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We present a method, based on Feynman path integrals, to describe the propagation and properties of the
quantized electromagnetic field in an arbitrary, nonlinear medium. We provide a general theory, valid for any
order of optical nonlinearity, and we then specialize the case of second-order nonlinear processes. In particular,
we show that second-order nonlinear processes in arbitrary media, under the undepleted pump approximation,
can be described by an effective free electromagnetic field, propagating in a vacuum, dressed by the medium
itself. Moreover, we show that the probability of such processes to occur is related to the biphoton propagator,
which contains information about the structure of the medium, its nonlinear properties, and the structure of the
pump beam.
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I. INTRODUCTION

Since the early days of laser physics, nonlinear optics
has been a very successful and intriguing field of research.
Nowadays, with the advent of quantum technologies, non-
linear optics has become the vital part of any quantum op-
tics experiment, as spontaneous parametric down-conversion
(SPDC) [1] constitutes the primary source of entangled pho-
tons [2]. In recent years, a significant effort has been made
to incorporate these sources of entangled photons in inte-
grated on-chip platforms, with the ultimate goal of realiz-
ing fully integrated quantum devices which will, ultimately,
constitute the basis for quantum computers [3]. To this aim,
quantum dots [4], quantum wells [5], photonic waveguides
[6–8], plasmonic structures [9], and metamaterials [10–12]
have been thoroughly investigated as possible candidates for
the next generation of integrated entangled photon sources.
The majority of theoretical frameworks currently available to
model and design the properties of such systems, however, has
been developed mainly for lossless systems (such as optical
waveguides), systems made of dispersionless elements only
[13–15], or complex geometries, but only interacting with few
optical modes [16–18]. An exception to this is represented by
a recent work where a method based on Green functions and
Born approximation has been proposed to study the nonlinear
wave mixing of light fields in metal-dielectric nanostructures
of arbitrary geometry [19].

On a seemingly unrelated matter, Feynman path integrals
have proven to be a very elegant and successful instrument
to describe very complicated systems, ranging from quan-
tum field theoretical problems to many-body problems in
condensed matter, and financial markets [20,21]. Although
path integrals are especially useful in quantum field theories,
they have been introduced into optics a number of times
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as a way to describe the properties of the electromagnetic
field in terms of coherent state representation [22], investigate
parametric amplification [23], atom-field interactions beyond
the rotating wave approximation [24], quantum decoherence
and dephasing in nonlinear spectroscopy [25], and the study of
retardation effects and radiative damping [26], to name a few.
Moreover, path-integral methods have been used in optics to
describe beam propagation [27], optical fiber communications
[28], nonparaxial optics [29], and the propagation of the elec-
tromagnetic field in homogeneous [30] and inhomogeneous
[31] media. In recent years, Bechler [32] has proposed a path-
integral approach to describe quantum electrodynamics in
linear dispersive media and, recently, a path-integral approach
has been proposed to describe temporal dynamics of the quan-
tized electromagnetic field in inhomogeneous media, based on
the method of the closed time path generating functional [33].

Here we apply path integrals to study the dynamics of
the quantized electromagnetic field in nonlinear, arbitrary
media. Such a theory would represent a viable tool to have
at one’s disposal for analytical (or semianalytical) methods
to investigate and quantitatively predict nonlinear interactions
of the electromagnetic field in complex systems, such as
metamaterials (which are typically realized in terms of stacks
of periodically arranged metallic or dielectric structures, with
complex geometries, where material loss can no longer, in
general, be neglected), epsilon near-zero media (where the
dynamics of conduction electrons has to be carefully taken
into account), and dielectric media with nontrivial geometries.
This is the aim of our work, namely, to develop a path-
integral-based theory describing the interactions of the quan-
tized (nonrelativistic) electromagnetic field in an arbitrary,
nonlinear medium. We develop a complete theory for the
quantized electromagnetic field solely, while the medium, in
our analysis, has not been quantized. We leave the full interac-
tion with the quantized electromagnetic field with quantized
matter (i.e., photon-polariton interactions) for future works.
Here, we focus our attention only on optical nonlinearities,
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with particular emphasis on second-order processes and, in
particular, to SPDC. Our findings show how the cross sec-
tion for second-order processes can be expressed, within the
undepleted pump approximation, in terms of a generalized
biphoton propagator, which describes the free propagation
of the signal and idler modes in the dressed vacuum of our
theory, in the presence of nonlinear interactions.

The purpose of this work is twofold. On one hand, we aim
at extending the existing formalism, developed by Bechler
[32] for linear systems, to the case of nonlinear media, thus
creating a complete framework for the description of the
dynamics of the quantized electromagnetic field in arbitrary
media. On the other hand, we aim to provide a “universal”
framework for the investigation of the properties of the elec-
tromagnetic field in nonlinear media. The general approach of
path integrals, in fact, will allow us to obtain results that are
universally valid for any medium, regardless of its geometry
or properties. This, we believe, will constitute a powerful tool
to gain insight into complex structures, which are becoming
more and more important, in current photonic research and
technology development.

This work is organized as follows: in Sec. II, we introduce
the formalism of path integrals, which constitutes the main
tool used throughout the paper, and we calculate the effec-
tive action for an electromagnetic field in a linear, arbitrary
medium, in terms of the vector potential solely. This section
is largely based on the results obtained in Ref. [32] and has
the main goal of fixing the notation and reviewing the method
used throughout our paper. The quantization of this effective
theory is presented in Sec. III, where a Fourier representation
of the dressed photon propagator is also given. In Sec. IV,
we discuss the nonlinear interaction of the effective electro-
magnetic field, while its representation in terms of Feynman
diagrams, for the specific case of χ2 nonlinearity, is given in
Sec. V. In Sec. VI, we apply our formalism to some explicit
cases, namely, SPDC from a one-dimensional (1D) medium,
and the generation of squeezed light by repeated cascaded
χ (2)processes. Finally, conclusions are drawn in Sec. VII.

II. PATH-INTEGRAL DESCRIPTION OF THE
ELECTROMAGNETIC FIELD IN ARBITRARY MEDIA

In this section, we briefly review the basic formalism
developed in Ref. [32], to describe, using the method of path
integrals, the propagation of an electromagnetic field in an
arbitrary linear medium. We start our analysis by considering
the following effective partition function:

Zeff [E, B] =
∫

D{q}e i
h̄ S[E,B;{q}] ≡ e

i
h̄ Seff [E,B], (1)

where E ≡ E(x, t ) [B ≡ B(x, t )] is the electric (magnetic)
field, while {q} represents a collection of degrees of freedom
associated with matter only (such as, as will be specified later,
matter polarization and loss channels). This effective partition
function is obtained from the total action of the system,
S[E, B, {q}] = ∫

dt d3x L[E, B, {q}], with L being the La-
grangian density, by integrating on all possible configurations
of the matter degrees of freedom, collectively described by
{q}. By doing this, the effect of the medium can be treated
macroscopically by means of an effective dielectric constant

[32]. Rather than considering the problem in terms of electric
and magnetic fields, as is done in Ref. [32], however, here
we derive the effective action in terms of the electromagnetic
potentials A ≡ A(x, t ) and � ≡ (x, t ), which are related to
the electric and magnetic fields via the well-known relations
[34]

E = −∂A
∂t

− ∇�, (2a)

B = ∇ × A. (2b)

The main advantage of this approach is that the effective
action can be written in a ready-to-be-quantized form where,
however, a suitable gauge needs to be specified. Although
there is a very well-known method for including the gauge
choice in the path-integral quantization of the electromagnetic
field, i.e., the so-called Faddeev-Popov gauge quantization
[35], here we explicitly choose a gauge, namely, the Weyl
gauge, where � = 0 [36], With this gauge choice, we model
our system using the Huttner and Barnett Lagrangian density
functional [37], which, as a function of the vector potential,
can be written as follows:

L[A, P, Yω] = Lem[A] + Lmat[P] + Lres[Yω]

+L f m[A, P] + Lmr[P, Yω], (3)

where the first three terms are, respectively, the Lagrangian
density of the free electromagnetic field, the matter polariza-
tion field P ≡ P(x, t ), and the reservoir field Yω ≡ Yω(x, t ).
Their explicit expressions are reported in Appendix A. The
interaction of light with matter is described by the term
L f m[A, P] and is assumed to be in a minimal coupling form
(namely, electric dipole approximation), i.e.,

L f m[A, P] = −g(x) Ȧ · P, (4)

where g(x) accounts for the medium geometry. In this model,
moreover, the electromagnetic losses are modeled as a reser-
voir of continuously distributed harmonic oscillators, each
characterized by a frequency ω, which interacts only with the
matter polarization field via the term

Lmr[P, Yω] = −g(x)
∫ ∞

0
dω f (ω, x) P · Yω, (5)

with f (ω, x) being the spectral coupling function between the
reservoir field and the matter field. The effective action and
the effective partition function then becomes

Zeff [A] =
∫

DPDYωe
i
h̄ S[A,P,Yω] = e

i
h̄ Seff [A], (6)

where the integration over P and Yω is to be understood as a
path integration, and DP and DYω are some suitable positive
measures defined on an appropriate manifold, which makes
the path integration correctly defined [20,38,39]. The details
about the calculation of the integrals above are sketched in
Appendix B. Using these results, we get

Seff [A] = Sem[A]

+ 1

2

∫
dt dt ′ d3x g(x)Ȧ(t, x)�(t − t ′, x)Ȧ(t ′, x),

(7)
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where the expression for the function �(t − t ′, x) is given in
Appendix B.

III. QUANTIZATION AND THE EFFECTIVE
FREE THEORY

To quantize the above theory, we first insert a coupling
term in Eq. (7), which takes into account the interaction of the
electromagnetic field with a fictitious source current J(t, x),
and then integrate over all the possible field configurations A.
If we then apply the same line of reasoning highlighted in
Appendix B to calculate the above integral, we can calculate
the above integral, arriving at the following result:

Z0[J] = N0e
i

2h̄

∫
dt dt ′ d3x d3x′ J(t,x)D(t−t ′,x−x′ )J(t ′,x′ ), (8)

where N0 is a suitable normalization constant, which is
related to Z0[0]. Notice, moreover, that the dressed photon
propagator D(t − t ′, x − x′) is a tensor of rank two, as it
connects different components of the vector fields J(t, x), and
J(t ′, x′). The knowledge of the quantum partition function
Z0[J] is sufficient to derive all the dynamical properties of
the field. For example, the propagator can be obtained through
functional derivation of Z0[J] with respect to the fields J, i.e.,
[40],

Dμν (t − t ′, x − x′) = ih̄
δZ0[J]

δJμ(t, x)δJν (t ′, x′)

∣∣∣∣
J=0

. (9)

The above equation links the μ component of the field at
time t and position x, with the ν component of the field, at
time t ′ and position x′, through the dressed photon propagator
Dμν (t − t ′, x − x′).

Fourier representation of the dressed photon propagator

Equation (9) describes the field dynamics in the time do-
main. In optics, however, it is easier to work in the frequency
domain, as the form of the dielectric function is typically
given as a function of frequency, rather than time [34]. It is
then useful to find a suitable representation for the dressed
photon propagator in the frequency domain, rather than in
the time domain. To this aim, we notice that the dressed
photon propagator D(t − t ′, x − x′) is the Green function of
the integrodifferential operator R̂, defined in Appendix C.
Then, we take the Fourier transform (with respect to time
t) of Eq. (C1), call Gμν (ω, x) the Fourier transform of the
dressed propagator, consider only positive frequencies, and
use the results of Appendix B to link the Fourier transform of
�(t − t ′, x) to the dielectric function of the medium ε(ω, x).
This gives us the following result:[(

−δμα∇2 + ∂2

∂xμ∂xα

)
− ω2

c2
ε(ω, x)δμα

]
Gαν (ω, x − x′)

= μ0δμνδ(x − x′). (10)

This allows us to interpret Gμν (x) as the Green function of
the Helmholtz equation for a monochromatic electromagnetic
field, propagating in an arbitrary medium, whose properties
are described by the dielectric function ε(ω, x) [41]. We
can then rewrite Eq. (8), using the Fourier representation
Gμν (ω, x) of the photon propagator, given by the equation

above, as follows:

Z0[J] = e
i

2h̄

∫
dω d3x d3x′ Jμ(ω,x)Gμν (ω,x−x′ )Jν (ω,x′ ). (11)

This is the first result of our work. The dynamics of the elec-
tromagnetic field in an arbitrarily shaped, linear medium can
be interpreted as those of an effectively free field, propagating
in a “vacuum” dressed by the properties of the medium, which
define the photon propagator Gμν (ω, x).

IV. INTERACTING THEORY

The partition function derived above only describes linear
dynamics of the electromagnetic field. To include nonlinear
dynamics, one has to define a suitable interaction Lagrangian
which correctly accounts for the desired nonlinearities. To
do that, let us first notice that optical nonlinearities are
typically quite small in magnitude and can, therefore, be
treated within the framework of perturbation theory. Then,
we recall that in optics, nonlinearities enter Maxwell’s equa-
tion through the field polarization �, which is typically
expressed in a power series of the electric field, i.e., � =
ε0(χ (1)E + χ (2)E2 + χ (3)E3 + · · · ), where χ (n) ≡ χ (n)(ω, x)
is the nth-order susceptibility tensor, with 1 + χ (1) = ε being
the dielectric function of the medium [1]. It is not difficult
to show that this kind of interaction can be generated by a
Lagrangian of the form

Lint[A] =
∞∑

n=2

(iω)n+1

(n + 1)!
χ(n) · An+1

= − iω3

3!
χ (2)

μνσ AμAνAσ + ω4

4!
χ (3)

μνστ AμAνAσ Aτ

+ higher orders, (12)

where summation over repeated indices has been implicitly
understood, and {μ, ν, σ, τ } ∈ {x, y, z}. Using the standard
results from Quantum field theory (QFT), we can then write
the partition function for the interacting, nonlinear theory as
follows [40]:

Z[J] = N e
i
h̄

∫
dω d3x Lint [ 1

i
δ
δJ ]Z0[J], (13)

where N is a suitable normalization constant, and the argu-
ment of the interaction Lagrangian appearing in the exponent
above has the meaning of replacing every entry of the vector
potential A with a functional derivative with respect to the
correspondent current component [40]. Equation (13) can then
be expanded perturbatively. To do that, we assume that the
magnitude of each nonlinear susceptibility tensor appearing in
Eq. (12) is very small (compared to the linear susceptibility),
i.e., |χ (n)| � χ (1), ∀n � 2, and that the higher-order nonlin-
earities are progressively smaller, i.e., |χ (n+1)| � |χ (n)|, ∀n �
2. Under these assumptions, which are verified for typical
nonlinear optical materials, we can expand the exponential
term appearing in Eq. (13) into a power series to obtain the
following result:

Z[J] = Z0[J] +
∞∑

k=2

Z (k)[J] + Zcross[J], (14)

where Z0[J] is the partition function of the free theory, as
given by Eq. (11), Z (k)[J] represents the correction to the
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partition function due to the presence of kth-order nonlinearity
in the medium, whose explicit form is given by

Z (k)[J] =
∞∑

n=1

ik+1

n!(k + 1)!

(
i

h̄

)n

×
[∫

dω d3x ωk+1 χ(k) ·
(

1

i

δ

δJ

)k+1
]n

Z0[J],

(15)

and Zcross[J] is the cross nonlinearity term, which contains
information about the interplay between the different or-
ders of nonlinearities (i.e., it contains terms proportional to

kχ

(k)χ(k+1)χ(k+2) · · · ).
In practical situations, however, this term can be neglected,

as it is typically of higher order, with respect to the order of
the considered nonlinearity [1]. Equation (14) then represents
the most general nonlinear interaction of the electromagnetic
field, with a medium containing all orders of optical nonlin-
earities, each one described by its own nonlinear susceptibility
χ(n). Written in this form, moreover, the above expression can
be easily translated in the language of Feynman diagrams. In
this work, however, we limit our attention to χ (2)−processes,
leaving the more rich structure of χ (3)−nonlinearities to fu-
ture investigations.

A. Interaction Lagrangian for second-order nonlinear processes

Second-order nonlinear processes involve the interaction of
three fields [1]. In this case, then, the nonlinear susceptibility
is a rank-3 tensor χσμν (ω, x) and, according to Eq. (12), the
interaction Lagrangian density describing such processes can
be written as

L(2)
int [A] = 1

3!
χσμν (ω, x)A(p)

σ A(s)
μ A(i)

ν , (16)

where the superscripts {p, s, i} stands for pump, signal, and
idler photon modes, respectively. Notice, moreover, that in
the equation above, the nonlinear susceptibility χσμν (ω, x)
has been redefined in such a way to include the term −iω3

appearing in Eq. (12), for later convenience. Equation (16)
describes all possible second-order processes, such as sec-
ond harmonic generation (SHG), sum (difference) frequency
generation (SFG/DFG), and (spontaneous) parametric down
conversion (SPDC). While SHG consists in the conversion of
two degenerate signal and idler modes into a pump one (with
SPDC being, practically, its inverse process), SFG (DFG)
describes the scattering of a signal (idler) photon into an idler
(signal) one, mediated by the presence of a pump photon [1,2].

B. Undepleted pump approximation and the quantum optical
dressed vacuum

In practical situations, nonlinear optics experiments are
typically carried out by using a very intense pump, which
stimulates the onset of nonlinear processes. The reason behind
this is very simple: as nonlinear processes are very weak, high
intensities, i.e., a high number of photons, are needed in order
to make the process probable enough to be observed. Under
these working conditions, then, the so-called undepleted pump
approximation is used, i.e., the pump mode A(p)

σ contains a
large number of photons and is often described in terms of

coherent states, and typically treated as a classical rather than
a quantum field. The occasional conversion of energy from
the pump to the signal and idler modes (regulated by the
energy conservation constraint ωp = ωs + ωi), then, does not
affect the number of photons contained in the pump mode,
which, in first approximation, can be considered to remain
constant. For this reason, therefore, the pump mode is often
considered as a classical object and it enters in the dynamics
only parametrically, de facto contributing to the definition of
an effective nonlinear coefficient.

In our theory, we can account for this approximation
by promoting the pump field A(p)

σ to be a classical field
and by introducing the effective nonlinear coupling constant
λμν (ωx) = χσμν (ω, x)A(p)

σ , so that Eq. (16) can be written as

L(2)
int [A] = 1

3!
λμν (ω, x)A(s)

μ A(i)
ν . (17)

It is worth noticing that the introduction of the nonlinear
interaction, and the consequent undepleted pump approx-
imation, redefine the quantum vacuum of this model in
such a way that the true vacuum of the effective theory
is dressed by the pump beam and can then be written as
|0〉 ≡ |{0ω}D; ωp〉, where {0ω}D is a shorthand for describing
all the frequency modes of the dressed electromagnetic field
and ωp highlights the fact that the vacuum state is dressed
by the pump mode. Within this framework, for example,
SPDC can then be described as the spontaneous generation
of a signal-idler photon pair from the vacuum, i.e., |0〉 →
|1s, 1i〉 = |{0ω, · · · 1ωs , 1ωi , · · · 0ω, · · · }; ωp〉, where 1ωs,i in-
dicates that a signal (idler) photon has been generated in the
mode at frequency ωs,i, respectively, according to the energy-
conservation constraint ωs + ωi = ωp.

We conclude this section by pointing out an interesting
fact. Thanks to the undepleted pump approximation, the in-
teraction Lagrangian appearing in Eq. (17) is quadratic in the
vector potential and describes an effective self-interaction of
the field, ultimately responsible for χ (2) nonlinear processes.
This hints at the possibility of describing the second-order
nonlinear interaction of the electromagnetic field in an arbi-
trary medium, within the undepleted pump approximation, in
terms of the dynamics of a non-Abelian gauge field [42].

C. Partition function for second-order nonlinear phenomena
in the undepleted pump approximation

We are now in the position to calculate the explicit expres-
sion of the partition function Z[J], for χ (2) nonlinearities in
the undepleted pump approximation. To do that, we substitute
Eq. (17) into the expression of Zk[J], with k = 2, and, for
the sake of simplicity, we limit ourselves to consider only the
first order of the expansion of the exponential term appearing
in Eq. (13). Higher orders, in fact, can be easily derived
using the same line of reasoning presented here. With a bit
of algebra, it is not difficult to show that the partition function
can then be written as Z[J] = Z0[J] + Z1[J] + O(λ2), with
Z0[J] given by Eq. (11), and Z1[J] can be written, after proper
normalization with respect to the free partition function has
been taken into account [40] as follows:

Z[J]

Z0[J]
=

(
1

2h̄

)2 ∫
d4xd4yJμ(x)X (2)

μν (x − y)Jν (y), (18)
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where

X (2)
μν (x − y) =

∫
d4zGμα (x − z)λαβ (z)Gβν (z − y) (19)

is the two-mode (or biphoton) propagator, which describes the
dynamics of the signal and idler fields under the effect of the
nonlinear interaction.

This is the main result of our work. Second-order non-
linear processes in the undepleted pump approximation are
described by the quantum partition function given in Eq. (18),
which is in the form of the partition function of a free quantum
field, characterized by the biphoton propagator X (2)

μν (x − y).
This result constitutes a generalization of the traditional
biphoton wave-function approach to nonlinear optical pro-
cesses [43–45] since it does not only contain information
about the various frequency modes involved in the dynamics,
as in the traditional approach, but it also contains information
about the spatial distribution of the electromagnetic field
inside the medium and the properties of the medium itself.

V. FEYNMAN DIAGRAM REPRESENTATION FOR Z[J]

To make our result clearer, we now rewrite Eq. (13) in
terms of Feynman diagrams. To start with, we rewrite Eq. (13)
in the following form:

Z[J] = N e
i
h̄

∫
dω d3x Lint [ 1

i
δ
δJ ]Z0[J]

= N
∞∑

V =0

1

V !

{
i

3!h̄

∫
d4zλαβ (z)

[
1

i

δ2

δJα (z)δJβ (z)

]}V

×
∞∑

P=0

1

P!

[
i

2h̄

∫
d4xd4y Jμ(x)Gμν (x − y)Jν (y)

]P

.

(20)

If we compare Eqs. (20) and (18), it is not difficult to see
that Eq. (20) reduces to Eq. (18) for V = 1 and P = 2. This
means that Eq. (18) only contains single interaction events
(V = 1 means, in fact, that only one vertex is allowed in
the corresponding Feynman diagram) and two-photon modes,
represented by two propagators (hence, P = 2) [40].

We can then introduce the Feynman rules for χ (2) non-
linearities as follows: a dashed line segment represents the
dressed vacuum state |0〉 ≡ |{0ω}D; ωp〉; a wiggled line rep-
resents the dressed photon propagator Gμν (x − y)/(ih̄); a
dashed crossed dot line indicates an external source cur-
rent Jμ(x); a black dot indicates a vertex, where, at max-
imum, two lines can join (the dashed line representing
the dressed vacuum does not count towards this limit). To
each vertex representing the nonlinear interaction, the term
(i/3!h̄)

∫
d4zλαβ (z) is associated; at each vertex, energy con-

servation must be fulfilled. With these rules at hand, we can
calculate the partition function Z[J] and the related correla-
tion functions 〈Aμ(x1) · · · Aν (xn)〉 in a very intuitive way. Let
us illustrate this with an example. In terms of the Feynman
diagrams introduced above, the free partition function Z0[J]
can be written as follows:

(21)

FIG. 1. Relevant Feynman diagrams for χ (2) processes, corre-
sponding to the various terms composing Z[J]. (a) Generation of a
signal-idler (ωs)-(ωi) photon pair from the dressed vacuum (SPDC).
(b) Scattering of a photon from the signal mode ωs to the idler
mode ωi (DFG). (c) Annihilation of a signal-idler photon pair in
the dressed vacuum (SFG). The Feynman diagrams depicted in this
figure, and all the others throughout the paper, have been generated
using TikZ-Feynman [46].

where each current node has been labeled with its corre-
sponding current term, for later convenience. Assume now
that we are interested in calculating the two-point correlation
function, 〈Aμ(x1)Aν (x2)〉, whose explicit form is given as
follows:

(22)

In terms of Feynman diagrams, this can be understood as
follows: every functional derivative in the equation above
removes a source (crossed dot) from Z0[J] and labels the
correspondent endpoint with the coordinate x1,2 ≡ {ω, x1,2},
at which that specific functional derivative is taken. The end
result of this calculation is, as expected, the dressed photon
propagator Gμν (ω, x1 − x2).

A. Relevant diagrams for Z[J]

The fundamental Feynman diagrams for χ (2) processes are
shown in Fig. 1. There are three relevant diagrams, describing
the three basic χ (2) processes of SPDC [Fig. 1(a)], DFG
[Fig. 1(b)], and SFG [Fig. 1(c)]. However, as χ (2) processes
involve three photons, one would expect six different dia-
grams (as there are 3! = 6 different ways to arrange the three
different diagrams appearing in Fig. 1). The missing three
diagrams can be easily obtained from the ones depicted in
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Fig. 1 by exchanging the role of the signal and idler modes.
Moreover, notice that SHG is a special case of Fig. 1(c), when
the signal and idler photons are degenerate, i.e., ωs = ωi =
ωp/2.

In terms of Feynman diagrams, then, the partition function
for χ (2) processes can be written, at the order O(λ), as follows:

(23)

B. Cross section for χ(2) processes

From a physical point of view, the processes depicted in Fig. 1 are very different. SPDC, for example, is a spontaneous
process, originating from the dressed vacuum. DFG and SFG, on the other hand, require the preexisting presence of signal
and/or idler photons that can seed the process and make it possible.

Despite the physical and conceptual difference between the various nonlinear processes described by χ (2) nonlinearities,
however, their cross section is the same for any of such processes, and proportional to the two-point correlation function
〈Aμ(x)Aν (y)〉. The reason for this resides in the fact that in the undepleted pump approximation, the interaction Lagrangian
describing χ (2) processes is quadratic in the vector potential and, therefore, nonlinear interactions can be described in terms of
effective, self-interacting free fields, for which the only relevant quantity is the two-point correlation function [47]. For the case
of SPDC, for example, we have

(24)

where x = {ωs, x}, and y = {ωi, y}.

C. Cascaded χ(2) processes

If we want to account for higher-order processes, such as the one depicted in Fig. 2, we need to expand the expression of
Z[J] so that it also accounts for higher powers of the coupling constant λ. These processes, in optics, are known as cascaded
processes. To describe such processes within the framework developed in the previous section, we need to write the partition
function as Z[J] = Z0[J] + Z1[J] + Z2[J] + O(λ3), where Z2[J] accounts for the occurrence of nonlinear interactions with
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two vertices. In terms of Feynman diagrams, it can be written as follows:

(25)

Contrary to first-order processes, which all have the same
cross section, in this case the cross section is different for
different processes. A careful analysis of the diagrams pre-
sented above, in fact, reveals that they can be grouped into
two groups, namely, those diagrams containing two current
sources and those containing four. Processes belonging to
these two classes will have different cross sections, as dia-
grams with only two sources will have an extra factor of two
in their cross section (as there are 2! = 2 equivalent diagrams,
corresponding to the two different way to arrange two current
sources), while the processes containing four current sources
will have an extra factor of 24, as we can arrange the four
current sources in 4! = 24 different ways. As an example, we
report the cross section for the cascaded SPDC process, i.e.,

FIG. 2. Higher-order Feynman diagram depicting the process
|0〉 → |1s, 1i〉 → |2i〉. First, a signal-idler photon pair is created
from the dressed vacuum (first interaction point), as described by
Fig. 1(a). Then, since the state of the system after this interaction
is given by |1s, 1i〉, a second first-order process (second interaction
point), namely, the scattering of a signal photon into an idler one
[Fig. 1(b)], might take place. However, since this process involves
V = 2 vertices, it is a process of order O(λ2), and therefore not
present in the expression of Z[J], which only contains processes up
to O(λ).

for the third diagram appearing in Eq. (25),

(26)

where x1,2 = {ωs,i, x1,2} are the coordinates associated to the
first signal-idler photon pair, while x3,4 = {ωs,i, x3,4} are as-
sociated to the second signal-idler photon pair. In general,
x1,2 �= x3,4 since the two-photon pair might be generated at
a slightly different frequency (especially if a broadband pump
is used for this process) or they might be generated in different
points inside the nonlinear medium. In the special case, in
which the signal and idler modes are degenerate, the above
expression simplifies to σ casc

SPDC = 24[σSPDC]2. This result will
be useful when describing the generation of squeezed light.

VI. SOME EXAMPLES

In this section, we apply the formalism developed above
to two simple examples, namely, the occurrence of SPDC in
a one-dimensional, homogeneous, nonlinear medium and the
generation of squeezed light from repeated cascaded SPDC
processes.

A. SPDC in a one-dimensional waveguide

Let us consider a one-dimensional, homogeneous, non-
linear optical waveguide of length L along the x direction,
characterized by a refractive index n(ω) and a nonlinear
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susceptibility χ (2)
μνσ ≡ χ . We then introduce the signal and

idler wave vectors in the medium, as ks,i(ω) = k0nr (ωs,i ) ≡
ks,i. Then, the nonlinear coupling constant appearing in
Eq. (24) assumes a simpler expression, namely, λαβ (z) =
χAp exp [i(kpx − ωpt )], and, in particular, is independent
of z.

For a one-dimensional, homogeneous medium, the dressed
photon propagator can be easily calculated from Eq. (10),
giving

G(ω, x − y) = 1

2ik(ω)
[�(x − y)ei[k(ω)(x−y)−ωt]

+�(y − x)e−i[k(ω)(x−y)−ωt]], (27)

where �(x) is the Heaviside step function [48,49]. We can
now calculate the explicit expression of the biphoton propa-
gator X (2)

μν (x − y), which in this case is given by

X (2)(x − y) = �(x − y)G(x, y)ei�ωt L sinc

(
L�k

2

)
+ phase mismatched terms, (28)

where �ω = ωp − ωs − ωi is the frequency mismatch, con-
strained to be zero by energy conservation, i.e., by ωp =
ωs + ωi [1], �k = kp + ks + ki is the phase mismatch,

and

G(x, y) = χAp

4kski
e−i(ksx+kiy). (29)

The label phase mismatched terms in the above equation,
moreover, refers to those terms in the expression of X (2)(x −
y) that violate either the energy or the momentum conser-
vation laws, and that are therefore forbidden. If we assume
perfect phase matching, i.e., �k = 0, the probability for a
SPDC event to occur is then given by

P(L) ∝ |σSPDC|2 ∝ L2 sinc2

(
L�k

2

)
, (30)

which is in accordance with standard results [1].

B. Squeezing

In this second example, we consider the situation of the
occurrence of N cascaded SPDC processes, and we investigate
how this process can be connected to squeezing. To make
things easier, let us assume that SPDC is degenerate, i.e., that
the signal-idler photon pair has the same frequency, namely,
ωs = ωi ≡ �, and it is created in the same frequency mode.
The partition function describing this process then contains
all the SPDC events, up to order N in the expansion in power
series of λ, i.e.,

(31)

where the last diagram contains N cascaded SPDC pro-
cesses. The diagrams shown above describe processes of
the type |0〉 → |0〉 + |2〉 → |0〉 + |2〉 + |4〉 → · · · → |0〉 +
|2〉 + |4〉 + · · · + |2N〉.

For cascaded processes, it is not difficult to show that
σ casc ∝ σ N/2. If we now let N → ∞ and reconstruct the final
state of the electromagnetic field as the sum of all these
interactions, we obtain

|ψ〉 =
∑

k∈{even}
ψk (σSPDC)k|k〉, (32)

where ψk is a suitable normalization constant, chosen in such
a way that 〈ψ |ψ〉 = 1. A closer inspection on |ψ〉 reveals
that it only contains states with an even number of photons
in them. This is the typical form of a single-mode squeezed
state [2], i.e.,

|ξ 〉 =
√

sech s
∑

k∈{even}

√
(2k)!

k!

(
−1

2
eiθ tanh s

)k

|k〉, (33)

where ξ = s exp (iθ ) is the squeezing parameter.
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If we compare Eq. (32) with Eq. (33), we can relate, up to
a normalization constant, the squeezing parameter ξ with the
SPDC cross section and, therefore, with the properties of the
nonlinear medium. We then have

ψkσ
k
SPDC =

√
sech s

(2k)!

k!

(
−1

2

)k

tanhk seikθ . (34)

If we now call σSPDC = ρσ eiϕσ , where, according to Eq. (24),

ρσ = 1

h̄2

∣∣X (2)
μν (x − y)

∣∣, (35a)

ϕσ = Arg
{
X (2)

μν (x − y)
}
, (35b)

and substitute these expression into Eq. (34), we have, up to a
normalization constant,

tanh s = ρσ = 1

h̄2

∣∣X (2)
μν (x − y)

∣∣, (36a)

θ = ϕσ = Arg
{
X (2)

μν (x − y)
}
. (36b)

This is an important result. A careful analysis of the equa-
tions above reveals, in fact, that the amplitude and phase of
the squeezing parameters are, in the general case, not only de-
termined by the properties of the pump beam (as is usually the
case [2]), but also by the properties of the medium, encoded in
the Green functions for the signal and idler modes, appearing
in the definition of the biphoton propagator as well as the
geometry of the interaction, i.e., along which directions (with
respect, for example, to the principal axes of the nonlinear
medium) the signal and idler photons are emitted. For simple
cases, the above result reduces to the well-known result that
the squeezing parameter is controlled by the pump beam [2].
In fact, if we consider the particular case of one-dimensional
SPDC treated above and we assume plane-wave illumination,
i.e., Ap = |Ap| exp (iφp), we can analytically calculate the
modulus and phase of the squeezing parameter using Eq. (28),
which gives, in the case of perfect phase matching (i.e., �k =
0), the following result:

s = ln

√
4kski + χ |Ap|L
4kski − χ |Ap|L , (37a)

θ = φp − (ksx + kiy), (37b)

which is in accordance with standard quantum optical calcu-
lations [2]. It is interesting to notice, however, that while the
squeezing strength s only depends on the pump amplitude,
the squeezing phase θ depends on the pump phase and,
surprisingly, on the position at which the signal and idler
photons are actually detected.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, our work presents a complete toolkit, based
on the method of path integrals and Feynman diagrams,
for calculating the classical and quantum properties of the
electromagnetic field in an arbitrary, nonlinear medium. In
particular, we have presented how this method can be used to
describe second-order nonlinear processes and that the quan-
tity of interest in this case is the biphoton propagator defined
in Eq. (19). Moreover, we have presented two examples of
application of our formalism, one to the very simple and

well-known case of SPDC from a one-dimensional nonlinear
crystal and the other based on the origin of squeezing from
multiple cascaded SPDC events.

In future works, we intend to refine this formalism by
investigating in more detail the connection between the ef-
fective interaction Lagrangian in Eq. (17) and the possibility
of describing χ (2) processes in terms of non-Abelian free
gauge fields, with the ultimate goal of defining a suitable
framework where the limits and validity of the undepleted
pump approximation can be discussed. Moreover, we intend
to extend our results to the case of third-order nonlinearities,
as well as to include the quantum effects of matter, by study-
ing photon-polariton interactions. The model developed in this
work, in fact, already contains information about polaritons
in the medium, as has been pointed out already in Ref. [32].
A more detailed study of the interaction, at a quantum level,
of photons and polaritons in arbitrary media, moreover, could
shine new light on the origin of nonlinear effects in complex
media, such as metamaterials and metasurfaces.
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APPENDIX A: LAGRANGIAN DENSITIES
OF THE FREE FIELDS

In this Appendix, we report the explicit expressions for the
free terms of the Lagrangian density appearing in Eq. (3),
namely, the Lagrangian density of the free electromagnetic
field,

Lem[A] = ε0

2
Ȧ2 − 1

2μ0
(∇ × A)2, (A1)

the Lagrangian density of the free matter polarization field,

Lmat[P] = g(x)

2ε0ω
2
0β(x)

[
Ṗ2 − ω2

0P2
]
, (A2)

and the Lagrangian density of the reservoir field,

Lres[Yω] = g(x)
∫ ∞

0
dω

ρ(x)

2

[
Ẏ2

ω − ω2Y2
ω

]
. (A3)

In the above equations, the dot indicates derivation with
respect to time. Notice, moreover, that the matter polariza-
tion field is modeled by a harmonic oscillator with resonant
frequency ω0. The coefficient β(x) is dimensionless and rep-
resents the static polarizability of the medium. The quantity
ρ(x) appearing in Lres, moreover, is the mass density per unit
frequency associated with each reservoir oscillator.

APPENDIX B: DERIVATION OF THE EFFECTIVE
PARTITION FUNCTION

In this Appendix, we will show how to calculate the
integrals appearing in Eq. (6), using simple arguments, based
on Gaussian integrals. Before proceeding with the integration,
however, let us rewrite Eq. (6) in the following form, which
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will be easier to deal with in the next sections:

Zeff [A] = e
i
h̄ Sem[A]IP[A], (B1)

where

IP[A] =
∫

DP e
i
h̄ (Smat[P]+Sm f [A,P])IY [P], (B2)

and

IY [P] =
∫

DYω e
i
h̄ (Sres[Yω]+Smr [Yω,P]), (B3)

and the various actions defined above are defined according
to the definitions of the correspondent Lagrangian densities
defined in Eq. (3).

1. Calculation of IY [P]

To calculate IY [P], we need to write the exponent in
Eq. (B3), i.e.,

Sres[Yω] + Smr[Yω, P]

=
∫

dt d3x
∫ ∞

0
dω g(x)

×
[
ρ

2
Ẏ2

ω − ρω2

2
Y2

ω − f (ω)P · Ẏω

]
, (B4)

as a quadratic form, i.e., (Yω, ÂYω ). To bring the above term
in the desired form, we can first integrate by parts, with respect
to time, the last term to shift the time derivative from the
reservoir field to the matter field. Then, we can transform the
first term by using the identity

(
∂φ

∂t

)2

= ∂

∂t

(
φ

∂φ

∂t

)
− φ

∂2φ

∂t2
, (B5)

and then integrate once more by parts, with respect to time.
We can then rearrange the result to obtain

Sres[Yω] + Smr[Yω, P]

=
∫

dt dt ′ d3x
∫ ∞

0
dω g(x)

×
{
−1

2
[Yω(t ′), Â(t, t ′)Yω(t )] − [b(t ′), Yω(t )]

}
, (B6)

where a second time integration has been included to express
the operator Â = Â(t ′, t ), so that it can be interpreted as an
actual propagator (or Green function) and

Â → iρg(x)

2h̄

(
∂2

∂t2
+ ω2

)
δ(t − t ′), (B7a)

b → − i

h̄
g(x) f (ω)δ(t − t ′)Ṗ. (B7b)

We are now in the position to solve the integral in Eq. (B3),
which gives

IY [P] = NY e
1
2 (b,Â−1b), (B8)

where NY is a normalization constant and

(b, Â−1b) = − i

h̄

[ ∫
dt d3x

∫ ∞

0
dω

| f (ω)|2g(x)

ρ
P(t )2

+
∫

dt dt ′ d3x
g(x)

ρ
P(t )G(t − t ′, x)P(t ′)

]
,

(B9)

where we have defined

G(t − t ′, x) =
∫ ∞

0
dω ω2| f (ω)|2DF (t − t ′, ω) (B10)

as the time-domain Green function of the reservoir field.
Notice that the inverse operator Â−1 appearing above can be
calculated from the following solution of the one-dimensional
wave equation:(

∂2

∂τ 2
+ ω2

)
DF (τ, ω) = δ(τ ), (B11)

where

DF (t − t ′, ω) =
∫

d�

2π

ei�(t−t ′ )

ω2 − �2
(B12)

is the Feynman propagator [40]. With this in mind, it is then
not difficult to show that

Â−1 → h̄

iρg(x)
DF (t − t ′, ω). (B13)

2. Calculation of IP[A]

We can now turn our attention to the integral in Eq. (B2),
given the results we obtained above for IY [P]. The method
to solve this integral is pretty much the same as the one
outlined above, i.e., in the form of a Gaussian integral. To this
aim, let us first notice that the exponent of Eq. (B8) contains
a term proportional to P2, which can be summed with the
correspondent quadratic term appearing in the free part of the
matter action, Smat[P]. To do this, we first define the quantity

v(ω) = f (ω)
√

ε0ω
2
0βρ, and introduce the scaled resonance

frequency,

ω̃2
0 = ω2

0 +
∫ ∞

0
dω

|v(ω)|2
ρ2

. (B14)

The next step is then to integrate by parts the term proportional
to Ṗ2 and introduce an extra time integration so that the total
exponent appearing in the integral (B2) can then be written as
(P, ÂP) + (b, P), where, in this case,

Â → ig(x)

h̄ε0ω
2
0β

(
∂2

∂t2
+ ω̃2

0

)
δ(t − t ′) − ig(x)

h̄ρ
G(t − t ′, x),

(B15)

b = − ig(x)

h̄
Ȧ. (B16)

By now carrying out Gaussian integration over the matter
degrees of freedom P, we get the following result:

IP[A] = e
i

2h̄

∫
dt dt ′ d3x g(x) Ȧ(x,t )�(t−t ′,x)Ȧ(x,t ′ ), (B17)
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where �(t − t ′, x) is the solution of the following, integrodif-
ferential equation [32]:

1

ε0ω
2
0β

(
∂2

∂t2
+ ω̃2

0

)
�(t − t ′, x)

− 1

ρ

∫
dτ G(t − τ, x)�(τ − t, x) = δ(t − t ′). (B18)

3. Physical meaning of �(t − t ′, x)

The function �(t − t ′, x) defined above contains all the
information about the medium in which the electromagnetic
field is propagating and can be interpreted as a kind of
effective dielectric constant for the “dressed” electromagnetic
field, as discussed in detail in Ref. [32] and reported briefly in
this Appendix.

The effective Lagrangian associated with the effective ac-
tion defined in Eq. (7) can be written in terms of the electric
and magnetic fields in the Fourier domain as follows:

Leff [A] = ε0|E(�, x)|2 + 1

μ0
B(�, x)|2

+ g(x)�2�̃(�, x)|E(�, x)|2, (B19)

where �̃(�, x) is the Fourier transform of �(t − t ′, x). Ac-
cording to standard field theory [50], the electric displacement
D(�, x) can be directly derived from the effective Lagrangian
as follows:

D(�, x) = ∂Leff

∂E∗ = ε0E(�, x) + g(x)�̃(�, x)E(�, x).

(B20)

From the above equation and by recalling the constitutive
relation D = ε0εE [34], it is possible to define the (positive-
frequency) effective dielectric constant as

ε+(�, x) = 1 + g(x)

ε0
�̃(�, x), (B21)

while the negative-frequency part of the dielectric constant
can be obtained by analytic continuation, namely, ε−(�, x) =
ε∗
+(�, x).

APPENDIX C: EXPLICIT EXPRESSION
OF THE R̂ OPERATOR

The differential operator R̂ introduced in Sec. III to express
the action Sq[A, J] in a quadratic form is a vector operator,
which can be written as R̂ = R̂(0) − +g(x)∂2�̂/∂t2, where �̂

is the operator, whose Green function is given by �(t − t ′, x),
as defined in Eq. (B18), and R̂(0) is a vectorial operator, whose
components R̂(0)

μν are given as follows:

R̂(0)
μν (t − t ′, x − x′) =

[(
ε0

∂2

∂t2
− 1

μ0
∇2

)
δμν + 1

μ0

∂

∂xμ

∂

∂xν

]

δ(t − t ′)δ(x − x′), (C1)

where (μ, ν) ∈ {1, 2, 3} and we set {x, y, z} ≡ {x1, x2, x3}.
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