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Connection between vibrational instabilities of molecules in surface-enhanced
Raman spectroscopy and Raman lasing
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To observe a vibrational instability in a molecule or Raman lasing, the molecules should be placed in a
resonator and illuminated by a laser. Both these phenomena are self-oscillations of either photons in a resonator
or nuclei in molecules. We show that, thanks to the coupling of the forced oscillations of electrons in a molecule
with its nucleus vibrations, these two effects are manifestations of the same phenomenon. When the ratio of
damping rates of the molecule and the resonator is large, the number of coherent photons is also large, causing
Raman lasing. In this case, the number of quanta of the coherent molecular vibrations is negligible. In the
opposite case, the number of coherent vibration quanta is large, causing vibrational instability. This leads to the
nonlinear response in Raman scattering, which was recently observed in a surface-enhanced Raman spectroscopy
(SERS) experiment [A. Lombardi et al., Phys. Rev. X 8, 011016 (2018)].
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I. INTRODUCTION

Raman scattering, discovered in 1928 [1,2], was explained
[2] as a parametric effect of a vibration of a molecular nu-
cleus (VMN) on Rayleigh scattering of a molecule. Since the
classical approach could not explain the difference between
the amplitudes of the Stokes and anti-Stokes scattering, a
quantum theory of the phenomenon based on the Plachek
spectral theory [3] was developed [4]. In this theory, inelas-
tic scattering involves absorption of a quantum of incident
radiation followed by emission or absorption of a VMN
quantum simultaneously with the emission of a quantum of
light at the anti-Stokes or Stokes frequencies, respectively.
This two-photon theory makes a visually clear picture of the
phenomenon. The approach, however, requires an artificial
addition of two nonexistent (virtual) energy levels to the en-
ergy level diagram of the molecule [5]. The nature of the vir-
tual levels cannot be specified even at the phenomenological
level.

Later, thanks to using coherent laser light in spectroscopy,
coherent anti-Stokes Raman spectroscopy (CARS) and stim-
ulated Raman scattering (SRS) were developed. In these
phenomena, molecules are illuminated by two coherent light
beams, and therefore the theory has to include four-photon
processes. Consequently, the quantum theory of the spon-
taneous Raman scattering was modified by increasing the
number of virtual levels [6]. This theory also did not explain
the nature of these virtual levels. Moreover, an additional
question arose about the coherence of reemitted light. It is
not clear why, in the spontaneous Raman two-photon theory,
the scattered light is incoherent, while the four-photon theory,
which describes CARS, gives a coherent response.

The problem of the coherent Raman scattering is signifi-
cantly simplified because the coherent properties of laser light
are close to those of a classical plane electromagnetic (EM)
wave, and the nonlinear optics of coherent light has been
well developed. Thus, the use of high-power laser radiation in
CARS has brought nonlinear coherent optics into the arena,
and nonlinearity of the third order has been considered as
the reason for the coherent Raman scattering. Along with this
classical approach, a nonlinear quantum theory has also been
developed. In this theory, within the paradigm of absorption
and emission of photons and VMNs, a term describing the
interaction of a VMN with an external EM field has been
added to the Hamiltonian [7]. It has been assumed that this
Hamiltonian is nonlinear, and the interaction term appears in
the third order of the expansion of the interaction Hamiltonian
in the external field. Although the theory gives a qualitative
description of the phenomenon, the nature of the phenomeno-
logically introduced Hamiltonian remains unclear. Moreover,
the theory implies the existence of virtual levels because
transitions between vibrational levels require absorption and
emission of optical photons.

Moreover, the emission of EM waves is entirely associated
with the vibrations of the nuclear subsystem of the molecule.
Disregarding the dynamics of the high-frequency electronic
subsystem raises some questions. It is clear how two coherent
optical waves can excite a low-frequency VMN: this happens
when the beat frequency of the total field coincides with
the natural frequency of the VMN. It is not clear, however,
how a low-frequency VMN can emit high-frequency optical
waves. The more consistent theory based on the optome-
chanical Hamiltonian [8,9], in which the dynamics of elec-
tronic subsystems is taken into account by introduction of a
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phenomenological effective dielectric constant or polarizabil-
ity, has the same problem.

Below, by considering the behavior of a molecule driven
by classical coherent light, we give a detailed analysis of both
well-known effects of Raman physics, e.g., Raman lasing,
and recently observed vibrational instability [10]. In this ap-
proach, the vibrational molecular subsystem does not directly
interact with an external field; it interacts with the electronic
subsystem that experiences forced oscillations due to the
EM field. According to the Born-Oppenheimer approximation
[11], the motion of electrons is responsible for changing the
equilibrium position of nuclei and leads to the parametric
excitation of VMNs. This interaction can be described by the
Fröhlich Hamiltonian of the interaction between electronic
and vibrational nucleus subsystems [12], well known in solid-
state physics. It is this Hamiltonian that is responsible for
the inverse effect, in which low-frequency VMNs modulate
high-frequency vibrations of the dipole moments associated
with forced oscillations of the electronic subsystem. As a
result, an oscillating dipole moment of the system arises. This
dipole moment emits various optical quanta. This approach
does not require phenomenological assumptions about the
indirect coupling between the VMN and the external field.

This approach has successfully been applied to describe
the enhancement of Raman scattering by direct excitation
of a VMN by IR radiation [13]. Now we consider a more
complicated phenomenon: the connection of Raman lasing
with the vibrational instability.

Illumination of a molecule with EM waves, having differ-
ent frequencies ωS (the Stokes frequency) and ωP, may cause a
resonant excitation of a VMN when the frequency difference
of these waves is equal to the vibrational eigenfrequency of
the molecule, ωv [4,14]. The reason for such excitation is the
nonlinear parametric coupling of nucleus subsystem of the
molecule and EM waves [7,13,14]. The parametric coupling
may be described in terms of the additional nonlinear polar-
ization P(ωS ) ∼ χ (3)(ωS, ωP, ωS,−ωP )E (ωP )E (ωS )E∗(ωP )
[4,13,15] (see also a phenomenological description in
Ref. [7]). Within this approach, it has been shown that
when the relation ωP − ωS = ωv is satisfied, the phase of
χ (3)(ωS, ωP, ωS,−ωP )E (ωP )E (ωS )E∗(ωP ) is ahead of the
phase of the incident field E (ωS ), and therefore the work is
done on the field. As a result, the wave E (ωS ) is amplified,
while the field E (ωP ) is attenuated. If E (ωS ) is the field in the
resonator, in which the Raman active molecule is placed, such
an amplification leads to lasing [4,16–29].

The vibrational instability has been observed [10] in a typ-
ical surface-enhanced Raman spectroscopy (SERS) setting, in
which the difference between the frequency of incident laser
radiation and the eigenfrequency of the plasmonic nanocavity
is equal to the frequency of the VMN. It has been shown that
when the intensity of radiation of the pumping laser exceeds
a certain threshold, this system can reach the vibrational in-
stability that manifests itself in nonlinear dependencies of the
Stokes and anti-Stokes intensities on the intensity of incident
radiation.

In this paper, we show that both the resonator field and
vibrations of molecules become coherent and synchronized
above a certain threshold of the pump rate. There are two
regimes of self-oscillations. The qualitative difference be-

tween them is in the distribution of the total number of
quanta between the EM field and VMNs. This distribution is
controlled by the ratio of the relaxation rates of the EM field
in the resonator and VMNs. If this ratio is much smaller than
unity, then, at the resonant frequency of a VMN, conditions
for gain for photons in the resonator are satisfied, and the
system is a Raman laser. In the opposite case, the number
of coherent quanta of the vibrational motion may become
so large that Raman scattering enters a nonlinear regime as
has been observed in the recent experiment [10]. We show
that an increase in the number of molecules is stabilized by
the regime of nonlinear Raman scattering. Typically, due to
anharmonicity, two or three vibration quanta should break
a molecule. In the experiment described in Ref. [10], the
molecular bonds should be very strong because nonlinearity
is observed when the number of quanta is about 10. Thus,
when the number of excited quanta is low, the system may be
described as a harmonic oscillator. We show that an increase in
the number of molecules leads to a decrease in the number of
coherent quanta of the vibrational motion. Thus, by increasing
the number of molecules, one can more easily achieve the
regime of nonlinear Raman scattering. Although it seems that
the larger the number of quanta of a VMN, the greater the
gain in the Raman laser, it is not so. In the regime of the
vibrational instability, a decrease in the relaxation rate in a
VMN not only amplifies the VMN but also decreases the
EM field in the resonator. Moreover, in the intermediate case,
when the relaxation rates of the EM field in the resonator
and molecule vibrations are about the same, the number of
generated photons in the resonator and the quanta of the
vibrations of the molecule drop drastically.

II. DESCRIPTION OF THE MODEL

We consider N molecules placed into a cavity (resonator).
The molecules are Raman active, i.e., they have a zero dipole
moment of their VMN transitions. The vibrational molecular
subsystem does not directly interact with an external EM
field, while the electronic subsystem of a molecule interacts
with the external EM field through an induced dipole moment
[30]. Since the electronic subsystem interacts with VMNs via
parametric coupling, the EM field indirectly affects VMNs
[11,31–37]. We assume that the external field only excites
the resonator. This assumption is valid if the field of the
resonator mode is much greater than the field of the external
wave, which is possible when the resonator has high Q factor
[17,19,21–23,25] or Purcell factor [10].

The total Hamiltonian of the system may be written as

Ĥ = Ĥcav +
N∑

j=1

(Ĥmol) j +
N∑

j=1

(Ĥmol−cav) j + Ĥfield−cav(t ),

(1)
where the sum in Eq. (1) runs over all the molecules in the
cavity. The Hamiltonian of the cavity Ĥcav is

Ĥcav = h̄ωaâ†â, (2)

where ωa is the resonant frequency of the cavity, â† and â are
creation and annihilation operators of the field mode in the
cavity. The frequency ωa plays a role of the signal frequency
ωS in a Raman laser.
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We assume that all the molecules are equivalent and the
corresponding Hamiltonian of the jth molecule has the form

(Ĥmol) j = h̄ω0σ̂
†
j σ̂ j + h̄ωvb̂†

j b̂ j + h̄gσ̂ †
j σ̂ j (b̂

†
j + b̂ j ). (3)

The electronic subsystem of the molecules can be treated
as an effective two-level system (TLS) with the transition
frequency ω0. In Hamiltonian (3), the first term describes
the energy of the jth TLS, σ̂

†
j and σ̂ j are the raising and

lowering TLS operators, and b̂†
j and b̂ j are the creation and

annihilation operators of the VMN. Below, we disregard the
effects of anharmonicity of the VMN and only consider a
single VMN mode with the frequency ωv. It should be noted
that anharmonicity plays an important role in some types of
the molecules when the number of quanta of a VMN is about
3–4, e.g., for H2O and NH3 [38]. However there are molecules
for which the harmonic approximation works well, e.g., N2

[39] and CH3 [40].
The Hamiltonian of the interaction of the electronic sub-

system with a VMN is taken in the form of the Fröhlich
Hamiltonian h̄gσ̂ †

j σ̂ j (b̂
†
j + b̂ j ), where g is the interaction con-

stant of the electronic and vibrational subsystems of the
molecule [11,31–37]. In Hamiltonian (3), the sum of the first
and third terms can be represented as the energy of a TLS with
the transition frequency modulated by the frequency of the
VMN. Such modulation is responsible for the Raman effect.

The interaction Hamiltonian (Ĥint ) j of the jth molecule
and the cavity is

(Ĥint ) j = h̄�R j

2
(âσ̂

†
j + â†σ̂ j ), (4)

where �R j is the Rabi frequency of the cavity and the jth
molecule [41–43]. For simplicity, we assume that all the Rabi
frequencies are real.

The interaction Hamiltonian, Ĥfield-cav(t ), describes the ex-
citation of the resonator by the external classical field with the
frequency ω:

Ĥfield−cav(t ) = h̄�

2
(âeiωt + â†e−iωt ), (5)

where � is the interaction constant. We assume that the
external field excites the cavity mode only. We also assume
that the relation between the frequency of the external field
ω and the frequency of the resonant mode coincides with the
relation in the SRS:

ω = ωa + ωv. (6)

Condition (6) is valid for both Raman lasing [44] and the
vibrational instability [10].

We consider the case when the transition frequency of
the TLS, ω0, is far from the external field ω and the cavity
frequency ωa:

|ω − ω0| � γσ , |ω0 − ωa| � γσ , (7)

where γ0 is the relaxation rate of the electronic subsystem of
the molecule.

III. SELF-OSCILLATION IN THE SYSTEM

One of the main features of a Raman laser is that it is
pumped by a coherent wave. Consequently, it is difficult to

distinguish self-oscillations from forced oscillation because
both of them are coherent. This especially concerns VMNs.
According to Ref. [4], after Raman lasing begins, a molecule
is illuminated by two coherent waves: an incident (pump)
wave and a lasing resonator mode. The frequency of the
latter is equal to the Stokes frequency. Such a combination of
frequencies is characteristic of CARS, in which it results in the
resonant excitation of coherent VMNs. Thus, for coherence
in quanta of VMNs, the coherent Stokes wave is sufficient.
The self-oscillation regime is not required. In contrast, with
Raman lasing, coherence may arise only as a result of self-
oscillations. Thus, the pump intensity at which Raman laser
generates coherent radiation, determines the appearance of
coherent vibrations. Moreover, Raman lasing does not require
coherent VMNs. The existence of incoherent thermal vibra-
tions is sufficient. Thus, one can expect that the threshold
for molecular self-oscillations observed in Ref. [9] may be
independent of the threshold for self-oscillations of the EM
field. Below we show that this is not so. There is a close
connection between these phenomena, and the system has
unique threshold of self-oscillations for both the EM field in
the resonator and VMNs.

To find the dynamics of the system governed by Hamil-
tonian (1), we proceed in two steps. First, we write the
equation for the average values of the operators a = 〈â〉,
σ j = 〈σ̂ j〉, and b j = 〈b̂ j〉 and neglect quantum correlations
between operators. At this step, we deal with the coherent
dynamics of the system in the mean-field approximation. Also
at this step, we obtain the self-oscillating solution which arises
above the threshold for the external field amplitude �. Below
the threshold, all average values of the operators are equal to
zero. This means that there are no coherent oscillations. At
the second step, we add noise terms, which take into account
spontaneous excitations of both the resonator EM field and
VMNs below the threshold and describe the incoherent field
and excitations of VMNs.

This procedure is standard for an open quantum system
[43,45]: the first step corresponds to the semiclassical approx-
imation for the corresponding quantum Heisenberg equation,
while the second step enables one to describe the leading
quantum correction to quantities obtained in the first step (for
details see [45]).

The equations of motion for the mean value of the opera-
tors a = 〈â〉, σ j = 〈σ̂ j〉, and b j = 〈b̂ j〉 have the form

da

dt
= −(iωa + γa )a − 1

2
i

N∑
j=1

�R jσ j − 1

2
i�e−iωt ,

dσ j

dt
= −(iω0+γ0)σ j −igσ j (b

∗
j +b j )+ 1

2
i�R j (2|σ j |2−1)a,

db j

dt
= −(iωv + γv)b j − ig|σ j |2, (8)

where the relaxation is described in the standard way [41–43]
by constants γv and γa characterizing the relaxation rates
of VMNs and the EM field in the cavity, respectively. We
represent Eqs. (8) in the form of slowly varying amplitudes
a = ã(t )e−iωt and σ j = σ̃ j (t )e−iωt . Then, these equations take
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the form

dã

dt
= −[i(ωa − ω) + γa]ã − 1

2
i

N∑
j=1

�R j σ̃ j − 1

2
i�,

d σ̃ j

dt
= −[i(ω0 − ω) + γ0]σ̃ j − igσ̃ j (b

∗
j + b j )

+ 1

2
i�R j (2|σ̃ j |2 − 1)ã,

db j

dt
= −(iωv + γv)b j − ig|σ̃ j |2. (9)

Assuming that γσ � γv, γa, we can adiabatically exclude
variables of the electronic subsystem from Eqs. (9) by setting
d σ̃ j/dt = 0:

0 = −[i(ω0 − ω) + γ0]σ̃ j − igσ̃ j (b
∗
j + b j )

+ 1
2 i�R j (2|σ̃ j |2 − 1)ã. (10)

As a result, we obtain

σ̃ j ≈ −1

2
ã

�R j

ω0 − ω
+ 1

2
ã(b∗

j + b j )
�R jg

(ω0 − ω)2 . (11)

Using Eqs. (9) and (11) we can obtain equations for the
amplitudes a and b j :

da

dt
=−(iωa+γa )a− i

4

N∑
j=1

g�2
R j

(ω0−ω)2 (b∗
j + b j )a− 1

2
i�e−iωt ,

(12)

db j

dt
= −(iωv + γv)b j − i

4

g�2
R j

(ω0 − ω)2 |a|2. (13)

Here, we neglect the shift of the eigenfrequency of the cavity
caused by the interaction with the molecules. We multiply
Eq. (13) by �2

R j , sum over the molecules, and regroup the
terms to obtain

da

dt
= −(iωa + γa )a − i

4

g
∑N

j=1 �2
R j

(ω0 − ω)2

×
(∑N

j=1 �2
R jb

∗
j∑N

j=1 �2
R j

+
∑N

j=1 �2
R jb j∑N

j=1 �2
R j

)
a − 1

2
i�e−iωt ,

(14)

d

dt

(∑N
j=1 �2

R jb j∑N
j=1 �2

R j

)
= −(iωv + γv)

(∑N
j=1 �2

R jb j∑N
j=1 �2

R j

)

− i

4

g

(ω0 − ω)2

(∑N
j=1 �4

R j∑N
j=1 �2

R j

)
|a|2.

(15)

Introducing the VMN amplitude averaged over all molecules,

b =
∑N

j=1 �2
R jb j∑N

j=1 �2
R j

, (16)

the Rabi frequency averaged over positions of the molecules,

�R =
√

1

N

∑N

j=1
�2

R j, (17)

and the effective coupling constant between the field in the
cavity and the VMN,

G = g
∑N

j=1 �2
R j

4N (ω − ω0)2 = g�2
R

4(ω − ω0)2 , (18)

and assuming that

4

√√√√ 1

N

N∑
j=1

�4
R j ≈

√√√√ 1

N

N∑
j=1

�2
R j, (19)

one can rewrite Eqs. (14) and (15) as

da

dt
= −(iωa + γa )a − iNGa(b∗ + b) − 1

2
i�e−iωt , (20)

db

dt
= −(iωv + γv)b − iG|a|2. (21)

The last term in the right-hand side of Eq. (20) describes the
effect of the external harmonic field on the resonator.

Since Eq. (20) is linear in a, below, we suppose that
the electric field in the resonator has the form E(r, t ) =
E(r)[α exp(−iωt ) + A exp(−iωat )], i.e., it oscillates on both
the frequency of the external field ω and the resonator eigen-
frequency ωa. With this assumption, we seek the stationary
solution of Eqs. (20) and (21) as a linear combination of
driven oscillations and eigenoscillations of the EM field and
the VMN:

a(t ) = αe−iωt + Ae−iωat , b(t ) = β + Be−iωvt , (22)

where α, β, A, and B do not depend on time. Recall that we
imply ω = ωa + ωv. Under this condition, the nonlinear term
in Eq. (20), which is proportional to ab, oscillates with the
frequency of the pumping field ω = ωa + ωv.

Substituting Eq. (22) into Eqs. (20) and (21) and using
Eq. (6), one obtains

0 = −(−iωv + γa )α − iGNα(β + β∗) − iGNAB − 1

2
i�,

(23)

0 = −(iωv + γv)β − iG(|α|2 + |A|2), (24)

0 = −γaA − iNGαB∗ − iNGA(β + β∗), (25)

0 = −γvB − iGαA∗. (26)

Using the assumption ωv � γa, γv, one can find the ampli-
tudes α and β up to the first order of G/ωv:

α ≈ �

2ωv
+ GN

ωv
AB, (27)

β ≈ − G

ωv
|α|2 − G

ωv
|A|2. (28)
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Now, we substitute solutions (27) and (28) into Eqs. (25) and
(26) to obtain

0 = −γaA − iN
G�

2ωv
B∗ − iN2 G2

ωv
A|B|2 − 2iN

G2

ωv
A|A|2,

0 = −γvB − i
G�

2ωv
A∗ − iN

G2

ωv
|A|2B. (29)

To determine the generation regimes, we move to new
variables: the number of quanta of a VMN, nv = |B|2, the
number of quanta of photons in the cavity, na = |A|2, and the
product of VMN and cavity electric field amplitudes, s = AB:

0 = −2γana − iN
G�

2ωv
(s∗ − s), (30)

0 = −2γvnv − i
G�

2ωv
(s∗ − s), (31)

0 = −(γa + γv)s − i
G�

2ωv
(Nnv + na ) − iN

G2

ωv
s(Nnv + 3na ).

(32)

Equations (30) and (31) have a trivial solution nv = |B|2 = 0,
na = |A|2 = 0, and s = AB = 0. One can see that there is an-
other solution to Eqs. (30)–(32) in which the number of cavity
photons na, the number of quanta of molecule vibrations nv,
and the total number of photons and quanta of the VMN,
na + Nnv, have nonzero values

na = 1

4

γa + γv

γa + 3γv

�th

γa

√
�2 − �2

th

ωv
, (33)

nv = 1

4N

γa + γv

γa + 3γv

�th

γv

√
�2 − �2

th

ωv
, (34)

na + Nnv = 1

4

γa + γv

γa + 3γv

�th

ωv

√
�2 − �2

th

[
γ −1

a + γ −1
v

]
, (35)

where the threshold amplitude of the external field �th is
determined by the expression

�th = 2ωv

G

√
γaγv

N
. (36)

The situation is typical to the Hopf bifurcation leading to self-
oscillations [46].

It should be noted that below the threshold na = nv = 0,
there are no coherent oscillations with the resonator frequency
ωa and vibrational frequency ωv. However, there are driven
oscillations with the frequency of the external field. Using
Eqs. (27) and (28), these driven oscillations can be written
as

a = αe−iωt ≈ 1

2

�

ω − ωa
e−iωt ,

b = β ≈ −i
G�2

4(ω − ωa )2 . (37)

The self-oscillating solutions in the resonator with the
frequency ωa and molecule with the vibrational frequency
ωv arise simultaneously. The dependencies of na and nv on
the relaxation rate γv at fixed γa, �, G, and N are shown in

FIG. 1. The dependence of the number of photons na (the red
solid line) and the number of quanta of a VMN nv (the blue dashed
line) on the inverse dissipation rate of VMNs γ −1

v . Note that changing
γ −1

v implies a transition to a different physical system. ωa = 2 eV,
	 = ωv = 0.2 eV, G = 0.38 × 10−3 eV, � = 0.083 eV, and γ −1

a =
2 × 104 eV−1.

Fig. 1. When γa � γv, na is much greater than the number
of quanta of a VMN nv (Fig. 1). This corresponds to Raman
lasing, in which the energy of the external field is transferred
to the cavity quanta resulting in self-oscillations of the field
in the cavity with the cavity eigenfrequency [15,17,19,21–
23,25,27]. In the opposite case γa � γv, above the threshold,
na � nv (Fig 1). This is the case of the vibrational instability
observed in the experiment [10]. When the relaxation rates
of photons in the cavity and vibrations of the molecule are
of the same order, the EM field in the resonator and the
generation molecule vibrations are weak because the function
na + Nnv ∝ γ −1

a + γ −1
v has a minimum at γa = γv. Note that

γv is a characteristic of a molecule; therefore, in Fig. 1,
by changing this parameter we, in fact, change the physical
system.

Thus, according to Eqs. (33)–(35), VMN and EM field
oscillations in the resonator are a unique self-oscillation pro-
cess. Figure 1 provides a clear illustration of this fact. If
VMNs are driven oscillations caused by the beating of the
pumping and lasing fields [4], then the quality factor of the
molecular subsystem cannot decrease the number of photons
in the resonator. Our computer simulation shows the opposite
result. The number of photons decreases with an increase in
the Q factor of the VMN (see Fig. 1).

Note that below the generation threshold, without noise,
Eqs. (20) and (21) predict that, in the stationary state, the num-
ber of quanta of both VMNs and photons in the resonator is
zero. This is due to the fact that these equations describe only
the coherent dynamics of the system. To describe incoherent
radiation processes, as noted at the beginning of Sec. III, it
is necessary to add noise terms Fa(t ) and Fb(t ) to Eqs. (20)
and (21). The noise terms arise due to elimination of (i) the
thermal reservoir of free space modes into which the resonator
mode radiates and (ii) the phonon thermal reservoir of the
surrounding system. The interactions with these reservoirs
lead to finite linewidths of the cavity mode and vibrations in
the molecule. The correlation properties of these noises are
uniquely related to the dissipation rates via the fluctuation-
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FIG. 2. The dependence of the number of generated quanta of
molecule vibrations nv on the intensity of the pump field �2. The
red solid line is the solution without the thermal noise of VMNs. The
blue dashed line is the solution of Eqs. (39) and (40) with the thermal
noise of the molecule vibrations (nth

v = 2 × 10−2). The parameters of
the system are N = 150, 	 = ωv, ωv = 0.1ωa, γa = 10−2ωa, γv =
10−4ωa, and G = 5 × 10−4ωv.

dissipation theorem as follows:

〈Fa(t )F ∗
a (t ′)〉 = 2γan̄th

a δ(t − t ′),
(38)

〈Fv(t )F ∗
v (t ′)〉 = 2γvn̄th

v δ(t − t ′),

where n̄th
v is the number of thermal VNM quanta. Thus,

Eqs. (20) and (21) take the form

da

dt
= −(iωa + γa )a − iNGa(b∗ + b) − 1

2
i�e−iωt + Fa(t ),

(39)
db

dt
= −(iωv + γv)b − iG|a|2 + Fb(t ). (40)

The dependence of the number of quanta of VMNs on the
pump, obtained by numerical simulation of Eqs. (39) and
(40), is shown in Fig. 2. One can see that due to noise, even
below the threshold, there are quanta of VMNs (Fig. 2, the
blue curve). This situation is similar to the behavior of a laser
below the generation threshold [46,47].

Substituting Eqs. (22) into Eqs. (39) and (40) we find the
equations for the amplitude A of the resonator mode at the
eigenfrequency ωa and the amplitude B of the VMN:

Ȧ = −γaA−iN
G�

2ωv
B∗−iN2 G2

ωv
A|B|2−2iN

G2

ωv
A|A|2+FA(t ),

Ḃ = −γvB − i
G�

2ωv
A∗ − iN

G2

ωv
|A|2B + FB(t ). (41)

To estimate the number of incoherent VMNs below the
generation threshold, we expand the system (41) in powers
of G near the equilibrium state at G = 0, Ast = Bst = 0:

Ȧ = −γaA − iN
G�

2ωv
B∗ + FA(t ),

Ḃ = −γvB − i
G�

2ωv
A∗ + FB(t ). (42)

By considering only the linear terms in A and B, it is easy to
obtain the exact solution for the average number of VMNs,

FIG. 3. The Stokes (the red solid line), and anti-Stokes (the
blue dashed line) signal intensities as functions of the intensity of
the coherent external field. The green dot-dashed line denotes the
intensity of the emitted light in the case when noises in molecule are
neglected. The parameters of the system are the same as in Fig. 2.

Since the number of thermal photons in the resonator is much
smaller than those of VMNs (n̄th

a � n̄th
v ) and, given Eq. (38),

we arrive at the following expressions for mean number of
incoherent VMN quanta, nincoh

v = 〈|B|2〉:

nincoh
v = n̄th

v

(
1 + N (G�/2ωv)2γa

(γaγv − N (G�/2ωv)2)(γa + γv)

)
. (43)

On can see that at zero pump intensity, when G = 0, the
number of incoherent VMN quanta is completely deter-
mined by thermal fluctuations (nincoh

v = n̄th
v ). However, with

nonzero pumping, there is a linear increase in the number
of incoherent VMNs with the pump intensity, �2 : nincoh

v =
n̄th

v (1 + N (G�/2ωv)2/γv(γa + γv)). The situation here is sim-
ilar to amplified spontaneous emission (ASE) or conventional
laser below the generation thresold, where the number of
incoherent photons below the threshold also increases linearly
with the intensity of the pumping field [43,45].

Stokes and anti-Stokes emission intensities IS and IaS are
determined by the equations [10,48]

IS ∝ �2LS (nv + 1), (44)

IaS ∝ �2LaSnv, (45)

where LS = [(ω − ωv − ωa )2 + γ 2
a ]−1 and LaS =

[(ω + ωv − ωa )2 + γ 2
a ]−1 are field enhancements due to

the cavity resonance with the Lorentzian profiles of the
Stokes and anti-Stokes signals, respectively. These intensities
are shown in Fig. 3, in which three characteristic regions of
the intensity of the external field can be distinguished.

In the first region, in which �2 � �2
th, the intensities of

the Stokes and anti-Stokes signals increase linearly with the
intensity of the incident field. In this region, the regime of
the spontaneous Raman scattering near the plasmonic particle
(ordinary SERS) is realized. In the second region, in which
�2 ∼ �2

th, the intensities of the Stokes and anti-Stokes signals
depend nonlinearly on the intensity of the incident field. More
precisely, in this region, the intensity of the anti-Stokes signal
tends toward the intensity of the Stokes signal [see Eqs. (44)
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FIG. 4. Generation curves for average numbers of quanta of
VMNs per molecule for different values of number of molecules
N . The values of the parameters are taken from Ref. [18]: ωa =
2 eV, 	 = ωv = 0.2 eV, γa = 100 meV, γv = 0.045 meV, and G =
0.38 meV. � is calculated by using Eq. (14) of Ref. [10].

and (45)]. This happens because the number of incoherent
VMN quanta increases by the pump field. The situation is
similar to ASE or a conventional laser. This is in qualitative
agreement with a recent experiment on the vibrational insta-
bility [10]. Note that the interpretation of the mechanism of
such nonlinearity below threshold in terms of the optome-
chanical Hamiltonian was discussed in Ref. [9]. In the third
region, in which �2 � �2

th, the regime of the self-oscillation
is realized. In this regime, the dependence of the number of
VMN quanta on the pump intensity becomes nonlinear (the
square-root dependence). In a sence, this regime is similar to
CARS [13]. Indeed, two coherent fields, the incident field and
the field of the resonator mode, whose frequency difference
is equal to the eigenfrequency of the VMN, resonantly excite
coherent VMN quanta. Note that there is also a significant
difference from CARS: the field of the resonator mode now
depends on the the pump rate.

From the equation for the average number of generated
quanta of VMNs, Eq. (34), one can see that an increase in
the number of molecules, N, interacting with a plasmonic
structure results in two effects: (i) the decrease of the laser
generation threshold and (ii) a flatter curve of the generation
of VMNs per molecule, nv. Both of these effects may help
in achieving the regime the “phonon laser.” The first effect

has been discussed in Ref. [10]. The second effect, as far
as we know, is noted in the present paper for the first time.
As one can see from Fig. 4, above the generation threshold,
when the number of molecules interacting with the plasmonic
particle increases, the average number of VMN quanta per
molecule decreases. In the regime of the developed genera-
tion, this number may reach nv ∼ 1. This justifies neglecting
anharmonicity even when harmonic potential (3) for VMNs
for one molecule cannot be used.

IV. CONCLUSION

We consider the impact of external laser radiation on the
collective dynamics of vibrations of a Raman-active molecule
and oscillations of the EM field in the resonator containing
this molecule. We show that, above a certain pump threshold,
two different regimes of self-oscillations may be observed.
The first regime, Raman lasing, requires the relaxation rate
of the EM field in the resonator to be much greater than the
relaxation rate of molecule vibrations, γa � γv. The second
regime, the vibrational instability, is realized in the opposite
limit, γa � γv [10].

These two self-oscillation regimes have the same criterion
for thresholds but different observable outcomes. The regimes
are characterized by the number of quanta of the EM field
and the number of quanta of oscillations in the molecule.
When the relaxation rates of photons in the cavity and VMNs
differ significantly, one of the regimes is realized, and the
numbers of generated quanta of VMNs or of photons in the
resonator are dramatically enhanced. When the relaxation
rates of photons in the cavity and vibrations of the molecule
are of the same order, the EM field in the resonator and the
generation molecule vibrations are weak.
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