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Tunable quantum switch realized with a single �-level atom coupled to the microtoroidal cavity
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We propose a realization of the quantum switch for coherent light fields for the fiber-coupled microdisk
cavities. We demonstrate by combining numerical and analytical methods that both in strong coupling and bad
cavity limits it is possible to change a system’s behavior from being fully transparent to being fully reflective
by varying the amplitude of the external control field. We remark that tuning the amplitude of the control field
instead of cavity-atom coupling strength, which was suggested by S. Parkins et al., [Phys. Rev. A 90, 053822
(2014)] for two-level atoms and works only in the strong coupling limit, brings more control and tunability over
the transmitted and reflected intensities. We also demonstrate the possibility of controlling the statistics of the
input coherent field with the control field which opens the venue for obtaining quantum states of light.
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I. INTRODUCTION

Quantum networks [1] provide a prominent template for
the design and realization of scalable quantum information
processing systems. Quantum network consists of nodes,
which are formed with a physical system such as atoms.
Nodes are then linked together through the quantum channel,
and this is usually done with the help of photons referred
to in this context as “flying qubits.” The interaction between
light and matter establishes the transfer and the manipulation
of information between the “flying qubits” and the nodes.
Quantum networks may eventually play an important role in
the future implementation of quantum computation, commu-
nication, and metrology [2–6].

Trapped atoms in Fabry-Perot cavities have been one of
the most fruitful systems for testing fundamentals of quantum
optics in cavity QED setup [7–10]. Single atoms in Fabry-
Perot cavities have been demonstrated to be good candi-
dates for a quantum network [8,11–14]; however, it turns out
that these cavities fail to realize large-scale networking. To
overcome this issue, several types of microchip-based sys-
tems(microdisk, micropillar, microbottle, and photonic crystal
cavities) [15] have been engineered and successfully utilized
for implementing cavity-QED type of experiments [16–22]
by coupling them with trapped cold atoms, quantum dots.
Numerical and theoretical methods have also been developed
to understand the optical properties of these systems [23–26].

Microtoroidal and microdisk cavities hold a promise to
realize scalable quantum networks and are fascinating plat-
forms for realizing quantum optical experiments since the
electrical field, with its small mode volume, reaches high
values inside the cavity resulting in a large light-matter cou-
pling. Experimentally, the strong coupling regime has been
successfully reported for such systems [16–19]. Due to their

small losses, these systems have high quality factors (Q) and,
in one experiment, Q as large as 4 × 108 have been realized
[20]. Moreover, by coupling tapered fiber with ring resonator
the efficiency of coupling light in and out of the microtoroidal
resonator can achieve up to 0.997 as demonstrated experimen-
tally in Ref. [16].

Photonic quantum devices [27] are necessary components
for implementing functional quantum network, and they play
an important role in storing the quantum states of light, as well
in controlling the propagation of light. Switching the direction
of the propagating is one of the most important operations
that need to be performed in the quantum network. To achieve
this task a quantum switch [28–34] is needed and is imple-
mented by changing an external parameter, which results in
“on” or “off” state of the switch, much like a gate valve in
a water pipe. If this device is implemented solely through
optical means, then this kind of switch is called “all optical
switch” [29–31,35]. Quantum switch acts as “gate valves” for
quantum states of light [9,36–39]. Both theoretical proposals
[38,40,41] along with actual experimental implementations
[28,29,31] for realizing single-photon transistor have been put
forward.

In this paper, we focus on the realization of a quantum
switch for an incoming coherent field. An interesting result
that quantum communication between two atomic ensembles
can be achieved by means of only coherent laser fields has
been theoretically proposed [42] and later an entanglement be-
tween two atomic ensembles has been experimentally demon-
strated in Ref. [43]. These findings demonstrate that quantum
network can be formed with only coherent laser fields which
overcomes the difficulty of creating quantum states of light(it
is an outstanding challenge to have single-photon source) for
realizing quantum communication.
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In Ref. [44], Parkins and Aoki suggested an interesting
scheme for the coherent light quantum switch by utilizing
clockwise and anticlockwise cavity mods of the whispering
gallery modes (WGM) of the ring resonator [23,45]. They
showed that, under certain parameter regime (strong cavity-
fiber coupling along with strong cavity-atom coupling), it is
possible to achieve a coherent light switch by tuning cavity-
atom interaction strength g going from weak coupling to
strong coupling regimes.

Here, we highlight, that controlling the interaction strength
g in the actual experiments could be very challenging because
one needs to modify the distance between the atoms and
ring cavity to modify the evanescent coupling. To overcome
this issue an auxiliary level was introduced and with radio-
frequency pulse atom could be shifted into this level which
effectively decouples atom from the cavity and achieves “off”
state of the switch. However, this approach allows only for
very high value of g or g = 0 and omits intermediate val-
ues of g, which results only in partial control over trans-
mitted and reflected intensities and their respective photon
statistics.

To cure this issue it is desirable to have an easily tunable
external parameter. Here we propose to replace the two-level
atom with a three-level atom in a �-level configuration and
the “gate valve” is implemented by tuning the amplitude of
the control field. In several theoretical articles [41,46,47] the
system of a three-level atom coupled to the microtoroidal cav-
ity has been theoretically investigated; however, in all these
papers the typical EIT condition of zero two-photon detuning
has been assumed. Contrarily, for our protocol it is crucial
to have nonzero two-photon detuning; otherwise, because of
the coherent population trapping mechanism system behaves
as transparent for any value of control field, because of the
optical pumping into the dark state [9,36].

In this manuscript, we argue that a quantum switch, con-
trolled by varying the amplitude of the external field, gives
more control and tunability over transmitted and reflected
intensities( for example 50/50 beam splitter cane be achieved
with our scheme). Moreover, our protocol for a switch works
even in the bad-cavity limit, which overcomes experimental
effort to bring the system in the strong coupling regime.
However, it is important to point out that contrary to the
strong coupling regime where reflected light does not change
its statistics, in the bad cavity limit it becomes quantum after
being reflected.

The manuscript is outlined as follows. In Sec. II, we
provide a theoretical description of the system and set the
stage for the numerical simulations of the master equation
that governs the system dynamics. In Sec. III, we demonstrate,
both numerically and analytically, that our system functions as
a quantum switch for an incoming coherent field (even within
the bad cavity limit). In Sec. IV, we study the statistics of
the transmitted and reflected fields, in strong coupling and
bad cavity limits. In Sec. V we briefly outline the scheme for
generating light-matter entanglement, which is consequently
used to produce a cat state. Section VI is devoted to our
conclusions. In the Appendix analytical results for the bad-
cavity limit are derived using adiabatic elimination of the
cavity modes.

FIG. 1. Scheme of a three-level atom coupled to a ring cavity and
a tapered-fiber. Input fields ain,ex, bin,ex propagate through the fiber
which is coupled with a rate κex with a microtoroid cavity which
has a resonant frequency of ωr . Coherent probe field of frequency
ωp drives the mode a with strength �p. Two counterpropagating
WGM modes a and b are assumed to be coupled with a strength h
due to the scattering from imperfections. Both modes can leak out
of the cavity with a rate κi, and the outgoing fields resulting from
the fiber are given by the aout,ex, bout,ex. Degenerate cavity modes a
and b are coupled with the three-level atom and drive the transition
1 − e. Control field with amplitude �c and the frequency ωc drives
the transition 2 − e. Atomic populations of the excited state e can
decay through two decay channels either to the state 1 or to the
state 2.

II. THE SYSTEM AND THE MASTER
EQUATION FORMALISM

A schematic representation of the system along with main
parameter definitions is given in Fig. 1. It is important to
point out that once the anticlockwise WGM mode a is
created, there are two different mechanisms that can give
rise to the clockwise mode b. The first mechanism is the
evanescent coupling with a strength g with the two-level atom
since atom can re-emit the photon in both directions: clock-
wise and anticlockwise. The second mechanism is a result
of the inhomogeneity of the dielectric media and is described
by the parameter h (for more details, see Ref [25]). In this
paper we will focus mainly on the case with h = 0.

In a rotating frame U (t ) = eiωpt (a†a+b†b−σ11 )−iωctσ22 , the
Hamiltonian of the system takes the form

H = �r (a†a + b†b) + h(a†b + b†a) + �e1σee + �21σ22

+ (g∗a†σ1e + gaσe1) + (gb†σ1e + g∗bσe1)

+�p(a + a†) + �c(σ2e + σe2), (1)

where �r = ωr − ωp, �e1 = ωe1 − ωp and �21 = ω21 +
ωc − ωp. After introducing the dissipative channels the system
within the the Born- MArkov approximation is described by
the Lindblad master equation (here we assume zero tempera-
ture thermal reservoir):

ρ̇ = − i[H, ρ] + κD[a]ρ + κD[b]ρ

+ 	e1

2
D[σ1e]ρ + 	e2

2
D[σ2e]ρ, (2)

where D[ô]ρ = 2ôρô† − ô†ôρ − ρô†ô is the Lindblad super-
operator and κ = κex + κi, 	e1, 	e2 are the decay rates of
a cavity and an atom respectively. It is important to high-
light that throughout the manuscript the condition of weak
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coupling(g/ωc,e < 0.1) is satisfied, and rotating approxima-
tion holds and Linblad operators do not require modification.

A. Input-output formulation of the system

The input and output fields which are schematically shown
in Fig. 1 and are related through the input-output relations (see
Chapter 7 of Ref. [48]) in the Heisenberg picture and are given
by the following expressions:

aout,ex(τ ) = −ain,ex(τ ) +
√

2κexa(τ ),

bout,ex(τ ) = −bin,ex(τ ) +
√

2κexb(τ ),
(3)

where input and output fields have delta function commutation
relations in time. The field �p in the Hamiltonian corresponds
to the coherent field incoming from the left and input field
incoming from the right is assumed to be in the vacuum state,
which is given by the average values of the input operators:

〈ain〉 = − i�p√
2κex

, 〈bin〉 = 0. (4)

The transmission and the reflection coefficients, normalized to
the input photon flux number, are given by

T = 〈a†
out,exaout,ex〉

|�p|2/2κex
, R = 〈b†

out,exbout,ex〉
|�p|2/2κex

. (5)

B. Normal mode decomposition

To achieve a better understanding of the system, it is
instructive to rewrite the Hamiltonian in terms of the normal
modes of cavity A and B, defined as A = a+b√

2
, B = a−b√

2
.

After expressing a and b through the normal modes, the
Hamiltonian of the system reads as

HN.M. =�e1σee + �21σ22 + (�r + h)A†A + (�r − h)B†B

+ gA(A†σ1e + σ1eA) + gB(B†σ1e + σ1eB)

+ �c(σ2e + σe2) + �p√
2

(B + B†) + �p√
2

(A + A†),

(6)

where gA and gB, are given by

gA =
√

2g0 f (r) cos (kx), gB =
√

2g0 f (r) sin (kx). (7)

Here g0 is the amplitude of the stationary electromagnetic
field in the ring oscillator and f (r) is the radial distribution
function of the electromagnetic field. Equation (7) shows that
by properly choosing the location of the atom along the ring
cavity, it is possible to decouple one of the cavity modes. In
the rest of the manuscript it is assumed that sin (kx) = 0, so
that the mode B is decoupled from the atom. Ring optical
resonators such as microtoroids do not support circularly
polarized modes [1]. Counterpropagating transverse electric
(TE) modes create a pair of orthogonal standing-wave normal
modes (A and B), and the phase of one of these modes can
always be chosen so that it has a node at the position of the
atom. It is easy to notice from the expression for HN.M. that
there are no terms in the Hamiltonian that couple mode B with
the atom or with other normal mode A (that terms are given
by the two last lines in Eq. (6) and we denote that part of

Hamiltonian as HB). This in turn implies that systems � + A
(here � represents the subspace of a two-level atom) and B
are noninteracting and the full system Hamiltonian and the
density matrix can be expressed as

HN.M. = H�+A + HB, (8)

ρ = ρ�+A ⊗ ρB. (9)

Next, we proceed to write the master equation of the system
in the normal mode basis

ρ̇ = − i[HN.M., ρ] + κD[A]ρ + κD[B]ρ

+ 	e1

2
D[σ1e]ρ + 	e2

2
D[σ2e]ρ. (10)

After substituting Eq. (9) into Eq. (10) and tracing out
separately the subsystems � + A and B, equations for the
respective subsystems take the following form:

ρ̇�+A = − i[H�+A, ρ�+A] + κD[A]ρ�+A

+ 	e1

2
D[σ1e]ρ�+A + 	e2

2
D[σ2e]ρ�+A, (11)

ρ̇B = −i[HB, ρB] + κD[B]ρB. (12)

It is important to notice that Eqs. (11) and (12) present a
significant numerical advantage compared to Eq. (2), since
in the first case full system density matrix is obtained (as a
tensor product) by solving two separate equations for density
matrices of dimension O(n), contrary to the second case
where one equation for the full system density matrix of the
dimension O(n2) has to be solved; here n shows truncation
number of the Fock state for the cavity modes.

III. QUANTUM SWITCH

The main result of this manuscript is shown in Fig. 2
and is obtained by numerical simulations of master Eqs. (11)
and (12) which takes into account all dissipative channels.
Here we use the superspace method which is outlined in a
great detail in Ref. [49]. Moreover, analytical results for the
bad cavity limit (g < κex), which are outlined in detail in the
Appendix, are also plotted in Fig. 2 for comparison with
numerics. In Fig. 2 transmission and reflection are plotted as
a function of the amplitude of the control field, for the set of
parameters given in the caption. For the system parameters
we use the realistic experimental values taken from Ref. [16],
where SiO2 microtoroidal resonator was coupled with a cloud
of cold cesium atoms. For cesium atoms considering the
transition 6S1/2, F = 4 → 6P3/2,, F ′ = 5′, and taking into
account selection rules imposed by linearly polarized light of
the cavity field (�mF = 0) for the Zeeman states {mF }, we can
choose, for example, 6S1/2, F = 4, mF = −4 → 6P3/2, F ′ =
5′, mF ′ = −4. For some range of �c, T ≈ 0, and R ≈ 1 (we
remark that T + R < 1 due to the losses in the system),
which means that the system works as a quantum switch.
Transmission and reflection curves have two crossing points
and for both points T = R ≈ 0.5 which means the systems
works as a 50/50 beam splitter for an incoming coherent field.
To gain better understanding about the behavior of transmitted
and reflected intensities, in the right column of Fig. 2 we
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FIG. 2. Normalized power transmission T , reflection R, and the populations of normal modes A and B as a function of control
field strength �c. The blue and red solid lines are transmission and reflection functions resulting from the master equation simulations,
respectively. The orange and green dashed lines are transmission and reflection functions resulting from adiabatic elimination, respectively.
The parameters for strong coupling cases are {�r, �e1, h, g, �p, κex, κi, 	e1, 	e2}/2π = {0, 0, 0, 100, 10, 20, 0.2, 5.2, 5.2} MHz and (a),
(b) �21/2π = 70 MHz; (c), (d) �21/2π = 140 MHz. The parameters for bad cavity cases are {�r,�e1, h, g, �p, κex, κi, 	e1, 	e2}/2π =
{0, 0, 0, 100, 10, 200, 0.2, 5.2, 5.2} MHz and (e), (f) �21/2π = 70 MHz; (g), (h) �21/2π = 140 MHz. For the cases of nonzero h, the
parameters are {�r, �e1, �21, h, g, �p, κi, 	e1, 	e2}/2π = {0, 0, 70, 4, 100, 10, 0.2, 5.2, 5.2} MHz and (i), (j) κex/2π = 20 MHz for strong
coupling case; (k), (l) κex/2π = 200 MHz for bad-cavity case.

plot the amplitudes of the modes A and B as a function of
�c. The mode B is decoupled from an atom so its population
stays constant; however, mode A is strongly coupled to the
atom, which in turn is coupled to the external control field,
and for some range of the control field amplitude the mode A
is going out of resonance, and this range coincides with the
range where transmission goes to zero which is apparent by
comparing the first and the second columns in Fig. 2. This
behavior can be easily explained by expressing the output field
aout,ex = −ain,ex + √

κ (A + B), through the normal modes,
and taking into account that in the switch region 〈A〉 ≈ 0.
Since the normal mode B is decoupled from the atom, its av-
erage value can be obtained by solving steady-state equations
for the empty cavity(g = 0). As it is shown in the Appendix,
it follows from the Eq. (A2) that in the case �r = 0 and h =
0,

√
κ〈B〉 = 〈ain,ex〉. Under mean-field approximation, T ≈

〈a†
out,ex〉〈aout,ex〉 ≈ 0, because of the destructive interference

between the input field and the mode B. Here, to estimate
the intensity we applied a mean-field approximation which is
not assumed later in the manuscript. The condition 〈A〉 ≈ 0
implies that mode a and b have the same amplitude with
opposite sign, this means that atom in a way is acting like a
pump which is redistributing photon fluxes between these two
modes and ones this two modes get equally populated system
is acting as a “mirror.” From Fig. 2 it is seen that for small
value and large values of control fields atom is “effectively”
getting decoupled from the cavity. For small values of �c, this
happens simply because atom is getting optically pumped to
the level 2, since |ω1e − ω2e| 
 γ1e, γ2e. For the large values
of �c, the atom-field dressed energy level gets detuned on
the large amount ≈�c 
 γ1e, γ2e and cavity mode gets out
of resonance with the dressed light atom energy state. This
statements are substantiated by analytical results for the bad
cavity limit which are presented in the Appendix. As it is
demonstrated there for both limits of very small and very large
�c, ρ1e ≈ 0, which means that absorption is vanishing and
light is propagating through the cavity without “feeling” the

atom. Figures 2(i), 2(j) and 2(k), 2(l) illustrate the effect of
nonzero h. In general, a nonzero h induces coupling between
the clockwise and anticlockwise cavity modes, and weakens
the switch functionality in the strong coupling regime yet it
almost does not modify it in bad-cavity limit (here h < κ). To
gain intuition on this, it is instructive to consider at first the
case when of empty cavity. When g = 0, the backscattering
causes mode splitting (when backscattering rate h exceeds all
other losses in the system κ) and distinct pair of resonances
emerges at the frequencies ωc ± h; however, in the bad cavity
limit this effect is getting washed out. This results in asymmet-
ric transmission/reflection profiles in the strong coupling limit
which agrees well with findings for the two-level atom cou-
pled to the microtoroidal cavity studied in depth in Ref. [25].
To avoid detrimental effects introduced by h in the strong
coupling limit it is enough to be in the regime h � κ .

An interesting feature of our system, that switch function-
ality regime can be made wider by changing the two-photon
detuning, is apparent, for example, by comparing Fig. 2(a),
where �12 = 70 MHz, with Fig. 2(c) (strong-coupling limit),
where �12 = 140 MHz. Moreover, from Figs. 2(e) and 2(g)
we see that in the bad-cavity limit, analytical curves, given
by the dashed lines, agree well with numerical simulations
of master equations, given by blue and red curves. This
agreement quite remarkably holds partially even in the strong
coupling limit, which is apparent from Fig. 2(a) (however, an-
alytical results for the two-photon correlation functions agree
with numerics only in the bad-cavity limit). As we can see
from the second column of Fig. 2, average value of the mode
A is one order of magnitude bigger in the bad-cavity limit,
which results in having better switch in the strong coupling
limit where transmission turns out to be smaller on one order
of magnitude compared to the bad-cavity case. We comment,
that the fact that mode 〈A〉 is bigger in the bad-cavity limit
manifests itself in having different statistics for the reflected
field in this limit compared to the strong coupling-limit, which
we discuss in more detail in Sec. IV.
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FIG. 3. Contour plots for transmission and reflection profiles
in strong coupling regime. The parameters are the same as in
Fig. 2(c) except �p = 1.

Bigger is the range of �c over which the system works
as a quantum transistor; better is the quantum switch. To
understand why is this the case it is constructive to con-
sider the opposite limit when this range is extremely narrow,
then experimental imperfections and noise can easily push
the system out of the regime of functionality. Bearing this
in mind, we make a series of contour plots for exploring
the parameter regimes where the “range of functionality” is
broad. In these contour plots, one axis represents the external
control field and other axis denotes the physical parameter
of interest. Figure 3 shows the series of contour plots where
the left and right columns show transmission and reflection
intensities. Range of functionality is given by the length of
horizontal line (for a given value of parameter along the y
axis) which has a dark/blue color corresponding to T ≈ 0.
In Figs. 3(a) and 3(b) we plot T and R in the �21-�p plane,
in the strong-coupling limit. For the small value of �c we
see double-peak structure which is a signature of vacuum
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FIG. 4. Contour plots for transmission and reflection profiles in
bad-cavity regime. The parameters are the same as in Fig. 2(g) except
�p = 1.

Rabi splitting, because for the small value of control field
excited state is splitting in the Jaynes-Cummings doublet,
and peaks are located at ≈√

2g. The factor
√

2 is a result of
having standing waves in the microtoroidal cavity. From this
figures, we conclude, that for a switch with a wide rang of
functionality the optimal value of two photon detuning should
be chosen equal �21 ≈ √

2g. From Figs. 4(a) and 4(b) we
see that, in principle, many values of two-photon detuning
realize a good switch because in this case there is no vacuum
Rabi splitting, and consequently no Rabi oscillations occur, as
photons leave the cavity before being reabsorbed by the atom.
However, for being consistent we also choose �21 ≈ √

2g.
The transmission/reflection in �p-�c plane is shown in

Figs. 3(c) and 3(d), in the strong-coupling limit. With increas-
ing amplitude of the input drive field, the range over which
switch functions (i.e., the dark/red region) narrows until it
completely disappears. This behavior occurs as a result of an
atom being saturated on the 1 − e transition. So the weaker is
the amplitude of the input field, the better switch can function.
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We remark, that onset of saturation occurs for smaller value of
�p, in the bad cavity limit [see Figs. 4(c) and 4(d)], because
in this limit atom gets saturated with relatively small number
of photons. Moreover, in the bad-cavity limit the range of
functionality for a given value of �p, is narrower compared
to the strong-coupling limit. The transmission/reflection in
g-�p plane is shown in Figs. 3(e) and 3(f). For very small
values of g, photons will pass through the cavity without
interacting with the atom which means T ≈ 1 and system does
not perform as a switch. We remark that since here h = 0,
the only way for producing anticlockwise photons is through
interaction with the atom. If g is too small, then the atom
is decoupled from the cavity, and if g is too big, then the
cavity field will be off resonant with the atoms due to the
large energy level shift, so consequently there is an optimal
value for g which provides widest regime of functionality
which is apparent from Fig. 3(e). Here, we see that for a
fixed two-photon detuning �21, there is an optimal value of
g given by g ≈ �21/

√
2 in agreement with existence vacuum

Rabi splitting as was discussed above. Same kind of behavior
is observed in the bad-cavity limit [see Figs. 4(e) and 4(f)],
except in this regime there is no optimal value of g for a given
two-photon detuning, because of the absence of vacuum Rabi
splitting.

Transmitted and reflected intensities in κex-�p plane are
shown in Figs. 3(e) and 3(f). Here we see that system performs
as a switch both in strong-coupling (κex < 100) and bad-
cavity (κex > 100) limits, showing wider range of functional-
ity in the strong coupling limit in agreement with our findings
for the saturation behavior. In Figs. 3(g) and 3(h) we show
a zoom of Figs. 4(g) and 4(h), as it reveals an interesting
feature. System is performing as a switch only in the fiber-
overcoupling regime which is given by the condition κex 

κi, this condition ensures high efficiency of the input-output
transfer of the light, which is obviously a necessary condition
for a strong light-matter interaction.

IV. PHOTON STATISTICS

In this section, we study the photon statistics for the
transmitted and reflected light fields, both in strong coupling
and bad-cavity limits. Here we mainly focus on regions where
quantum switch is functioning, which means T ≈ 0. In this
region, most of the photon flux is reflected and our main focus
here is to study the statistics of the reflected light; however,
since a small number of photons is passing in the forward
direction two-photon correlation function still can be observed
through photodetection. Two-photon correlation functions for
transmitted and reflected fields are defined through the output
fields as follows:

g(2)
T (0) = 〈a†

out,exa†
out,exaout,exaout,ex〉ss

(〈a†
out,exaout,ex〉ss)2

,

g(2)
R (0) = 〈b†

out,exb†
out,exbout,exbout,ex〉ss

(〈b†
out,exbout,ex〉ss)2

. (13)

If g(2)(0) < 1 (e.g., for the field in the Fock state |n〉, it can
be easily shown that g(2)(0) = 1 − 1/n), then the field has
sub-Poissonian statistics. If g(2)(0) = 1 (e.g., any coherent
field |α〉), then the field has a Poissonian statistics. Finally,
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FIG. 5. Contour plots for the photon statistics of transmitted and
reflected photons in strong coupling regime. The parameters are the
same as in Fig. 2(c) except �p = 1.

if g(2)(0) > 1, then the field has a super-Poissonian statistics
(e.g., for the single-mode thermal field g(2)(0) = 2) [9]. Cor-
relation functions are plotted on Figs. 5 and 6, respectively,
for the strong-coupling and bad cavity limits, varying on the x
axis the control field and on the y axis the physical parameter
of interest. Here we truncate g(2)(0) function for values higher
than 2 for convenience of graphical representation, since the
regions of quantum light [g(2)(0) < 1] are easily noticeable in
this case. We remark, that this kind of truncation still keeps
all information about the statistics of the light only omitting
the regions of extreme bunching which is not of interest in the
current manuscript.

As we can see from the second column of Fig. 5, in the
regime of functional switch (here g > κex) reflected light re-
mains in the coherent state. To understand why this is the case,
we write an expression for the reflected output field and take
into account the 〈A〉 ≈ 0, as was demonstrated in Fig. 2. Then

053851-6



TUNABLE QUANTUM SWITCH REALIZED WITH A SINGLE … PHYSICAL REVIEW A 100, 053851 (2019)

10-2 100 102
-300

-150

0

150

300

c/2  (MHz) c/2  (MHz)

c/2  (MHz) c/2  (MHz)

c/2  (MHz) c/2  (MHz)

c/2  (MHz) c/2  (MHz)

g(2)
T (0)

(a)

21
/2

 (M
H

z)

0.0

0.5

1.0

1.5

2.0

10-2 100 102
-300

-150

0

150

300

21
/2

 (M
H

z)

(b)
g(2)

R (0)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103

100

200
(c)

p/2
 (M

H
z)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103

100

200
p/2

 (M
H

z)

(d)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103
0

100

200
(e)

g/
2

 (M
H

z)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103
0

100

200

g/
2

 (M
H

z)

(f)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103
0

250

500
(g)

ex
/2

 (M
H

z)

0.0

0.5

1.0

1.5

2.0

10-3 10-1 101 103
0

250

500

ex
/2

 (M
H

z)

(h)

0.0

0.5

1.0

1.5

2.0

FIG. 6. Contour plots for the photon statistics of transmitted and
reflected photons in bad-cavity regime. The parameters are the same
as in Fig. 2(g) except �p = 1.

we can estimate, that bout,ex ≈ √
κB, here we took into account

that 〈bin,ex〉 = 0. The normal mode 〈√κB〉 = −i�p

√
2κ =

〈ain〉, which means mode B has the same statistics as the input
field (this has been numerically demonstrated in Ref. [25]),
which is assumed to be in the coherent state.

In contrast, in bad cavity limit the reflected light becomes
quantum as g2

R(0) � 1, which corresponds to the dark/blue
regions of the Fig. 6. This is a result of a nonconventional
photon blockade [22] and can be understood by studying the
output reflected field. After making an adiabatic elimination
of cavity modes, which we outline in great detail in the
Appendix, for calculating average values we use the following
mapping: bout,ex → β0 + β−σ1e. Moreover, in the case when
�r = 0 and h = 0, the parameter β0 = 0, which means re-
flected photons are solely generated by an atom. After an
atom emits the photon it is projected into its ground state,
and it takes finite amount of time, given by 1/	, where 	

is the Purcell enhanced decay rate [50] (see the Appendix
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FIG. 7. Panels (a) and (b) are the comparison between numerical
simulation and adiabatic elimination for Figs. 2(e) and 2(g).

for the expression of 	), for it to get re-excited and emit a
photon again. This also can be showed, from the analytical
Eq. (A10), from which it immediately follows that g2

R(0) = 0,
which corresponds to the single photon statistics [as its been
mentioned for the Fock state |n〉, g(2)(0) = 1 − 1/n, so when
n = 1, g(2)(0) = 0]. It is important to notice that g2

R(0) = 0
does not hold in our numerical simulations, and g2

R(0) ≈ 0.1,
since we are considering the case κ = 2g, and not really in the
bad cavity limit, where κ 
 g.

For the transmitted field interesting features appear be-
cause of the interference between the straight-through trans-
mission of the coherent driving field and the forward scat-
tered fluorescence from the atom. The consequences of this
interference on the photon statistics were first time noted in
the Ref. [51], for the single-atom interacting with a single
mode-cavity in a bad-cavity limit. As we can see from the first
columns of Figs. 5 and 6, in the regions of switch functional-
ity, transmitted light shows bunching behavior (dark/red re-
gions) as a result of destructive interference between the field
radiated by the atom and an intracavity field. This behavior in
terms of normal modes A and B, has been explained in great
detail in Ref. [44], and it turns out that bunching behavior is
a consequence of normal mode A being strongly bunched (we
have numerically verified that this holds for our system in both
limits).

As it can be seen in Fig. 7 analytical and numerical results
for the two-photon correlation function agree well, in the bad-
cavity limit (as it was previously mentioned in the strong cou-
pling analytical approach fails to predict correct correlation
function, which is expected), with a drawback that numerical
approach starts failing for obtaining g(2)

R (0) out of the switch
functionality region, where we simply set it to zero, when
it obtains values bigger than one. This happens because of
the divergence of normalized two-photon correlation function,
when photon flux is zero and no photons are detected (this gets
even more apparent by considering correlation function for the
Fock state |n〉, g2(0) = 1 − 1/n which diverges when n = 0).
This remark is substantiated by the fact that for the finite
value of h, analytical and numerical approaches start to agree
better with increasing value of h, because the photon flux for
the reflected field never gets equal to zero. To summarize,
g(2)

R (0) = 0 for the all values of �c; however, photodetection
is going to reveal antibunched statistics in the region of switch
functionality, and no photons will be detected out of this
region.
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V. GENERATION OF THE ATOM-LIGHT
ENTANGLED STATE

In this section we briefly outline the protocol for generating
the entangled state between the transmitted and reflected co-
herent light states and the atom. The possibility of generating
such a state shows that the switch is indeed quantum, as en-
tanglement is an inherent property of the quantum systems. To
achieve this task we need an additional auxiliary metastable
ground level |3〉, and thus now we have the tripod atomic
configuration. Tripod systems have been used in quantum
optics for generating the time-bin qubits, which exhibit an
entanglement between two temporal modes [52] as well for
creating large nonlinear Kerr coupling between the two fields
which was utilized to generate the entanglement between
them [53].

To generate the entangled state it is enough to prepare the
atom in the initial state |�in〉 = 1√

2
(|2〉 + |3〉), which can be

achieved with microwave or radio-frequency field coupling
the respective states and creating their coherent superposition.
The protocol works as follows: if the atom is in the state |3〉,
then light simply passes through the system and an incoming
coherent state |α〉 is the output field from the channel aout,ex

and the combined system ends up in the state |3〉 ⊗ |α〉;
however, if the atom is initially in the state |2〉, then under
the conditions of system working as switch the light pulse
is reflected and transferred into the channel bout,ex and the
final state of the system is |2〉 ⊗ | − α〉. In other words, the
following transformation can be achieved in our system for
creating light-atom entangled state:

|�in〉 ⊗ |0〉bin,ex |α〉ain,ex → 1√
2

× [|3〉 ⊗ |α〉aout,ex |0〉bout,ex + |2〉 ⊗ | − α〉bout,ex |0〉aout,ex ].
(14)

We comment that achieving this entangled state is not a trivial
task as there are decoherence channels in the system (atom
and cavity decay rates) and we plan to address the calculation
of the fidelity of entangled state preparation in the future
publication. It is interesting to point out that with suitable
unitary rotations and projective measurements state Eq. (14)
can be transferred into the conventional cat state. This state
is of significant interest in the context of quantum computing
and metrology [5]. Once the Cat state is achieved it means that
switch is projected into the superposition of the “on” and “off”
states which is one more signature of switch being quantum
switch.

VI. CONCLUSIONS

In this paper, we suggest new scheme for realizing quantum
switch for an incoming coherent field. Our scheme is based
on the coupling the fiber-coupled ring cavity with a single
�-level atom. We have demonstrated both numerically and
analytically that it is possible to tune the system by the ex-
ternal control field from being fully transparent to being fully
reflective. We emphasize that our proposal has an advantage of
being easily implemented experimentally, compared to other
proposals which require high control over the “gate valve” pa-
rameter, which is not easily achievable in current experiments.

Here, we have concluded that the switch functions both in
strong coupling and weak coupling limits, under the condition
of strong fiber-over-coupling (showing better performance in
the strong-coupling limit) for the reasonably large amplitude
of the incoming field (up to ≈50MHz, when g > κex, up to
≈40MHz, when g < κex). Moreover, we have demonstrated
that the regime of functionality can be extended by increasing
two-photon detuning and found the optimal value for it in
the strong coupling regime. Moreover, we have obtained
analytical results in the bad-cavity limit through adiabatic
elimination of cavity modes, and they are in good agreement
with numerical simulations of respective master equations.
Surprisingly, this approach works even in the strong coupling
limit showing qualitative agreement for transmitted and re-
flected field intensities. It is important to mention that our
protocol works only for nonzero two-photon detuning which
means that we are not using conventional EIT-based approach.

By studying the statistics of transmitted and reflected
fields, we have verified that quantum switch does not modify
the state of the incoming coherent field in the strong coupling
limit; however, in the bad-cavity limit our system can produce
quantum states of light in the reflected field. So in bad-cavity
limit our system can be used as a “black box” which acts as a
quantum device which takes as input coherent field and gives
quantum light in the output.

We also briefly discussed a possibility of the atom-light
entangled state generation. We emphasize that the possibility
of our switch being in entangled state as well being in the
superpositions of the “on” and “off” states shows that it is
indeed a quantum switch.

Our proposal has a potential interest in realizing quantum
information protocols with coherent light states. For future
projects, it would be interesting to concatenate several ring
cavities to fiber and study if the system can work as a photon
router for a few-photon incoming state. It also would be
of interest to implement quantum repeater schemes such as
DLCZ [54,55].

In addition, there have been several interesting theoretical
proposals on coupling NV centers with ring cavities for gen-
erating entangled states between the color centers [56–59].
Since color centers are solid-state systems there is no need
to trap them as it is the case with cold atoms. Moreover, in the
recent experimental realization a single photon source based
on coupling ring cavity with SiV vacancies has been realized
[60]. So it would be interesting to implement a quantum
switch by coupling ring resonators with color centers, which
have a multilevel structure and can be utilized as �-level
systems.
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APPENDIX: ADIABATIC ELIMINATION

In the bad cavity limit (κ 
 γ , g), we can adiabatically
eliminate the lossy cavity mode and obtain an effective model
for the three-level atom [10,22]. By expressing cavity modes
through the normal modes A and B, the Hamiltonian Eq. (1)
can be recast into Eq. (7), where gA = √

2Re[g] and gB =√
2Im[g]. After writing the Heisenberg equations for the

normal modes in the framework of the input-output theory
[48], we obtain the following expressions:

Ȧ = − i

[
(�r + h − iκ/2)A + gAσ1e + �p√

2

]

− √
κexAin,ex − √

κiAin,i,

Ḃ = − i

[
(�r − h − iκ/2)B − igBσ1e + �p√

2

]

− √
κexBin,ex − √

κiBin,i. (A1)

It is easy to show that the steady-state amplitudes of empty
cavity (g = 0) fields can be expressed as

αA = 〈A〉 = − �p√
2

1

�r + h − iκ/2
,

αB = 〈B〉 = − �p√
2

1

�r − h − iκ/2
. (A2)

We have used the following relations 〈Ain,ex〉 = 〈Bin,ex〉 =
−i ∗ �p/

√
kex, which follows from our initial conditions for

ain,ex and bin,ex. Also we assume that cavity initially is in
the vacuum state which means 〈Ain,i〉 = 〈Bin,i〉 = 0 are both
zero. To adiabatically eliminate the cavity modes, we formally
integrate the operators of A and B and substitute them into
the optical Bloch equation for the atom. After integration
and taking into account that we are in the bad cavity limit,
inside the integrals of for the normal cavity modes, the atomic
correlation functions may be evaluated at t ′ = t , thus we
use the Markov approximation. After evaluating the integrals
cavity normal modes takes the form

A(t ) = αA − igAσ1e(t ) + √
κexAin,ex(t ) + √

κiAin,i(t )

i(�r + h − iκ/2)
,

B(t ) = αB − gBσ1e(t ) + √
κexBin,ex(t ) + √

κiBin,i(t )

i(�r − h − iκ/2)
. (A3)

The averages of σ1e and σ12 are given by

〈 ˙σ1e〉 = − i(�e1 − i	/2)〈σ1e〉 + igA〈(σee − σ11)A〉
− gB〈(σee − σ11)B〉 − i�c〈σ12〉,

〈 ˙σ12〉 = −i�21〈σ12〉 + igA〈σe2A〉 − gB〈σe2B〉 − i�c〈σ1e〉.
(A4)

In the bad-cavity limit the cavity field correlation time is very
short compared to the atomic decay timescale. Thus, we have,
for example,

〈σee(t )A(0)〉 = 〈σee(t )Ain,ex(t ′)〉 = 〈σee(t )Ain,i(t
′)〉 = 0.

(A5)

After substituting Eqs. (A3) into the Eqs. (A4), we obtain

〈 ˙σ1e〉 = −i(�′
e1 − i	′/2)〈σ1e〉 + i�′

p〈σee − σ11〉 − i�c〈σ12〉,
〈 ˙σ12〉 = −i�21〈σ12〉 + i�′

p〈σe2〉 − i�c〈σ1e〉, (A6)

where

�′
e1 = �e1 − g2

A(�r + h)

(�r + h)2 + (κ/2)2
− g2

B(�r − h)

(�r − h)2 + (κ/2)2
,

	′
e1 = 	e1 + g2

Aκ

(�r + h)2 + (κ/2)2
+ g2

Bκ

(�r − h)2 + (κ/2)2
,

�′
p = gAαA + igBαB, 	′ = 	′

e1 + 	e2. (A7)

Therefore, the cavity modes are adiabatically eliminated. No-
tice that 〈 ˙σ22〉 = −i�c(〈σ2e〉 − 〈σe2〉) + 	e2〈σee〉, the effec-
tive master equation for the three-level atom is

ρ̇a = −i[Ha, ρa] + 	′
e1

2
D[σ1e]ρa + 	e2

2
D[σ2e]ρa, (A8)

where Ha = �′
e1σee + �21σ22 + �′

pσe1 + �′∗
p σ1e + �c(σ2e +

σe2). To summarize, we mapped the entire system of the
atom coupled to the fiber-coupled microtoroidal cavity to the
effective system which is represented by a three-level atom,
which has Purcell enhanced decay rate and detuning on the
e − 1 leg of � system, and is coupled to the classical fields
�′

p and �c, respectively, on the transitions e − 1 and 2 − e.
We remark that correlation functions for the output fields can
be calculated by making the following
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FIG. 8. Taylor expansion for Fig. 2(g). Panels (a) and (b) are the
Taylor expansion of transmission, reflection, and correlations when
�c → 0; panels (c) and (d) are the Taylor expansion of transmission,
reflection, and correlations when �c → ∞.
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substitutions:

aout,ex → α0 + α−σ1e,

bout,ex → β0 + β−σ1e,

α0 = i�p√
κex

+
√

κex/2(αA + αB),

α− = −
√

κex/2

[
igA

i(�r + h − iκ/2)
+ gB

i(�r − h − iκ/2)

]
,

β0 =
√

κex/2(αA − αB),

β− = −
√

κex/2

[
igA

i(�r + h − iκ/2)
− gB

i(�r − h − iκ/2)

]
; (A9)

after substituting these expressions into the numerators of the Eqs. (5) and (13) we obtain

〈a†
out,exaout,ex〉ss = |α0|2 + α∗

0α−ρss
e1 + α0α

∗
−ρss

1e + |α−|2ρss
ee, 〈b†

out,exbout,ex〉ss

= |β0|2 + β∗
0 β−ρss

e1 + β0β
∗
−ρss

1e + |β−|2ρss
ee, 〈a†

out,exa†
out,exaout,exaout,ex〉ss

= |α0|2
(|α0|2 + 2α∗

0α−ρss
e1 + 2α0α

∗
−ρss

1e + 4|α−|2ρss
ee

)
, 〈b†

out,exb†
out,exbout,exbout,ex〉ss

= |β0|2
(|β0|2 + 2β∗

0 β−ρss
e1 + 2β0β

∗
−ρss

1e + 4|β−|2ρss
ee

)
, (A10)

where ρss
e1 = 〈σ1e〉ss, ρss

1e = 〈σe1〉ss, ρss
ee = 〈σee〉ss. By solving Eq. (A8) for the effective three-level system, the elements of the

steady-state density matrix are given by

ρss
ee = a2�

2
c

c0 + c2�2
c + c4�4

c + c6�6
c

, ρss
1e = b2�

2
c + b4�

4
c

c0 + c2�2
c + c4�4

c + c6�6
c

, (A11)

where a2 = |�′
p|2�2

21	, b2 = �′∗
p �21[	e2|�′

p|2 − �21	
′
e1(�′

e1 − i	/2)], b4 = �′∗
p �21	

′
e1, c0 = 	e2|�′

p|2||�′
p|2 − �2

21 +
�21(�′

e1 − i	/2)|2, c2 = 	′
e1�

2
21|�′

e1 − i	/2|2 + 2	�2
21|�′

p|2 + (	 + 	e2)|�′
p|4, c4 = −2	′

e1�21�
′
e1 + (	 + 	e2)|�′

p|2,
c6 = 	′

e1, and 	 = 	′
e1 + 	e2. We remark that when �21 = 0, ρ1e = 0 as it follows from Eq. (A11) and is a consequence

of coherent population trapping. This clearly shows that for obtaining a quantum transistor we need a nonzero two photon
detuning. To simplify the lengthy expressions for the intensities and correlation functions in certain limits, we resume to Taylor
expanding the density matrix elements in the limits of small and large driving fields, we find that when �c → 0, ρss

ee ≈ a2
c0

�2
c

and ρss
1e ≈ b2

c0
�2

c ; however, when �c → ∞, ρss
ee ≈ a2

c6
�−4

c − a2c4

c2
6

�−6
c and ρss

1e ≈ b4
c6

�−2
c + b2c6−b4c4

c2
6

�−4
c . It is straightforward to

demonstrate by using these expressions that in both limits ρ1e ≈ 0, which means that atoms is decoupling from the cavity in this
limit (note that absorption is given by the imaginary part of the off-diagonal term of the density matrix).

After substituting these expressions into Eqs. (A10), we have in the limit �c → 0,

T = |α0|2 + (2Re[α0α
∗
−b2/c0] + |α−|2a2/c0)�2

c

|�p|2/2κex
,

R = |β0|2 + (2Re[β0β
∗
−b2/c0] + |β−|2a2/c0)�2

c

|�p|2/2κex
,

g(2)
T (0) = |α0|2

{|α0|2 + 4(Re[α0α
∗
−b2/c0] + |α−|2a2/c0)�2

c

}
{|α0|2 + (2Re[α0α

∗−b2/c0] + |α−|2a2/c0)�2
c}2

,

g(2)
R (0) = |β0|2

{|β0|2 + 4(Re[β0β
∗
−b2/c0] + |β−|2a2/c0)�2

c

}
{|β0|2 + (2Re[β0β

∗−b2/c0] + |β−|2a2/c0)�2
c}2

; (A12)

and for the limit �c → ∞ we obtain

T = |α0|2 + 2Re[α0α
∗
−b4/c6]�−2

c + {
2Re

[
α0α

∗
−(b2c6 − b4c4)/c2

6

] + |α−|2a2/c6
}
�−4

c − |α−|2a2c4/c2
6�

−6
c

|�p|2/2κex
,

R = |β0|2 + 2Re[β0β
∗
−b4/c6]�−2

c + {
2Re

[
β0β

∗
−(b2c6 − b4c4)/c2

6

] + |β−|2a2/c6
}
�−4

c − |β−|2a2c4/c2
6�

−6
c

|�p|2/2κex
,
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g(2)
T (0) = |α0|2

(|α0|2 + 4Re[α0α
∗
−b4/c6]�−2

c + 4
{
Re

[
α0α

∗
−(b2c6 − b4c4)/c2

6

] + |α−|2a2/c6
}
�−4

c − 4|α−|2a2c4/c2
6�

−6
c

)
(|α0|2 + 2Re[α0α

∗−b4/c6]�−2
c + {

2Re
[
α0α

∗−(b2c6 − b4c4)/c2
6

] + |α−|2a2/c6
}
�−4

c − |α−|2a2c4/c2
6�

−6
c

)2 ,

g(2)
R (0) = |β0|2

(|β0|2 + 4Re[β0β
∗
−b4/c6]�−2

c + 4
{
Re

[
β0β

∗
−(b2c6 − b4c4)/c2

6

] + |β−|2a2/c6
}
�−4

c − 4|β−|2a2c4/c2
6�

−6
c

)
(|β0|2 + 2Re[β0β

∗−b4/c6]�−2
c + {

2Re
[
β0β

∗−(b2c6 − b4c4)/c2
6

] + |β−|2a2/c6
}
�−4

c − |β−|2a2c4/c2
6�

−6
c

)2 .

(A13)

To demonstrate these results we compare Taylor expansion results with analytical results for the adiabatic elimination in Fig. 8.
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