes of the modes copropagating in the +z direc-
tion, F+

2 and F+
3 , and, simultaneously, between the amplitudes

of the modes copropagating in the −z direction, F−
2 and F−

3 ,
takes place in the region of degeneracy around the degeneracy
level z̃d ≈ 4.9, where the eigenmode propagation constants,
renormalized by an inhomogeneity, approach each other and
coincide, k̃z2(z̃d ) = k̃z3(z̃d ). (The renormalized degeneracy
level z̃d ≈ 4.9 is shifted from its bare position zd ≈ 5.5; see
Fig. 16.) The reason for this cross-band transformation is
an increased wavelength of beating between the eigenmodes
which, in the region of degeneracy, becomes larger than the
inhomogeneity scale. This leads to a violation of the condition
(72), required for the applicability of the geometrical optics
approximation. In the present case, when both eigenmodes
are close to their critical layers of total internal reflection, this
phenomenon is superposed on the phenomenon of linear mode
coupling between the co- and counterpropagating modes
within each eigenmode band, i.e., between the amplitudes F+

2
and F−

2 as well as between the amplitudes F+
3 and F−

3 , which
corresponds to the reflection discussed in Sec. VIII A. Thus,
all four mode amplitudes, F±

2 and F±
3 , become coupled within

the system of four differential equations (87) and transform
into each other in the course of propagation.
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FIG. 17. Mutual transformation between all co- and counter-
propagating mode amplitudes of the TE eigenmodes n = 2, 3 due
to the linear mode coupling in the course of propagation through the
trapezoidal grating layer of Sec. VIII B (Figs. 1 and 15): |F+

2,3(z)|
(solid curves), |F−

2,3(z)| (dashed curves). Only one mode n = 2, and
only from one side (z = 0), is entering the grating: F+

2 (z = 0) =
1, F+

3 (z = 0) = 0, F−
2,3(z = L) = 0. The unit of length is λ1/(2π ).

This phenomenon is illustrated in Figs. 17 and 18 for the
case when only the eigenmode n = 2 enters the trapezoidal
grating layer at z = 0, namely, for the boundary condition
F+

2 (z = 0) = 1, F+
3 (z = 0) = 0.

Figure 17 shows the spatial profiles of the co- and counter-
propagating mode amplitudes for both eigenmodes. It reveals
two major effects. First, the incoming mode of the amplitude
F+

2 (z = 0) = 1 generates the reflected, counterpropagating
mode, F−

2 , in the vicinity of its total-internal-reflection layer
z̃0 ≈ 5.2 in a pattern very similar to the one discussed in
Sec. VIII A, Fig. 10. However, now the amplitude of the
reflected mode, F−

2 (z = 0) ≈ 0.8, is less than the incom-
ing mode amplitude F+

2 (z = 0) = 1. This means that the
reflection within the same eigenmode band, n = 2, becomes
only partial; i.e., the related reflectance coefficient defined
in Eqs. (89) and (90) is substantially less than unity, |R2

2| ≈

0 2 4 6 8
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2.5 |F |2

|F |3

zz0
~

FIG. 18. The profiles of the total amplitude of the electric field,
Eqs. (76) and (85), in each of the two TE eigenmodes n = 2 and n =
3, |F2(z)| (solid curve) and |F3(z)| (dashed curve), corresponding to
the linear mode coupling in the inhomogeneous (trapezoidal) grating
of Sec. VIII B shown in Fig. 17. The unit of length is λ1/(2π ).
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0.8 < 1, due to the cross-band mode transformation from the
band n = 2 into the other band n = 3. Second, the incoming
eigenmode of the band n = 2, F+

2 (z = 0) = 1, generates the
copropagating mode of the other band n = 3 whose amplitude
achieves a value on the order of unity, |F+

3 | ∼ 1, already in
the second quarter of the trapezoidal grating and remains such
throughout the rest of the grating. This results in a large cross-
band transmittance coefficient |T 2

3 | ∼ 1 [see Eqs. (89) and
(90)]. Moreover, its counterpropagating counterpart, F−

3 , also
accumulates a significant amount of reflection growing from
the zero value, F−

3 (z = L) = 0, at the top of the trapezoidal
grating layer z = L toward a relatively large value |F−

3 (z =
0)| ≈ 0.6 at the bottom. Thus, the cross-band reflectance is
also well pronounced: |R2

3| ≈ 0.6.
Figure 18 shows the corresponding spatial profiles of the

total amplitude of the electric field in each of the two eigen-
modes, |F2(z)| and |F3(z)|, defined in Eqs. (76) and (85). The
field profile of the eigenmode n = 2 is reminiscent of the one
emerging due to reflection from the layer of total internal
reflection (see Fig. 11 and its discussion in Sec. VIII A).
However, in the present case the field amplification in front
of the layer of total internal reflection is significantly less
pronounced (only about 2.5 instead of 3.5) since, as is stated
above, the same-band reflection is only partial, not complete.
Besides, an exponential attenuation of the eigenmode ampli-
tude |F2(z)| is also less pronounced since the geometrical op-
tics factor exp[− ∫ z

0 Im(k̃z2)dz] remains on the order of unity
everywhere behind the total-internal-reflection layer at z̃0 <

z < L due to relatively small values of the evanescent wave
number Im(k̃z2) > 0 (see Fig. 16). The field of the other eigen-
mode, n = 3, acquires an amplitude of the same order of mag-
nitude, |F3| ∼ 2, due to a strong cross-band transformation. Its
profile is almost constant, with only a slight increase toward
the top exit from the trapezoidal grating, since a level of the
total-internal-reflection layer for the eigenmode n = 3 corre-
sponds to the groove width d2 ≈ 15 which is beyond the range
of groove widths in the actual grating layer, 9.3 < d2 < 14
(see Fig. 15). Besides, the standing-wave structure (like in
Fig. 12) of the eigenmode n = 3 cannot be seen on a scale
of the trapezoidal grating layer since, according to Fig. 16,
the eigenmode z wave number is so small, k̃z3 ≈ 0.1, that
the corresponding wavelength is much larger than the grating
layer thickness, 2π/k̃z3 ≈ 20π � L = 8.

The result of the mutual mode transformation is signifi-
cantly different in the case when only eigenmode n = 3 enters
the trapezoidal grating layer at z = 0, i.e., for the bound-
ary condition F+

3 (z = 0) = 1, F+
2 (z = 0) = 0. It is shown in

Fig. 19 and should be compared against the one in Figs. 17
and 18 discussed above.

In this case, the amplitude of the incoming mode remains
close to unity everywhere inside the grating layer, |F+

3 | ∼ 1.
It is only weakly coupled to the counterpropagating mode
F−

3 since the eigenmode propagation constant k̃3 shown in
Fig. 16 varies only a little, and hence, slowly across the
grating layer, so that the resulting reflection is small, |F−

3 (z =
0)| ≈ 0.42. The cross-band transformation of F+

3 into the
copropagating mode of the other band, n = 2, does take place,
but it is not very strong. The amplitude of this mode at
the top exit from the grating layer only achieves a small
value |F+

2 (z = L)| ∼ 0.2; i.e., the cross-band transmittance
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FIG. 19. Mutual transformation between all co- and counter-
propagating mode amplitudes of the TE eigenmodes n = 2, 3 due
to the linear mode coupling in the course of propagation through the
trapezoidal grating layer of Sec. VIII B (Figs. 1 and 15): |F+

2,3(z)|
(solid curves), |F−

2,3(z)| (dashed curves). Only one mode n = 3, and
only from one side (z = 0), is entering the grating: F+

3 (z = 0) =
1, F+

2 (z = 0) = 0, F−
2,3(z = L) = 0. The unit of length is λ1/(2π ).

coefficient defined in Eqs. (89) and (90) is small, |T 2
3 | ∼ 0.2.

In the vicinity of its total-internal-reflection layer z̃0 ≈ 5.2,
this mode also generates the counterpropagating mode which
reaches the amplitude |F−

2 (z = 0)| ≈ 0.36 at the bottom exit
from the trapezoidal grating layer. Thus, there is a significant
cross-band reflectance, |R3

2| ≈ 0.36. The corresponding spa-
tial profiles of the total amplitude of electric field in each of
the two eigenmodes, |F2(z)| and |F3(z)|, are similar to that
shown in Fig. 18, and we skip their plots here. The main
difference now is that the amplitude of the eigenmode n = 2
is an order of magnitude smaller than the amplitude of the
eigenmode n = 3.

It is instructive to analyze the integral transmittance
and reflectance of the grating transition layer as func-
tions of the thickness L of the trapezoidal grating tran-
sition layer (Fig. 1) given by Eqs. (89) and (90). The
corresponding intra- and cross-band internal transmittance
and reflectance coefficients, |T 2

n | and |R2
n| for n = 2 and

3, respectively, are shown in Fig. 20 for the case of the
trapezoidal grating transition layer of Sec. VIII B (Fig. 1)
with a fixed gradient of the groove width d2(z) = 9.3 +
4.7z/8. They describe the particular boundary conditions
when only one mode m = 2, from only one side (z = 0), is en-
tering the grating: F+

2 (z = 0) = 1, F+
3 (z = 0) = 0, F−

2,3(z =
L) = 0. The intraband transmittance |T 2

2 (L)| behaves sim-
ilarly to the case of a single reflecting eigenmode dis-
cussed in Sec. VIII A, Fig. 13. However, the intraband re-
flectance is noticeably suppressed, compared to Fig. 13,
and only grows to a value |R2

2| ≈ 0.8 even when the total-
internal-reflection layer, z̃0 = 5.2, of the eigenmode n = 2
appears inside the grating transition layer. This occurs due to a
significant cross-band transformation of the eigenmode n = 2
into the other eigenmode n = 3. The latter phenomenon also
results in an appearance of the cross-band transmittance, T 2

3 ,
and reflectance, R2

3, both of which grow with an increasing
thickness of the grating layer, reach a maximum value when
the total-internal-reflection layer of the eigenmode n = 2
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FIG. 20. The absolute values of the internal transmittance and
reflectance coefficients, |T 2

n | (solid curve) and |R2
n| (dashed curve),

which are defined in Eqs. (89) and (90) and give the amplitudes of the
co- and counterpropagating modes, F+

n (z = L) and F−
n (z = 0), n =

2, 3, respectively, as the functions of thickness L of the trapezoidal
grating transition layer of Sec. VIII B (Fig. 1) with a fixed gradient
of the groove width d2(z) = 9.3 + 4.7z/8. They describe the integral
transmittance and reflectance of the grating transition layer if only
one mode m = 2, and only from one side (z = 0), is entering the
grating: F+

2 (z = 0) = 1, F+
3 (z = 0) = 0, F−

2,3(z = L) = 0. The unit
of length is λ1/(2π ).

enters the grating transition layer, and remain substantial
(∼0.6) even at a larger grating-layer thickness, L > z̃0 = 5.2.

IX. AN OVERALL OPTICAL RESPONSE AND MULTIPLE
MODE COUPLING IN THE NONLAMELLAR GRATINGS

Remarkably, by taking all of the propagating low-band
eigenmodes n = 1, . . . , n0 and a sufficient number of the
least-evanescent eigenmodes n = n0 + 1, . . . , n∗ into consid-
eration we can obtain a very accurate description of an overall
optical response, that is, the transmission and reflection of an
incident wave, for any inhomogeneous, nonlamellar grating,
even if a grating inhomogeneity does not satisfy the conditions
of weakness in Eqs. (69) and (72). It is sufficient to simply
combine the effects of the mode coupling and reflection at the
sharp boundaries and in the transition layer of the nonlamellar
grating described in Sec. IV and Sec. VII, respectively.

Yet, the number Q of eigenmodes n1, . . . , nQ to be included
in Eqs. (87) for an accurate description of the transition layer
in practice remains quite small if the grating is relatively
thick. For instance, we calculated accurately the mode trans-
formation for the trapezoidal grating transition layer (Fig. 1)
for the cases discussed in Sec. VIII by taking into account
the first five eigenmodes in Eqs. (87). The results prove
that the approximation of a single reflecting eigenmode or
two coupled, close to degeneracy, eigenmodes employed in
Sec. VIII correctly describe the main features of linear mode
coupling in the inhomogeneous gratings. Of course, the mode
coupling at the sharp boundaries of the grating could excite
many other eigenmodes, outside of the subset n = n1, . . . , nQ.
However, after penetrating inside the transition layer, they stay
decoupled and just follow their geometrical optics approxi-
mation. So, their contribution to the grating’s optical response
can be easily taking into account via the standard coefficients

of transmittance and reflectance discussed in Sec. IV. Also,
Eqs. (87) are convenient for numerical calculations since the
accuracy of the approximation can be estimated by simply
comparing the results for Q = n∗ and, say, Q = n∗ + 1 or
n∗ + 2 eigenmodes.

Clearly, the approach of mode coupling is complementary
to the standard perturbation theory within the usual Fourier-
Rayleigh expansion method [4–6], which is great for the
opposite, well-known case of a very thin grating.

It is straightforward to extend the mode-coupling approach
illustrated in the present paper to the nonlamellar gratings
characterized by different, e.g., parabolic, profiles of the
groove width and other grating parameters along a transition
layer. However, for the sake of space, we skip the discussion
of these simulations.

Finally, we present the explicit general formulas for the
overall optical response of a nonlamellar grating to an incident
wave. Let us consider a generic setup similar to that of
Sec. IV, that is, a finite grating layer z ∈ [0, L] of a width
L along the vertical axis z sandwiched between the homo-
geneous substrate (z < 0) and cover (z > L) media with the
permittivities ε1 and ε2, respectively. However, now we deal
with a transition layer of an inhomogeneous grating, not a
lamellar grating. Suppose a superposition of the plane-wave
harmonics, such as in Eqs. (43) and (61), with the amplitudes
gp(z) = g+

p (0)eik(1)
zp z is incident onto this nonlamellar grating

at its bottom boundary z = 0 in the +z direction from the
substrate. The top boundary z = L is subject to the radiation
boundary conditions. The optical response of the grating, that
is, the amplitudes g+

p (z) = g+
p eik(2)

zp z of the plane-wave harmon-
ics emitted from the top grating boundary z = L into the cover
in the +z direction and the amplitudes g−

p (z) = g−
p e−ik(1)

zp z of
the plane-wave harmonics emitted from the bottom grating
boundary z = 0 back into the substrate in the −z direction,
can be found as follows:

g+ = T +(L)F+(L), g− = R+(0)g+(0) + T −(0)F−(0).
(96)

Here g+ = {g+
p }T , g− = {g−

p }T , g+(0) = {g+
p (0)}T are the col-

umn vectors of the amplitudes of the corresponding plane-
wave harmonics. The column vectors F+(L) = {F+

n (L)}T and
F−(0) = {F−

n (0)}T stand for the amplitudes of the eigen-
modes incident from inside the grating onto its top boundary
z = L in the +z direction and bottom boundary z = 0 in the
−z direction, respectively. The matrix T +(L) is the matrix T n

p ,
Eq. (53), or T̃ n

p , Eq. (59), of transmittance of the eigenmodes
into the plane-wave harmonics for the case of the TE or TM
eigenmodes outcoming in the +z direction from the grating
at its top boundary z = L. It was calculated analytically in
Sec. IV. The matrix T −(0) is a similar transmittance matrix
for the case of the TE or TM eigenmodes outcoming in the
−z direction from the grating at its bottom boundary z = 0.
The matrix R+(0) is the matrix Rp′

p , Eq. (66), or R̃p′
p , Eq. (67),

of reflectance of the plane-wave harmonics for the case of
the TE or TM wave incoming in the +z direction from the
substrate into the grating at its bottom boundary z = 0. It was
also calculated analytically in Sec. IV.

The amplitudes F±(0) or F±(L) of the eigenmodes prop-
agating inside the nonlamellar grating in the ±z direction
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in the vicinity of the bottom, z = +0, or top, z = L − 0,
boundaries of the grating, respectively, can be found from the
four boundary conditions for these amplitudes at z = 0 and
z = L written via the matrices of transmittance and reflectance
by (i) the entire transition layer, T ± and R±, and (ii) the
boundaries, T +(0), R−(0), R+(L), as follows:

F+(0) = R−(0)F−(0) + T +(0)g+(0),

F−(0) = R+F+(0) + T −F−(L),

F+(L) = R−F−(L) + T +F+(0),

F−(L) = R+(L)F+(L). (97)

Here the matrices T + and R+ are the matrices T m
n and Rm

n of
the integral transmittance and reflectance of the eigenmodes
propagating in the +z direction through the entire transition
layer as defined by Eqs. (90). They are calculated in a general
form in Sec. VII, Eq. (89), and differ from the trivial unit,
T = 1, and zero, R = 0, matrices due to the distributed mode
coupling in the transition layer as is illustrated in Sec. VIII.
The similar matrices T − and R− describe the integral trans-
mittance and reflectance of the eigenmodes propagating in the
−z direction. The matrix R−(0) or R+(L) gives the reflectance
coefficient Rm

n equal to a relative amplitude of the n eigenmode
generated due to reflection from the bottom, z = 0, or top,
z = L, grating boundary by the m eigenmode incident in
the −z or +z direction onto the boundary, respectively. The
matrix T +(0) gives the transmittance coefficient T p

n equal to
a relative amplitude of the n eigenmode propagating in the
+z direction which is generated at z = +0 inside the grating
by the plane-wave p harmonic incident from the substrate
in the +z direction onto the bottom grating boundary z = 0.
These matrices of transmittance and reflectance at the sharp
boundaries of the grating T +(0), R−(0), R+(L) are similar
to the matrices T +(L), T −(0), R+(0) entering Eq. (96) and
known from Sec. IV. (They should not be confused with the
integral transmittance and reflectance matrices T ±, R±, which
are not marked by the coordinates of boundaries z = 0 or
z = L, but refer to the entire transition layer.)

The derivation of Eqs. (97) immediately follows from the
meaning of their terms and the fact that the boundary condi-
tions of continuity of the tangential components of the electric
and magnetic fields are equivalent to the relation between the
amplitudes of the incident, transmitted, and reflected modes
via the transmittance and reflectance coefficients found in
Sec. IV.

A straightforward solution of the linear algebraic equa-
tions (97) yields the explicit formulas for the amplitudes of
all eigenmodes propagating in the ±z direction in an inner
vicinity of the nonlamellar grating boundaries:

F+(0) = [1 − R−(0)(R+ + T −M )]−1T +(0)g+(0),

F−(0) = (R+ + T −M )F+(0),

F+(L) = (T + + R−M )F+(0),

F−(L) = MF+(0); M = [1 − R+(L)R−]−1R+(L)T +. (98)

By plugging F−(0) and F+(L) into Eqs. (96), we get an
ultimate result for the overall optical response of the non-
lamellar grating. It has a transparent form and requires only

algebraic operations, namely, the multiplication and inversion
of the matrices composed of the transmittance and reflectance
matrices of the mode coupling both at the sharp boundaries
and in the volume of the transition layer. It does not even
require any additional integration of the differential equations
for the wave propagation in the inhomogeneous transition
layer since it already has been fully incorporated into the
integral transmittance and reflectance matrices of the entire
transition layer T ± and R± [see Eq. (90)] via the matriciant of
the mode-coupling equations (87) in Sec. VII.

Clearly, in a general case, the effect of the distributed
mode coupling in the volume of the transition layer of the
nonlamellar grating, which manifests itself via the nontrivial
integral transmittance and reflectance matrices T ± �= 1 and
R± �= 0, is as important for the overall optical response of the
grating as the usual mode coupling at the sharp boundaries of
the grating. In the absence of the distributed mode coupling,
when T ± = 1 and R± = 0, the solution for the eigenmode
amplitudes in Eq. (98) and, hence, for the overall optical
response of the grating in Eq. (96), reduces to a simple form,

F+(0) = F+(L) = [1 − R−(0)R+(L)]−1T +(0)g+(0),

F−(0) = F−(L) = R+(L)F+(0), (99)

that is valid for the homogeneous, lamellar grating.

X. CONCLUSIONS

We presented the explicit analytic solution and a clear
physical picture for the structure, propagation, and diffraction
of the TE and TM eigenmodes in a lamellar grating, including
their geometrical optics and nonadiabatic transformation in
the inhomogeneous gratings as well as their reflection and
transmission at a grating boundary. In particular, we empha-
size the following.

The results are given in a symmetric form that reveals
a symmetry of eigenmode structure and includes explicit
formulas for the norm of the eigenmode x profile and its
derivative, matrices of transformation between the eigenmode
and Fourier bases, and the diffraction conversion between the
spatial Fourier harmonics of the field due to their propagation
through the grating.

We generalized the classical formulas of the reflection and
transmission of a plane wave incident onto a plane border
between two media to the case of gratings. Namely, we
found the reflectance and transmittance coefficients of the
eigenmodes and spatial Fourier harmonics at a grating border
in the canonical form involving the wave vectors orthogonal to
the border, but now these wave vectors are the wave vectors of
the eigenmodes and Fourier harmonics. A significant feature
of these formulas is that the wave vectors should be multiplied
by the appropriate matrices of transformation between the
eigenmode and Fourier bases.

We derived the equations for the nonadiabatic mode trans-
formation in the weakly inhomogeneous, nonlamellar gratings
and provided the explicit formulas for all coefficients entering
these equations. They set the stage for an application of
the theory of linear mode coupling [24] to various systems
involving optical gratings.
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Finally, we derived the system of equations (87) for the
amplitudes F±

n of the co- and counterpropagating modes that
takes into account exactly the simultaneous mutual transfor-
mation and reflection of the eigenmodes within a given subset
of eigenmodes and does not assume a weakness of inhomo-
geneity. Such a truncation of the functional space of the field
x profiles provides an efficient method for the analysis of the
wave propagation and diffraction in the inhomogeneous, non-
lamellar gratings and is convenient for numerical simulations.

A remarkable practical observation regarding the wave
propagation and diffraction in all of the weakly inhomoge-
neous lamellar dielectric gratings we have been dealing with
is that a main contribution to the eigenmode reflection and/or
transformation, in the case of the propagating or weakly
evanescent eigenmodes, comes from the regions surrounding
the layers in which either one eigenmode or two neighboring
(separated by a narrow band gap) eigenmodes experience a
transition through a degeneracy cross section, that is, either
(a) kzn ≈ 0 or (b) kzn ≈ kz(n+1) or even (c) kzn ≈ kz(n+1) ≈
0. Usually there are only these three generic scenarios for
substantial linear mode coupling. We illustrated the predicted
effects of the eigenmode coupling for these scenarios by their
detailed description in the case of a GaAs grating.

Finally, we presented an overall optical response of
a generic nonlamellar grating in the transparent form of
Eqs. (96) and (98). They explicitly incorporate a combina-
tion of the usual mode coupling at the sharp boundaries of
the grating (described in Sec. IV) and a less evident mode
coupling accumulated over a distributed transition layer of a
nonlamellar grating (described in Secs. VI, VII, VIII, and IX).
In a general case, both of these mode-coupling effects are
important and their interplay can significantly contribute to
the real optical response.

The provided formulas constitute a basis for the calculation
of the resonant spectral characteristics and other parameters of
the cavities formed by gratings. They reveal a simple physical
picture and understanding of the generic situations, critical
parameters, and main effects of the eigenmode coupling and
geometrical optics responsible for the ultimate optical prop-
erties of gratings. Such a qualitative, analytic approach is
indispensable for the design of new optical systems involving
gratings since it could prompt a vision of an optimal set of
major parameters of grating without the need to perform a
massive, routine numerical search for those. In particular, a
nontrivial structure of the dispersion curves of the lower-
band eigenmodes in a nonlamellar, inhomogeneous grating,
like the one with the intertwining pairs of the propagation
constants found in Fig. 15 (cf. Fig. 7), and an understanding
of the linear mode coupling effects described above could
immediately point to a specific design and parameters of a
grating which would be optimal for achieving a particular
grating functionality.

The analysis presented in the paper could help to better
understand the physical principles and design of various grat-
ings, to solve the difficult problem of finding the analytic
solutions for the 2D gratings and 3D photonic crystals, to
study the bound states in the continuum in various periodical
lamellar structures (widely discussed in the current literature
[95–104]), and to develop a theory of mode coupling [24]
for the gratings with varying parameters. For comparison,

recall a staircase approximation of various (e.g., sinusoidal
or trapezoidal) grating profiles that has been widely used
and discussed within the eigenmode technique of numerical
simulations of diffraction in the gratings (see, for a review,
chapters 7 and 10 in [4] and references therein). It requires
explicit calculation of the nonadiabadic mode transformation
at the sharp boundaries between a sufficient number of lamel-
lar staircase steps, which depends on the groove profile, and
can be done similarly to Sec. IV. This numerical technique
has yielded perfect results in the case of TE waves but the
results of its application to the case of TM waves have been
somewhat controversial.

However, all of the latter problems, including the theory’s
application to a new, grating-outcoupled surface-emitting
laser (GOSEL) design of the semiconductor diode lasers
generating mid- or far-IR radiation by means of the intracavity
nonlinear mixing [25–36], are beyond the scope of the present
paper. We will address them elsewhere.
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APPENDIX A: BIORTHOGONALITY
OF THE EIGENMODE BASIS FOR
AN ABSORPTIVE PERMITTIVITY

The analysis of the eigenmodes presented above and, in
particular, all explicit analytic formulas for the TE eigen-
modes, Eqs. (4)–(18), and TM eigenmodes, Eqs. (20)–(35),
in a lamellar grating are fully valid for both the lossless
(real-valued) and absorptive (complex-valued) permittivities
εq of the grating layers. In both cases, the set of the eigenmode
x profiles, { fn(x)|n = 1, 2, . . .} for the TE eigenmodes or
{ϕn(x)|n = 1, 2, . . .} for the TM eigenmodes, forms a com-
plete basis for the expansion of the field in the grating as in
Eq. (8) or Eq. (25). The only difference is that in the lossless
case this basis is orthogonal, but in the absorptive case it is
biorthogonal.

The latter complication stems from the fact that the opera-
tors L̂ and L̂M in Eq. (6) or (23) for the TE or TM eigenmodes
determined by the corresponding Helmholtz equations (4)
or (20) lose their self-adjoint (Hermitian) property in the
case of the complex-valued permittivities. It means that the
operators L̂ and L̂M do not coincide anymore with their adjoint
(Hermitian conjugate) operators L̂† and L̂†

M but differ simply
by the complex conjugation of the permittivity ε(x), namely,

L̂† = d2

dx2
+ ε∗ω2

c2
, L̂†

M = ε∗ d

dx

(
d

ε∗dx

)
+ ε∗ω2

c2
. (A1)

Consequently, the eigenvalues of the adjoint operators are
equal to the complex conjugate of the eigenmode propagation
constants squared, (k2

zn)∗, and the eigenfunctions of the adjoint
operators, defined as

L̂† f †
n = (

k2
zn

)∗
f †
n , L̂†

Mϕ†
n = (

k2
zn

)∗
ϕ†

n , (A2)
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are given by the same explicit formulas as those for the
eigenmodes in Eqs. (9) and (10) or (26) and (27) but with the
additional substitute εq → ε∗

q , k2
zn → (k2

zn)∗, that is,

f †
n (x) or ϕ†

n (x) = b+†
q eik†

q (x−d1 ) + b−†
q e−ik†

q (x−d1 ). (A3)

Here k†
q = [ω2ε∗

q/c2 − (k2
zn)∗]1/2 and the amplitudes are

b±†
1 = ±

[(
− k†

2

ε∗s
2

± k†
1

ε∗s
1

)
eik†

2 d2−ikxλg/2 + 2k†
2

ε∗s
2

e±ik†
1 d1+ikxλg/2

−
(

k†
2

ε∗s
2

± k†
1

ε∗s
1

)
e−ik†

2 d2−ikxλg/2

]
,

b±†
2 = ±

[(
k†

1

ε∗s
1

± k†
2

ε∗s
2

)
eik†

1 d1+ikxλg/2 − 2k†
1

ε∗s
1

e∓ik†
2 d2−ikxλg/2

+
(

k†
1

ε∗s
1

∓ k†
2

ε∗s
2

)
e−ik†

1 d1+ikxλg/2

]
(A4)

with s = 0 or 1 for TE or TM eigenmodes, respectively.
This means that the explicit formulas for the complex

conjugate of the adjoint eigenmode, ( f †
n )∗ or (ϕ†

n )∗, are the
same Eqs. (9) and (10) or Eqs. (26) and (27) that describe
the original eigenmode fn or ϕn but with the sign in front of
each imaginary unity explicitly entering these formulas being
changed to the opposite sign, i → −i. Hence, in the lossless
limit, when the permittivities are real-valued quantities, the
adjoint eigenmodes coincide with the original eigenmodes,
f †
n = fn and ϕ†

n = ϕn, and their inner products become the
norm squared given by Eqs. (18) and (35), 〈 f †

n , fn〉 = || fn||2
and 〈ϕ†

n , ϕn〉M = ||ϕn||2M .
In the theory of wave propagation, the adjoint eigenmodes

are known as the transferring modes [24].
The defining property of an adjoint operator,

〈L̂†g, f 〉 = 〈g, L̂ f 〉, (A5)

written for the TE or TM eigenfunctions as follows,

〈L̂† f †
n′ , fn〉 = 〈 f †

n′ , L̂ fn〉, 〈L̂†
Mϕ

†
n′ , ϕn〉 = 〈ϕ†

n′ , L̂Mϕn〉, (A6)

gives (k2
zn′ − k2

zn)〈 f †
n′ , fn〉 = 0, (k2

zn′ − k2
zn)〈ϕ†

n′ , ϕn〉M = 0,
which proves the biorthogonality of the eigenmode basis: The
eigenmodes of the TE operator L̂ (or TM operator L̂M) and
its adjoint operator L̂† (or TM operator L̂†

M) corresponding to
the different band indexes n and n′ are orthogonal and may be
made biorthonormal:

〈 f †
n′ , fn〉

〈 f †
n , fn〉

= δn′,n,
〈ϕ†

n′ , ϕn〉M

〈ϕ†
n , ϕn〉M

= δn′,n. (A7)

In terms of such a biorthogonal basis, one has

L̂ =
∑

n

k2
zn

| fn〉〈 f †
n |

〈 f †
n , fn〉

, L̂M =
∑

n

k2
zn

|ϕn〉MM〈ϕ†
n |

〈ϕ†
n , ϕn〉M

. (A8)

Thus, the only major difference of the absorptive case from
the lossless one is the necessity to use the biorthonormal basis
and Eq. (A7) instead of the orthonormal basis and Eq. (19) or

(37) for the expansion of all field or current x profiles:

F (x) =
∞∑

n=1

〈 f †
n , F 〉

〈 f †
n , fn〉

fn(x), F (x) =
∞∑

n=1

〈ϕ†
n , F 〉M

〈ϕ†
n , ϕn〉M

ϕn(x).

(A9)

The form of the characteristic equation (14) or (31) for the
absorptive grating is exactly the same as that for the lossless
grating. However, its solutions for the TE- or TM-eigenmode
propagation constants squared, k2

zn, are not real-valued
anymore (as they were in Figs. 3 and 4), but acquire the
complex values for the complex-valued permittivities ε1,2.
The methods for the solution of the explicit transcendental
characteristic equation (14) or (31) have been studied in
numerous works since the pioneering work of Kronig and
Penney [88] and are well known. In particular, in the optics of
absorptive lamellar gratings, two efficient numerical methods,
which are different but both systematically find all eigenvalues
in a prescribed region of the complex plane, have been
developed in [105–107]. Modern general-purpose software,
like MATHEMATICA, allows one to find and plot the graphs
of these eigenvalues (such as Figs. 3 and 4) in practically
no time. For most dielectric gratings with relatively small
absorption, like GaAs ones, the complex eigenvalues may be
found analytically by means of the perturbation theory with
the real eigenvalues taken as the zeroth-order approximation.

As expected, it may be shown [11] that all eigenvalues
k2

zn may be found by following their continuous paths in
the complex plane with the increase of the imaginary parts
Imε1,2 of the permittivities, starting from the real eigenvalues
occurring at the zero imaginary parts.

APPENDIX B: DERIVATION OF THE MODE-COUPLING
EQUATIONS (86) AND (87)

We start with the TE-wave case and represent the electric
field Ey inside a grating as a superposition of the eigenmodes
fm(x, z) with amplitudes Fm(z) as per Eq. (85). Then we plug
this ansatz into the homogeneous version of Maxwell equation
(4), i.e., the Helmholtz equation

∂2Ey

∂z2
+ ∂2Ey

∂x2
+ ω2

c2
εEy = 0, (B1)

and employ the TE-eigenmode equation
d2 fm

dx2
+ ε

ω2

c2
fm = k2

zm fm (B2)

from Sec. II A as well as an explicit formula for a derivative
of the geometrical optics factor (71) from Sec. V, d�m/dz =
−ψmm�m, in the following derivatives:

∂

∂z
�m fm = −ψmm�m fm + �m

∂ fm

∂z
,

∂2

∂z2
�m fm = �m

[
ψ2

mm − dψmm

dz
− 2ψmm

∂

∂z
+ ∂2

∂z2

]
fm. (B3)

In this way, the Maxwell equation (B1) acquires the form∑
m

�m

{
fm

[
d2Fm

dz2
+ κ2

zmFm

]
+ 2

dFm

dz

[
∂ fm

∂z
− ψmm fm

]

+ Fm

[
∂2 fm

∂z2
− 2ψmm

∂ fm

∂z

]}
= 0, (B4)

where κ2
zm = k2

zm + ψ2
mm − dψmm

dz .
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Next, we project Eq. (B4) onto each n-eigenmode x pro-
file by calculating a scalar product 〈 f †

n , . . .〉 and using the
biorthogonality of the eigenfunction basis, Eq. (A7). This path
immediately leads us to the system of coupled second-order
differential equations (86).

Now we rewrite Eq. (86) in terms of the amplitudes (76) of
the counterpropagating eigenmodes F±

n and their first deriva-
tives. In order to accomplish this goal, we first calculate the
second derivative of the amplitude Fn by taking a derivative of
the second equation in Eqs. (76),

d2Fn

dz2
= k̃′

zn

2k̃zn

dFn

dz
− k̃2

znFn + ik̃1/2
zn

[
eiφ̃n

dF+
n

dz
− e−iφ̃n

dF−
n

dz

]
,

(B5)

where k̃′
zn = dk̃zn/dz, plug Fn and dFn

dz from Eqs. (76) into its

right-hand side, and then plug the result for d2Fn
dz2 into Eq. (86).

The result is the following equation:

eiφ̃n
dF+

n

dz
− e−iφ̃n

dF−
n

dz

= k̃′
zn

2k̃zn
[e−iφ̃n F−

n − eiφ̃n F+
n ]

+
∑
m �=n

�m

�n

[
2ψnm

k̃1/2
zm

k̃1/2
zn

(e−iφ̃m F−
m − eiφ̃m F+

m )

+ i
ηnm − 2ψmmψnm

(k̃znk̃zm)1/2
(e−iφ̃m F−

m + eiφ̃m F+
m )

]
. (B6)

Second, we calculate dFn
dz by taking the derivative of the first

line in Eqs. (76) and plug it into the second equation of
Eqs. (76), which gives the other equation,

eiφ̃n
dF+

n

dz
+ e−iφ̃n

dF−
n

dz
= k̃′

zn

2k̃zn
[e−iφ̃n F−

n + eiφ̃n F+
n ]. (B7)

Finally, we solve the system of the two linear algebraic
equations (B6) and (B7) for the first derivatives of the ampli-
tudes of the counterpropagating eigenmodes dF+

n
dz and dF−

n
dz . As

a result, we obtain a system of first-order differential equations
describing the linear mode coupling of the eigenmodes in the
form stated in Eq. (87).

The derivation of the mode-coupling equations (86) and
(87) in the TM-wave case is very similar, with just a slight
modification due to a presence of an extra factor 1/ε in the
TM-wave Maxwell equation (20) as compared to the TE-wave
Maxwell equation (4). Again, we represent the magnetic field
Hy inside a grating as a superposition of the eigenmodes

ϕm(x, z) with amplitudes Fm(z) as per Eq. (85). Then we plug
this ansatz into the homogeneous version of Maxwell equation
(20), i.e., the Helmholtz equation

∂

∂z

[
∂Hy

ε∂z

]
+ ∂

∂x

[
∂Hy

ε∂x

]
+ ω2

c2
Hy = 0, (B8)

and, using the TM-eigenmode equation

ε
d

dx

(
1

ε

dϕm

dx

)
+ εω2

c2
ϕm = k2

zmϕm (B9)

from Sec. II B, rewrite it in the following form:

1

ε

∂2Hy

∂z2
+ ∂ (1/ε)

∂z

∂Hy

∂z
+

∑
m

k2
zm

ε
Fm�mϕm = 0. (B10)

For the eigenmode superposition in Eq. (85), we reduce this
TM-wave Maxwell equation, by means of the analog of
Eqs. (B3) with the substitution fm → ϕm, to the following
form, which is similar to the TE-wave equation (B4):

∑
m

�m

ε

{
ϕm

[
d2Fm

dz2
+ κ2

zmFm

]

+ dFm

dz

[
2

(
∂ϕm

∂z
− ψmmϕm

)
+ ε

∂ (1/ε)

∂z
ϕm

]

+ Fm

[
ε

∂

∂z

(
1

ε

∂ϕm

∂z

)
− 2ψmm

(
∂ϕm

∂z
− ϕm

2ε

∂ε

∂z

)]}
= 0,

(B11)

where again κ2
zm = k2

zm + ψ2
mm − dψmm

dz .
Then, we project Eq. (B10) onto each n-eigenmode x

profile by calculating a scalar product 〈ϕ†
n , . . .〉M and using the

biorthogonality of the eigenfunction basis, Eq. (A7). Surely,
for the TM-wave case as opposed to the TE-wave case, we
now have to employ the modified inner product in Eq. (33) as
is explained in Sec. II B. Remarkably, this path immediately
leads us to the exact same system of the coupled second-order
differential Eqs. (86) as the one obtained for the TE-wave
case. Of course, the parameters ψnm, ηnm, and k̃2

zn defined in
Eqs. (71) and (75) are different for the TE and TM polariza-
tions.

This important result on the TE and TM universality of
the equations for the eigenmode amplitudes means that the
subsequent derivation of the mode-coupling equations (87) for
the TM polarization is identical to the derivation described
above in Eqs. (B5), (B6), and (B7) for the TE polarization.
This completes the derivation of the TM-wave equations (86)
and (87).
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