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Vectorial nonlinear optics: Type-II second-harmonic generation driven by spin-orbit-coupled fields
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Vectorial nonlinear optics refers to the investigation of optical processes whose nonlinear polarization (NP)
undergoes spin-orbit-coupling (SOC) interactions where, in general, the driving light field or the new field
generated by the interaction contains the SOC property. To contribute to fundamental knowledge in this domain,
we examine the type-II second-harmonic generation (SHG) induced by vectorial laser modes. First, we provide
a general theory to analyze the vectorial SHG process. Second, by using two typical vector modes as examples,
we show how the SOC of the pump field dictates nonlinear interaction. Finally, we corroborate our theoretical
predictions through experiments to confirm the crucial role of the SOC in nonlinear interactions. These results
enhance our fundamental understanding of SOC-mediated nonlinear optics and lay the foundation for further
fundamental studies as well as possible applications.
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I. INTRODUCTION

Since Maiman announced the first operative laser in 1960
based on the theory of Schawlow and Townes [1], the unprece-
dented brightness of the coherent light obtained made it pos-
sible to generate strong light-matter interactions that enable
high-order optical response from the materials, or rather non-
linear polarization (NP), to reach an observable level. Only
a year later, Franken et al. observed the first laser radiation-
induced nonlinear effect—i.e., second-harmonic generation
(SHG)—that prompted research on nonlinear optics [2]. Ow-
ing to its fundamental aspects and potential applications,
nonlinear optics has rapidly emerged as an important subfield
of modern optics and photonics [3–15]. Today, driven by
continued advances in laser techniques over the past several
decades, the longitudinal dimension of this field has expanded
into ultrashort-time and ultrahigh-intensity regions [16–19].
By contrast, in the transverse dimension, both from the theo-
retical and applied aspects, research has focused on Gaussian
(TEM00) beams with scalar states of polarization (SOP). This
can be attributed to the fact that although research on laser
fields with spatially variant SOP, i.e., the so-called vector
mode, traces back to the 1970s [20,21], most commercial laser
resonators are designed to generate TEM00 beams or pulses
with a linear polarization for highly efficient generation.

More recently, progress in the physics behind spatially
variant SOP, i.e., photonic spin-orbit-coupling (SOC) inter-
actions [22–25], has significantly enhanced our capability
to shape and control light-matter interactions. These highly
customizable interactions have promoted a series of advances
in photonics, ranging from super-resolution microscopy, laser
trapping, and optical metrology, to fundamental physics
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[26–31]. Remarkably, the SOC-mediated light-matter interac-
tions can provide an additional interface to tailor nonlinear
optical processes that can significantly extend our understand-
ing of nonlinear optics. Specifically, as the origin of nonlinear
interactions, NP, i.e., the electric dipole moment in nonlinear
media driven by laser fields, relies heavily on both the SOP
and the spatial structure (i.e., phase and intensity profiles)
of the applied fields. In the vectorial case, NPs created by
vector modes thus possess significantly SOP-dependent spa-
tial structures. These SOC-mediated NPs, on the one hand,
introduce a host of vector nonlinear optical phenomena and
rich functionalities that have no analog in scalar interactions,
and, on the other hand, provide a promising way to generate,
control, and characterize structured light. As a consequence,
this emerging field has garnered growing interest in research
and revived work on fundamental nonlinear optics [32–44].

The central premise of exploring this emerging field is
to develop a general theoretical toolkit that can completely
describe and analyze vectorial nonlinear optical processes,
and yet it is a missing fundamental component. In light of
this situation, we conduct a series of fundamental studies—the
vectorial nonlinear optics series—involving typical second-
and third-order nonlinear optical processes. Specifically, for
a second-order interaction, owing to the fixed polarization
dependence of the nonlinear medium, the reference frame
of the polarization of the medium and the SOC state of the
applied field codetermine the spatial structure of the excited
NP. For a third-order interaction, the medium has more free-
dom to generate NPs, and thus more extraordinary phenomena
can be expected. Remarkably, the boundary between classical
and quantum optics is blurring. The quantum attribute of
“nonseparability” can now be exploited in the classical beam,
and vector modes fall into this category [45–51]. In view of
this, in this series, we choose well-established Dirac nota-
tion to describe and analyze vector modes and the nonlinear
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interactions between them. The vectorial nonlinear interaction
can thus be regarded as an information-related interaction
between (among) qubits (vector light) via an apparatus (non-
linear media). Moreover, in future work, we can readily ex-
tend the results here to study quantum nonlinear interactions
involving SOC-based hyperentanglement photons.

In this first paper of the series, we start from the type-
II SHG, the simplest nonlinear interaction, to discuss the
phenomena induced by SOC-mediated NPs. The remainder
of this paper is organized as follows: We first present a
general theoretical framework (Sec. II), based on which we
then (Sec. III) analyze the influence of vector pump fields
on the spatial structure of the excited NPs as well as the
beam profiles of the SHG fields upon propagation. Finally,
we experimentally prove the validity and accuracy of the
theory (Sec. IV). Both in the theoretical analysis and the
experimental demonstration, we consider type-II SHG in a
lossless nonlinear optical medium involving collimated and
monochromatic input vector beams.

II. THEORY

A. Nonlinear polarizations of vectorial type-II SHG

As a typical second-order nonlinear optical process, the
NP of the SHG is driven by the quadratic beating of the
applied pump field. Specifically, for the type-I SHG driven
by a scalar spatial mode |ψ〉 = A(r, ϕ, z)|k(ω)〉, the cor-
responding NP can be expressed as |PNL〉 = 0.5κ|ψ〉2 =
0.5κA2(r, θ, z)|k(2ω)〉, where κ = ε0χ

(2) is a nonlinear cou-
pling coefficient, and A(r, θ, z) and |k(ω)〉 denote the spatial
complex amplitude and wave-vector term eik(ω)z of the mode,
respectively. The type-II SHG is a sum-frequency generation
between orthogonal, linearly polarized components of the
pump field. If we assume that the interaction is phase matched
with respect to the horizontally (êH) and vertically (êV) polar-
ized components of the pump, i.e., the most common case in
type-II crystals, the NP created in the crystal by an incident
pump with an SOP of |ê+〉 = √

α|êH〉 + eiϕ
√

1 − α|êV〉, or
explicitly as |ψS〉 = |ê+,ψ〉, can be expressed as a SOP-
dependent quadratic beating relation:

|PNL〉 = κ〈êH | ψS〉〈êV | ψS〉
=

√
α(1 − α)κeiϕA2(r, θ, z)|k(2ω)〉, (1)

where α ∈ [0, 1] and eiϕ represent the mode weight and the
intramode phase of the SOPs, respectively. From Eq. (1), it
is clear, as also shown in Fig. 1(a), that, first, the spatial
profile of the created NP was the quadratic beating of the
pump field that led to a shrinking in the waist of the beam
of the SHG field (compared with the pump). Second, unlike
the type-I SHG, the intensity of the NP, i.e., INP=〈PNL | PNL〉,
is governed by a variable term

√
α(1 − α) � 0.5, namely,

INP ∝ α(1 − α). This indicates that the intensity of the type-II
SHG completely vanishes for the êH- or êV-polarized pump,
and reaches the maximum for circularly (êL and êR) or diago-
nally (êD and êA) polarized pumps. Moreover, the intramodal
phase eiϕ appearing on the right-hand side of Eq. (1) can in-
fluence the initial dynamic phase of the generated SHG fields.
These well-known facts in scalar nonlinear optics, however,

FIG. 1. Schematic representation of the comparison between
scalar (a) and vector type-II SHGs, (b,c).

change radically when vector pump fields are involved, as is
discussed in more detail below.

The spatially variant SOP of the vector modes originate
from the subwavelength-scale inhomogeneities within the
laser fields, i.e., the geometric phase structure. Therefore,
the vectorial laser fields can be generally regarded as in
a nonseparable SOC state with respect to the orthogonal
SOP {ê+, ê−} and associated SOP-dependent spatial modes
{ψ+, ψ−}, which are, respectively, given by

|ψSOC〉 =
√

β|ê+, ψ+〉 + eiφ
√

1 − β|ê−, ψ−〉, (2)

and

|ê+〉 = √
α|êH〉 + eiϕ

√
1 − α|êV〉,

|ê−〉 = √
1 − α|êH〉 − eiϕ√

α|êV〉, (3)

where β ∈ [0, 1] and eiφ denote the mode weight and asso-
ciated intramode phase of the SOC state, respectively. For
this qubitlike state, we can use the “concurrence” of SOC
states to quantify its SOC strength, or rather the degree of
nonseparability with respect to the orthogonal base of the SOC
space [45–51]. This is given by CSOC = 2

√
β(1 − β ), where

CSOC ∈ [0, 1] corresponding to the SOP from pure scalar to
full vector. According to Eq. (1), we can express the NP of the
type-II SHG driven by a vector mode shown in Eq. (2) as∣∣PNL

SOC

〉 = κ〈êH | ψSOC〉〈êV | ψSOC〉 = κeiϕ|ψH〉|ψV〉, (4)

with a group of êH- and êV-dependent spatial modes,

|ψH〉 =
√

αβ|ψ+〉 + eiφ
√

(1 − α)(1 − β )|ψ−〉,
|ψV〉 =

√
(1 − α)β|ψ+〉 − eiφ

√
α(1 − β )|ψ−〉. (5)

From Eqs. (3) and (4), we see that the vectorial NP is
created by the quadratic beating (or two-wave coupling) of
two SOP-dependent spatial modes. Note that |ψH〉 and |ψV〉
are not usually orthogonal to each other, unless CSOC = 1.
Now, by substituting Eq. (5) into Eq. (4), we can reformulate
the NP as∣∣PNL

SOC

〉 = κeiϕ (a1|ψ+〉2 + a2|ψ−〉2 + a3|ψ+〉|ψ−〉)

= κeiϕ (a1|ψ1〉 + a2|ψ2〉 + a3|ψ3〉), (6)
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where |ψ1,2,3〉 denote various spatial-mode components of
the created NP, and their corresponding complex probability
amplitudes a1,2,3 are given by

a1 =
√

α(1 − α)β,

a2 = ei(2φ+π )
√

α(1 − α)(1 − β ),

a3 = eiφ (1 − 2α)
√

β(1 − β ). (7)

Note that the components |ψ1,2,3〉 shown in Eq. (6) are
spatial modes constructed by two-wave couplings |ψ+〉2,
|ψ−〉2, and |ψ+〉|ψ−〉, respectively. The degree of coupling
depends on their overlap in the transverse plane. For the
third component, owing to the possible difference between
〈ψ+ |ψ+〉 and 〈ψ− |ψ−〉 in plane {r, ϕ}, we have a relation∫∫ 〈ψ3 |ψ3〉drdθ ∈ [0, 1].

Equations (4)–(7) provide a general description of the type-
II SHG driven by a vector mode, and Eqs. (6) and (7) represent
the selection rule for the spatial structure of the NP created by
the vector modes. From the above equations, we find that the
interaction is governed fully by the SOC state of the incident
pump, or rather by the coupling of SOP-dependent spatial
modes |ψH〉|ψV〉, as two specific examples shown in Figs. 1
(b) and 1(c). In this realm, the SOC state of the applied pump
plays a vital role in vectorial interaction—i.e., it directly de-
termines both the spatial structure and the intensity of the NP
created in the crystal. For the selection rule shown in Eqs. (6)
and (7), it is important to note that the conversion efficiency
of a nonlinear process is proportional to the power density of
the driven pump. This indicates that the three spatial mode
components, owing to possible difference in power density
(related to spatial size), may have different SHG efficiencies,
such as NPs created by the full Poincaré (FP) modes discussed
in Sec. III B. That is, the spatial structure of the NPs (or the
generated SHG waves) is determined not only by a1,2,3 but
also by the power density of |ψ1,2,3〉.

We now discuss the intensity of the NPs shown in Eq. (6),
which is proportional to the power of the SHG wave obtained.
In this section, we consider only the case where two SOP-
dependent spatial modes |ψ+〉 and |ψ−〉 have the same spatial
profile, i.e., 〈ψ+ |ψ+〉 = 〈ψ− |ψ−〉, such as the most com-
mon cylindrical vector (CV) modes. Under this restriction,
INP ∝ a2

1 + a2
2 + a2

3, indicating that INP is completely deter-
mined by the complex probability amplitudes. To illustrate
this common case, Fig. 2 shows the normalized a1,2,3 and its
associated INP as functions of α and β, respectively. We see
that, first, the content of the spatial mode and INP are domi-
nated by both α and β (or CSOC), and, second, that unlike in
the scalar case, INP(α, β ) is always nonzero in the vector case
as β �= 0, 1. This is because any vector mode (CSOC �= 0) can
be expressed with respect to the base {|êH, ψH〉, |êV, ψV〉}, and
has a relation |ψH〉|ψV〉 �= 0. Moreover, according to Fig. 2,
when the SOC strength of the pump tends toward zero, i.e.,
CSOC = 0 corresponding to β = 0or1, the changes in a1,2,3

and INP with α obey the rule for the pure scalar case shown in
Eq. (1), i.e., a1 or a2 ≡ 0, a3 ≡ 0, and INP ∝ α(1 − α). These
results show that Eqs. (5) and (6) provide a unified description
of the type-II SHG that is compatible with both the scalar and
vector cases.

FIG. 2. Normalized complex probability amplitudes of the three
components of the spatial mode (right) and the corresponding NP
intensity (left) as functions of parameters α and β, respectively. In
the diagram of INP(α, β ), the curves in the (INP, α) and (INP, β )
planes are the functions 2

√
α(1 − α) and CSOC = 2

√
β(1 − β ),

respectively.

B. Beam profiles of generated second-harmonic fields upon
diffraction propagation

In the SHG process, the NP discussed above directly drives
the dipole moment in the media to generate a traveling wave
with a frequency of 2ω, i.e., the SHG field. Therefore, the
SHG field during nonlinear propagation can be calculated
through an inhomogeneous wave equation with the corre-
sponding NP as driven terms:

∇2E − n2

c2

∂2E
∂t2

= 1

ε0c2

∂2PNL
SOC

∂t2
. (8)

From Eq. (8), we can obtain a well-known coupled-wave
equation set that can predict the amplitude of the pump and
SHG fields upon nonlinear propagation [3]. We are interested
here in the spatial structures of second-harmonic fields gen-
erated from the generation plane z0 (in the crystal) to the far
field. The SOC structure of the residual pump field in the case
of pump depletion is discussed in our subsequent papers. For
this, we find that the driven term on the right-hand side of
Eq. (8) acts as the wave source of the SHG fields generated
in the crystal [3]. Therefore, we can use the diffraction-
integral (Green’s function) method with the corresponding NP
wave function as pupil function to conveniently calculate the
diffractive property (or beam profile) of the SHG field upon
propagation. The spatial modes of vector light considered here
are paraxial laser beams. In view of this, we choose the Collins
propagator to derive the spatial wave function of the SHG
fields upon propagation in z, which is given by [52]

ESHG(r, ϕ, z)

= i

λz
exp [−ikz]

∫
r0dr0

∫
dϕ0Epupil(r0, ϕ0, z0)

× exp

{
− ik

2z

[
r2

0 − 2rr0 cos(ϕ − ϕ0) + r2
]}

, (9)

where λ denotes the wavelength of the SHG field;
Epupil(r0, ϕ0, z0) = |ψH〉|ψV〉 is the pupil function of the
diffraction integral that is equal to the wave function of the
SHG field at z0. Note that in this work, we assume that
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FIG. 3. (a) α as a function of δ1/2 and δ1/4, respectively. (b,c) are the simulated intensities of the NPs as functions of δ1/2 and δ1/4 for
� = 1−5, respectively. (d,e) depict the simulated SOC structures of the CV-mode pumps for different angles δ1/2 and δ1/4, their corresponding
SOP-dependent orthogonal spatial mode pairs, and spatial profiles of NPs driven by them.

nonlinear interaction is limited within a short interval of the
Rayleigh distance (zR). Nonlinear interactions with focused
vector beams, i.e., the interactions occurring within several
orders of zR, are the subject of a separate paper in this series.

III. SIMULATION ANALYSIS

In this section, we employ the theoretical toolkit provided
in the previous section to explore how the SOC of two
categories of vector modes, i.e., (i) cylindrical vector (CV)
modes and (ii) full Poincaré (FP) modes, dictate the type-
II SHG process. We focus on the spatial structure (spatial
mode spectrum) of the created NP as a function of α and

β as manifested in two experimental observables: (1) the
intensity of the created NP that is proportional to the out-
put power of the obtained SHG, and (2) the corresponding
beam profiles of the generated second-harmonic fields upon
propagation.

For both derivation and simulation, we chose the Laguerre-
Gauss (LG) mode as the spatial mode carrying the orbital
angular momentum (OAM) [see Eq. (A1) in Appendix A].
In the following, we represent LG modes as |LG±�〉 =
A|�|(r, ϕ, z)|k(ω), ± �〉, where A|�|(r, ϕ, z) (we use A|�| for
short in the following) is the donutlike spatial amplitude of
the LG modes with topological charges ±�, and |�〉 denotes
the vortex wavefront ei�ϕ (i.e., OAM-carrying term). Note that
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in a given propagation plane, two complementary LG modes
|LG+�〉 and |LG−�〉 have the same spatial amplitude A|�|.

In our experiment, the initial SOC states were prepared
as

√
β|êH, ψH〉 + eiφ√

1 − β|êV, ψV〉 (see the experimental
setup in Fig. 7), and the SOP base was further manipulated
to the desired base {ê+, ê−} using a half-wave plate (HWP)
and a quarter-wave plate (QWP). Therefore, to conveniently
compare the results of the simulation with those of the exper-
iment, we assumed in the former that the SOP base {ê+, ê−}
was converted from {êH, êV} via a HWP or a QWP. That is, the
weight coefficient α was regarded as a function of the angle of
the HWP δ1/2 or QWP δ1/4 (see details in Appendix B). Figure
3(a) shows the function of α with respect to δ1/2 and δ1/4,
where we see that a change in δ1/2(0◦ → 45◦) corresponds to
α(1 → 0) and that in δ1/4(0◦ → 45◦ → 90◦) corresponds to
α(1 → 0.5 → 1).

A. Vectorial type-II SHG driven by CV-mode pump

The so-called CV modes refer to the most common cate-
gory of vector spatial modes that feature donutlike intensity
profiles and spatially variant SOP, and are therefore also
known as vector vortices [26–28]. The SOC state of the CV
modes can be described as a nonseparable superposition of
two opposite LG modes with mutually orthogonal SOP given
by

|ψCV〉 =
√

β|ê+, LG+�〉 + eiφ
√

1 − β|ê−, LG−�〉
= A|�| |k(ω)〉(

√
β|ê+,+�〉 + eiφ

√
1 − β|ê−,−�〉). (10)

Equation (10) indicates that the CV modes possess a donut-
like spatial amplitude A|�| and an associated CV-type vector
wavefront

√
β|ê+,+�〉 + eiφ√

1 − β|ê−,−�〉. The substitu-
tion of Eq. (10) into Eq. (6) provides an expression to describe
the NP created by CV-mode pumps:∣∣PNL

CV

〉 = κ〈êH | ψCV〉〈êV | ψCV〉
= κeiϕ (a1|LG+�〉2 + a2|LG−�〉2 + a3|LG+�〉|LG−�〉)

= κeiϕA2
|�||k(2ω)〉(a1|+2�〉 + a2|−2�〉 + a3|0〉). (11)

We see that for a given topological charge, the created
NP has a definite radial amplitude structure A2

|�| but a vari-
able azimuthal phase structure a1|+2�〉 + a2|−2�〉 + a3|0〉.
In other words, the three components of the NP, i.e., |2�〉,
|−2�〉, and |0〉, have the same intensity profile A2

|�|. As a
consequence, the spatial structure of the generated SHG field
depends only on the complex probability amplitudes a1,2,3.
That is, as mentioned in Sec. II, the SHG pumped by the CV
modes is controlled fully by the parameters of the pump field
α and β.

To demonstrate the prediction shown in Fig. 2, we start
from the special case of β = 0.5 corresponding to CSOC = 1
when the pump fields are full vectorial [47–49]. Moreover,
for simplicity and without loss of generality, we set the
intramodal phase φ to zero. Based on the relations shown in
Fig. 3(a), first, Figs. 3(d) and 3(e) show the simulated pump
fields featuring a CV-type SOC structure versus δ1/2(0◦ →
45◦) and δ1/4(0◦ → 90◦), respectively (first row). The spatial
profiles of their corresponding |ψH〉 and |ψV〉 are shown in
the middle row, while the spatial profiles of the created NPs
are shown in the bottom row. From these simulations, we

see that the spatial structures of |ψH〉 and |ψV〉 are governed
fully by the α of the applied pump, which leads further to a
SOP-controlled NP creation. On the basis of these simulated
profiles, for a more intuitive comparison, Figs. 3(b) and 3(c)
show the corresponding INP as a function of δ1/2 and δ1/4 with
different �, respectively. The results illustrate that as predicted
in Sec. II, first, INP remains nonzero as CSOC �= 0, and, second,
due to the increase in the beam size of the CV modes upon �,
leading to a decrease in the power density of the pump, INP

decreases with the increase of topological charges.
The results shown in Fig. 3 indicate that when the value of

CSOC of the pump is constant (i.e., β = 0.5), the spatial struc-
ture of the created NP is fully controlled by the value of α of
the applied pump. In addition, in the simulated profiles shown
in Figs. 3(b) and 3(c), of particular note are the two specific
cases (i) δ1/2 = 0◦, 45◦ or δ1/4 = 0◦, 90◦ corresponding to α =
0, 1, and (ii) |HG01〉=

√
1/2(|+�〉 − |−�〉) and δ1/4 = 45◦ cor-

responding to α = 0.5. For case (i), the SHG can be regarded
as being pumped by

√
1/2A|�| |k(ω)〉(|êH,+�〉 + |êV,−�〉),

and, according to Eq. (6), the created NP can be expressed
as ∣∣PNL

CV

〉 = 0.5κA2
|�||k(2ω)〉|0〉, (12)

corresponding to a1 = a2 = 0 and a3 = 0.5. Note that in this
case, INP reaches its maximum value owing to the perfect
overlap between |ψH〉 and |ψV〉. For case (ii), the driven
pumps can be regarded as

√
1/2A|�|(|êH, HG10〉 + |êV, HG01〉)

and
√

1/2A|�|(|êL,+�〉 + i|êR,−�〉), where |HG10,01〉=√
1/2(|+�〉 ± |−�〉) denotes the Hermite-Gauss phases.

Similarly, according to Eq. (6), we can express the created
NPs as ∣∣PNL

CV

〉 = 1/4κA2
|�||k(2ω)〉(|+2�〉 − |−2�〉), (13)

and ∣∣PNL
CV

〉 = −1
/

4iκA2
|�||k(2ω)〉(|+2�〉 + |−2�〉), (14)

respectively. Note that INP takes its minimum value, i.e., half
the maximum value obtained in case (i), as the overlaps
between |ψH〉 and |ψV〉 are minimal.

We further consider the common case where the driven
pump’s CSOC < 1, i.e., β �= 0.5. At this time, the spatial
structures of |ψH〉 and |ψV〉 as well as the NP created by
them are codetermined by CSOC and α of the applied pump.
In particular, the specific cases δ1/2 = 0◦, 22.5◦, shown in
Eqs. (12) and (13), can now be rewritten as∣∣PNL

CV

〉 =
√

β(1 − β )κA2
|�||k(2ω)〉|0〉, (15)

and∣∣PNL
CV

〉 = 1
2κA2

|�||k(2ω)〉[β|+2�〉 − (1 − β )|−2�〉], (16)

respectively. Figure 4(a) shows the simulated SOC structures
of the partially vectorial (or entangled) CV-mode pump ver-
sus δ1/2(0◦ → 45◦), where β = 0.4, 0.2, 0 (upper row). Their
corresponding values of |ψH〉 and |ψV〉 are shown in the
middle row. The spatial profiles of the created NPs are shown
in the bottom row. Moreover, the plots shown in Fig. 4(b)
present a1,2,3 and the corresponding INP of the created NPs
as functions of α, β, and δ1/2 for β=0 − 0.5. Figure 4 shows
that the vectorial feature manifested in |ψH〉 and |ψV〉 as well
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FIG. 4. (a) Simulated SOC structures of CV-mode pumps for different angles δ1/2, their corresponding SOP-dependent orthogonal spatial
mode pairs, and spatial profiles of the NPs driven by them. We set � = 1, and the three rows correspond to β = 0.4, 0.2, and 0. (b) The
first two rows show a1,2,3 and the corresponding INP as functions of α and β, respectively; the third row shows INP as a function of δ1/2 for
β = 0−0.5.

as the NP excited by them wears off with a decrease in the
strength of the SOC (CSOC) of the pump field. As a result, the
change in a1,2,3 and the corresponding INP with α gradually
evolves into the case of a scalar SHG obeying Eq. (1).

On the basis of the NPs discussed above, we can readily
predict the beam profiles of the corresponding SHG fields
originating from them using the diffraction integral shown
in Eq. (9). Note that in Figs. 3 and 4, the initial intensity
and phase structures of the NPs created at points δ1/2 = 22.5◦
and δ1/4 = 45◦ match each other and feature a petal-like
profile with orthogonally composed, twisted phase structures.
In contrast, they do not match at points δ1/2 = 0◦, 45◦ and
δ1/4 = 0◦, 90◦; i.e., they feature a donut profile without twisted
phase structures. This has a profound influence on the beam
profiles of the SHG fields during diffraction propagation. In

light of this, we focus on the far-field SHG beam profiles
originating from NPs of these two categories.

We first consider the SHG pumped by fully entangled CV
modes, and Fig. 5(a) presents the simulated far-field (zR = 3)
SHG beam profiles originating from PNL

CV(δ1/2 = 0◦, 45◦) and
PNL

CV(δ1/2 = 22.5◦) with � = 1, 3, and 5, respectively. For the
first category, the beam profiles gradually evolve into TEM00-
like distributions with a faint outer-ring texture in the far
field, and the complexity of the texture increases with the
topological charge carried by the pump field. These results
coincide with the experimental proof shown in Sec. IV and, to
some extent, are also consistent with the prediction of Pereira
et al. in Ref. [53]. For the second category, by contrast, the
SHG beam profiles remain constant upon propagation because
they originate from the NPs. We can interpret these results as
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FIG. 5. Simulated far-field SHG beam profiles originating from PNL
CV(δ1/2 = 0◦, 45◦) and PNL

CV(δ1/2 = 22.5◦), where (a) corresponds to β =
0.5 and � = 1, 3, and5, and (b) corresponds to � = 1 and β=0.4−0.

follows: First, both the intensity and the phase structures of
the NPs were tailored by the SOC state of the pump fields, i.e.,
the beam profile of the SHG light at the nonlinear interaction
plane z0 (wave source). Second, if the initial intensity and
phase structures of the SHG light match each other, the beam
profile remains constant upon propagation like that of paraxial
eigenmodes. Otherwise, a drastic evolution in the beam profile
occurs during diffractions. We further consider the influence
of CSOC of the pump on the SHG beam profile. Figure 5(b)
presents the simulated far-field (zR = 3) SHG beam profiles
originating from PNL

CV(δ1/2 = 0◦, 45◦) and PNL
CV(δ1/2 = 22.5◦)

(with � = 1) for β = 0, 0.2, and0.4. We find the same behav-
ior again; i.e., the beam profile of the first category is unstable
upon propagation while the other remains constant. However,
the difference is that with decreasing CSOC, the beam profiles
both degenerate into that of scalar type-II SHG; i.e., they
gradually vanish or transform into a donut shape.

B. Vectorial type-II SHG driven by FP-mode pump

We now analyze the SHG driven by the so-called FP modes
whose local SOP in the transverse plane can cover at least one
surface of a Poincaré sphere [26–29]. This unique polarization
structure arises by considering the spatial profiles of OAM-
carrying modes with different values of |�|. We consider the
most common case where one spatial mode is the TEM00

mode, i.e., � = 0, that can be expressed as

|ψFP〉 =
√

β|ê+, LG0〉 + eiφ
√

1 − β|ê−, LG�〉
= (

√
βA0 |ê+, 0〉 + eiφ

√
1 − βA|�| |ê−, �〉)|k(ω)〉, (17)

where A0 denotes the intensity profile of the TEM00 mode.
Equation (17) indicates that the FP mode has an intensity
profile

√
βA0 + √

1 − βA|�| with an FP-type vector wavefront

√
β|ê+, 0〉 + eiφ√

1 − β|ê−, �〉. Similar to our previous anal-
ysis, by substituting Eq. (17) into Eq. (6), we can obtain the
NP created by the FP-mode pumps, given by∣∣PNL

FP

〉 = κ〈êH | ψFP〉〈êV | ψFP〉
= κeiϕ (a1|LG0〉2 + a2|LG�〉2 + a3|LG0〉|LG�〉)

= κeiϕ|k(2ω)〉(a1A2
0|0〉 + a2A2

|�||2�〉 + a3A0 A|�||�〉
)
.

(18)

Note that the spatial profiles of |LG0〉 and |LG�〉 are no
longer the same, and this leads to a difference in power
density between A2

0, A2
|�| and A0 A|�|. In this special case, as

mentioned in Sec. II, the three components of the spatial
mode, i.e., |0〉, |2�〉, and |�〉, have different SHG efficiencies.
As a consequence, the spatial structure and intensity of the
created NP are determined by a1,2,3 and the power densities
of A2

0, A2
|�|, and A0 A|�|.

Figure 6(a) shows the simulated INP(α, β ) for � = 1, 2 as
well as a comparison of INP(δ1/2) for � = 1, 2 as β = 0.5. The
result shows that similarly to the case of the previous CV
mode, INP created by the FP-mode pump remained nonzero
as CSOC �= 0 for arbitrary δ1/2. However, the difference is
that owing to the wide difference in the power densities of
LG modes with different values of |�|, the impacts of β = 0
and β = 1 on INP are no longer identical. Thus, as shown in
Fig. 6(a), compared with the case where � = 1, the curved
shape of INP(α) for � = 2 as β = 0.5 is reversed. Figure 6(b)
shows the simulated SOC structures of the applied FP-mode
pump fields for δ1/2(0◦ → 45◦) (upper row), where we have
set β = 0.5 for simplicity, the spatial profiles of |ψH〉 and
|ψV〉 (middle row), and the NPs created by them (bottom
row). According to Eq. (18), the initial intensities and phase
structures of the created NPs match with each other, indicating
that their beam profiles remain constant upon propagation.
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FIG. 6. (a) Simulated NP intensities as a function of α and β, for � = 1 and 2. (b) Simulated SOC structures of FP-mode pumps for
different angles δ1/2, their corresponding SOP-dependent orthogonal spatial mode pairs, and spatial profiles of NPs driven by them.

In addition, except for the case where δ1/2 = 0◦, 45◦, the
generated SHG fields both carry multitopological charges.
Therefore, due to |�|-dependent Gouy phase accumulation, the
SHG beam profiles experience a 90◦ rotation from z0 to the far
field [35].

IV. EXPERIMENTAL DEMONSTRATION

To verify the validity and accuracy of the theoretical
method and analysis, in this section, we experimentally ver-
ify the above predictions. We focus on the two observables
that can prove features of the corresponding NPs predicted

FIG. 7. Schematic setup to implement vectorial type-II SHG with CV-mode pump fields. The upper left inset shows the setup used to
generate FP-mode pump fields; see text for details. The key components include the polarizing beam splitter (PBS), half-wave plate (HWP),
quarter-wave plate (QWP), spatial light modulator (SLM), and dichroic mirror (DM).
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FIG. 8. Observed SHG beam profiles (eight-bit false-color gray scale) driven by CV-mode pump fields from z0 to zR = 3 for different
angles δ1/2, where (a1–a3) correspond to � = 1, 2, and3 and β=0.5, and (b1,b2) correspond to � = 1, 2 and β=0.2. (a1*,b2*) shown in the
right column present simulated observables for comparison (with the same false-color gray scale). (c,d) show the theoretical spatial mode
spectra of the corresponding SHG fields as a function of δ1/2.

in Sec. III: (i) INP created by the corresponding vector
pump that can be measured by comparing the output power
of obtained SHG, and (ii) beam profiles of the generated
second-harmonic fields from the generation plane to the far
field.

Figure 7 shows a schematic representation of our experi-
mental setup. A horizontally polarized TEM00 mode beam at
800 nm (Toptica TA pro) was converted to the desired spatial
mode by using a spatial light modulator (SLM, HOLOEYE
PLUTO-2-NIR-80) in combination with a polarizing beam
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FIG. 9. Observed SHG beam profiles (eight-bit false-color gray scale), driven by the FP-mode pump fields, from z0 to zR = 10, versus
δ1/2, where (a1,b1) correspond to the pump fields carrying � = 1 and � = 2, respectively, and (a2,b2) present the simulated observables for
comparison (with the same false-color gray scale). (c,d) are the theoretical spatial mode spectra of the corresponding SHG fields as a function
of δ1/2.

splitter (PBS) and a HWP. For CV-mode generation, we
used the so-called complex amplitude modulation method to
generate pure LG modes from a TEM00-mode illumination
laser [54]. The generated LG mode was then injected into
a polarization (two-arm) Sagnac interferometer containing a
Dove prism in one of the paths to convert it into the desired
CV mode. A HWP at the input port of the interferometer
was used to control the ratio of laser power of the two arms
to manipulate the parameter β of the generated CV mode.
Moreover, at the output port of the Sagnac interferometer, a
HWP in combination with a QWP was used to manipulate the
parameter α of the CV mode on demand.

The method for FP-mode generation is shown in the upper-
left inset of Fig. 7. By utilizing the êH-only modulation prop-
erty of liquid crystal–based SLM, an incident TEM00 beam
with diagonal polarization was conveniently converted into
the FP mode. Because in FP mode preparation, the phase-only
modulation was used to load the twisted phase into the inci-
dent light, the converted OAM-carrying mode was the hyper-
geometric Gaussian mode containing a propagation-varying
radial structure [55,56]. This generated a larger difference
between the observed and the simulated results, especially for
the case in which the pump light carried larger topological
charges, as shown in the experimental results in Fig. 9. In
the vectorial SHG process, the generated vector pump was
focused into a 5-mm-long type-II PPKTP using a 200-mm
focal length lens to drive the SHG. A dichroic mirror (DM)
was then used to filter the generated 400-nm SHG fields. A

4 f -imaging system was employed to image the beam profiles
of the SHG fields from the NP (generation) plane to the far
field, and the corresponding beam profiles and beam powers
were recorded by a charge-coupled device (CCD) (laser beam
profiler) mounted on a translation stage.

In the experiment, the beam profile of the SHG field driven
by the CV-mode pumps was first observed. We first considered
the full vectorial pump (i.e., β = 0.5). The observed beam
profiles (eight-bit false-color gray scale) for different angles
δ1/2 upon propagation, ranging from the generation plane z0

(i.e., the intensity profile of the NP) and the intermediate
stage to the far field (zR = 3), are shown in Figs. 8(a1)–8(a3)
corresponding to � = 1, 2, and 3, respectively. For the SHG
driven by a partial vector pump, we considered the case where
β = 0.2, and Figs. 8(b1) and 8(b2) show the corresponding
experimental results. For convenience of comparison, we also
present the simulated beam profiles, shown in Figs. 8(a1*)
and 8(b2*), with the same false-color gray scale that corre-
sponds to the experimental observations. The experimental
observations exactly match the theoretical predictions shown
in the right column of Fig. 8. For clarity, Figs. 8(c) and
8(d) present the theoretical spatial mode spectrum of the
generated SHG fields as a function of δ1/2. Note that the
spatial mode spectra of the SHG fields pumped by CV modes
carrying different � are identical as mentioned in Secs. II
and III A.

We then demonstrate predictions with respect to the SHG
pumped by the FP modes, where the FP modes with β = 0.5
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FIG. 10. Observed SHG INP with respect to the SOC structures of the pump fields, where the point data represent experimental observations
and the solid lines represent theoretical data. Plots shown in (a,b) correspond to INP driven by CV-mode pumps, for � = 1, 2, 3 and β = 0.5,
as a function of δ1/2 and δ1/4. Plots shown in (c) correspond to INP driven by the CV-mode pumps, for � = 1 and β = 0 − 0.5, as a function of
δ1/2. Plots shown in (d) correspond to INP driven by the FP-mode pumps for � = 1, 2 and β = 0.5 as a function of δ1/2.

and � = 1, 2 were considered. Figures 9(a) and 9(b) show
the experimental observations and corresponding theoretical
results, where we see that the observed beam profiles from
the NP plane to the far field agree well with the theory. As
discussed in Sec. III B, we also confirmed that the far-field
beam profiles, except for δ1/2 = 0◦, 45◦, all underwent a 90◦
rotation with respect to the generation plane. Moreover, the
theoretical spatial mode spectra of the observed SHG fields as
a function of δ1/2 are shown in Figs. 9(c) and 9(d). Note that,
as mentioned in Sec. III B, the spatial mode spectrum changed
with the � carried by the pump.

We also demonstrated the prediction with respect to the
influence of the pump SOC on the intensity of the NP. We
chose four typical predictions discussed in Sec. III, i.e., INP as
a function of δ1/2 and δ1/4 shown in Figs. 3(b) and 3(c), INP as
a function of δ1/2 for β = 0 − 0.5 as shown in Fig. 4(b), and
INP as a function of δ1/2 shown in Fig. 6(a). The experimental
observations shown in Fig. 10 match perfectly with the theory
once again.

V. DISCUSSION AND CONCLUSION

In this first of the series studies, the results show that
although the SHG, as the first nonlinear optical process ever
found, has been studied for almost 60 years and is widely

used in laser frequency-doubling techniques, the interaction
still continues to unfold unexpected outcomes when involving
a vector applied laser field. The results here provide a unified
description of type-II SHG compatible with both the scalar
and the vector cases. The theory can be used, on the one hand,
to explain the spatial structures of SHG beams observed in
past work [36–44,53]. On the other hand, it contributes to our
fundamental understanding of nonlinear optics mediated by
photonic SOC and lays a foundation for future studies, such as
on the frequency conversion of SOC states and the generation
of vector modes via type-II SHGs.

From Eqs. (11) and (18) as well as the spatial mode spectra
shown in Figs. 9 and 10, it is clear that for the SHG pumped
by a more general laser mode carrying a net OAM, the OAM
selection rule may no longer be expressed simply as “the
OAM of the SHG is double that of the input pump.” We will
discuss this in detail in a separate paper in this series. Note that
there is no doubt for OAM conservation in nonlinear optical
interactions; however, the OAM selection rule is not constant
for a given interaction, such as the abnormal selection rule
reported in SBS and SRS [12,15].

In summary, we presented a general theoretical toolkit for
analyzing the type-II SHG driven by the vector laser mode.
Based on this, a detailed examination of the SHG driven by
typical CV modes and FP modes was provided, where we
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theoretically revealed and experimentally demonstrated how
the SOC structures of pump fields affect and control the
intensity and spatial structure of the created NPs. As a con-
sequence, we showed how the beam profiles of the generated
SHG fields evolve upon propagation.
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APPENDIX A

The wave function of the Laguerre-Gaussian (LG) mode
with the radial index p = 0 in cylindrical coordinates {r, ϕ, z},
used in simulations, is given by [57–59]

LG�(r, ϕ, z) =
√

2

π (|�|)!
1

w(z)

[ √
2r

w(z)

]|�|
L|�|

[
2r2

w2(z)

]

× exp

[ −r2

w2(z)

]
exp[−i�(r, ϕ, z)], (A1)

where �(r, ϕ, z) = kz + ωr2/2cR(z) + �ϕ − (|�| + 1)tan−1

(z/zR); � is the topological charge giving an OAM of �h̄
per photon; L|�| is the Laguerre polynomial; R(z) is the
curvature radius of the wavefront; zR is the Rayleigh length
for a given beam waist w0; w(z) = w0(1 + z2/z2

R)−1 and
(|�| + 1)tan−1(z/zR) describe the beam expanding and the
Gouy phase accumulated during the diffraction propagation,
respectively.

APPENDIX B

The transformation of the HWP and QWP for the SOP
of paraxial beams can be described by Jones matrices with
respect to the fast axis angles δγ , which are given by

MQ =
(

icos2(δ1/4) + sin2(δ1/4) (i − 1) sin(δ1/4) cos(δ1/4)
(i − 1) sin(δ1/4) cos(δ1/4) isin2(δ1/4) + cos2(δ1/4)

)
,

and

MH =
(

cos(2δ1/2) sin(2δ1/2)
sin(2δ1/2) − cos(2δ1/2)

)
, (B1)

respectively. Therefore, for a given polarization ê+/−, the SOP
after the transformation can be derived from MH/Qê+/−.
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