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This paper provides, first, a succinct theoretical derivation of Bose-Einstein condensation in a grand-canonical
ideal photon gas elaborating on previous results [Müller, Ann. Phys. 184, 219 (1988); Physica A (Amsterdam,
Neth.) 139, 165 (1986)] additionally including new results on the condensate function and, second, applies this
framework to consistently explain experimental findings on Bose-Einstein condensation of photons in an optical
microcavity [Klaers, Schmitt, Vewinger, and Weitz, Nature 468, 545 (2010)]. A grand-canonical photon gas is
realized by a steady state of a photon flux deviating from a canonical thermodynamic Planck equilibrium. The
theoretical approach presented here invites to significantly widen the experimental framework for Bose-Einstein
condensation of photons including three-dimensional photon resonators and thermalization mechanisms different
from a dye medium in the cavity.
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I. INTRODUCTION

At first glance, a Bose-Einstein condensation (BEC) in
an ideal photon gas seems unreasonable. Einstein’s original
prediction of this fundamental quantum phase transition refers
to a monoatomic ideal quantum gas [1]. Using massive parti-
cles, he was able to control the number density in the gas.
He fixed the temperature and increased the particle number
density beyond the saturation value. Thus he deviated from
a canonical gas, and passed over to a grand-canonical gas
where temperature and number density were two independent
thermodynamical variables. Beyond the saturation state, in the
critical regime, the quantum phase transition emerged which
Einstein compared to the condensation of vapor. The excess
atoms transit to a “state without kinetic energy” [1]. It is this
point that makes an ideal photon gas basically differ from an
ideal monoatomic gas. While both photons and neutral atoms
with an even number of neutrons do have integer spin, thus
qualifying as bosons, their rest masses belong to different
categories: In contrast to atoms, free photons are characterized
by rest mass zero. The two parameters spin 1 (helicity 1)
and zero rest mass label an irreducible representation of the
Poincaré-group, the space-time symmetry group of the special
theory of relativity, thus defining the photons among the
free elementary particles [2]. The zero rest mass of the free
photons presents a severe conceptual problem for a photon
condensation. A photonic occupation of the state without
kinetic energy seems to have no substance at all. As far as
we know, Einstein never publicly touched the question of a
possible photon condensation, neither in the negative nor in
the affirmative respect [3,4].

In this paper, we closely inspect the zero rest mass problem
for a Bose-Einstein condensation in an ideal photon gas. This
problem is intrinsically related to the chemical potential of
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the photons. We shall provide an appropriate thermodynamic
framework to resolve it. The second fundamental problem
is the thermalization in an ideal photon gas. Here we recall
Planck’s widely accepted thermalization concept for an ideal
photon gas, and we give a quantum perspective for a ther-
malization mechanism. Thus we are prepared to demonstrate
Bose-Einstein condensation in a grand-canonical thermody-
namic equilibrium of an ideal photon gas. Eventually, we
calculate the form of the condensate function in the limit of an
infinite number of infrared photons. The approach presented
here relies on a number of mathematical derivations that are
present in previous works [5,6], but are likely not common
knowledge for most readers. Therefore, a comprehensive and
mathematically self-contained derivation is presented in this
work. The mathematical technique is inspired by [7] where
the focus aimed at nonrelativistic BEC-systems.

The theoretical results of the present paper are used to
consistently explain experimental findings on Bose-Einstein
condensation of photons in an optical microcavity [8]. In
addition, we prove that the photon condensate is accumulated
in the center of the resonator. To establish this, we have to
calculate the grand-canonical entropy density of the photon
gas: The photon condensate does not contribute to the entropy
density [9].

The theoretical approach presented here invites to sig-
nificantly widen the experimental framework for BEC of
photons including three-dimensional photon resonators and
thermalization mechanisms different from a dye medium in
the cavity.

II. RECENT APPROACHES TO REALIZE BEC
IN PHYSICAL SYSTEMS WITH PARTICIPATION

OF PHOTONS

Considering interacting systems avoids the conceptual
problem of BEC in an ideal photon gas. Photons can be
strongly coupled with solid-state excitons forming polaritons,
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i.e. bosonic quasiparticles. Such dressed photons have an
effective mass and interact with each other, thus providing
a thermalization mechanism in an appropriate gas configura-
tion. Balili et al. [10] were the first to successfully observe
substantial signatures of BEC in a polariton gas where the
polaritons were confined in a trap giving rise to an effectively
two-dimensional quantum gas. They followed previous work
by Deng et al. [11], and Kasprzak et al. [12]. The theory of
polariton BEC was introduced by Imamoglu et al. [13]. Ac-
cording to [14,15], an appropriate low-dimensional harmonic
trap system qualifies for BEC.

Different from the above polariton approach, there is a pos-
sibility for the BEC of photons where the photons are weakly
coupled to a thermodynamic reservoir of dye molecules [8].
The dye molecules filled into an optical microcavity repeat-
edly absorb and re-emit photons, thus providing the thermal-
ization mechanism needed to realize the phase transition. If
the number density of the grand-canonical photon gas [16]
exceeds a critical value, the excess of photons occupies the
ground state of the resonator macroscopically. The design of
the optical microcavity includes a photon trap that introduces
a preference direction for a standing electromagnetic wave.
That fixes a longitudinal degree of freedom for the photons
in the cavity (paraxial light). With respect to this longitudinal
degree of freedom the photons build up a classical standing
electromagnetic wave maintaining their relativistic mass. The
longitudinal degree of freedom is “frozen out”. With respect
to the transversal degrees of freedom, the photons display
their quantum character. Thus the experimental setting in [8]
constitutes a two-dimensional quantum gas of photons carry-
ing an effective mass. This view splits the three-dimensional
quantum character of photons based on an irreducible rep-
resentation of the Poincaré-group into a two-dimensional
quantum part and a one-dimensional classical part, thereby
arriving at a semiclassical approximation of the photons. To
explain BEC in their photon system, Klaers et al. [8] relied on
a two-dimensional system and referred to the results in [14,15]
in a way similar to the polariton case.

The effective mass of the harmonically trapped photons
depends on the size of the cavity and vanishes for an infinitely
large cavity. Thus, in the infinite volume limit, the number
conservation gets unfounded, which, up to now, is commonly
believed to be a prerequisite for BEC [17].

III. OPTICAL MICROCAVITY SYSTEM AS AN IDEAL
PHOTON GAS

In this paper we adopt a different view on the weakly
coupled photons in [8]; we demonstrate Bose-Einstein con-
densation in an ideal photon gas, and we thereby explain the
experiment. We fully take into account the three-dimensional
quantum nature of the ideal photon gas, and we shall use an
asymptotic expansion including bulk contribution and surface
contribution to identify the two-dimensional photon gas in the
optical microcavity of [8]. Thus we can compare the experi-
mental results from [8] to our theoretical predictions. We shall
see that our theoretical approach matches the experimental
results. It is important to notice that a relativistic ideal gas
admits BEC in three as well as in two dimensions while BEC
does not work in a nonrelativistic two-dimensional ideal gas

[5,6]. Our view of an ideal photon gas in an optical microcav-
ity with three-dimensional volume and a corresponding two-
dimensional surface area disregards the specific trap construct
(curvature of the enclosing mirrors) of this experiment. This is
a comfortable advantage to perform the thermodynamic limit
of the photon resonator.

A. Thermalization

In the case of an ideal gas, the infinite volume limit is of
particular interest to understand BEC: A quantum gas in a fi-
nite container has discrete energy levels raising the question of
how the necessary energy transfer between the energy levels
can be achieved. However, the infinite volume limit renders
the spacing between the levels infinitesimally small. This con-
tinuous spectrum idealization, suggested in 1937 [7], removes
a severe obstacle for an energetic redistribution of the gas
constituents. It made Uhlenbeck withdraw his early objection
to Einstein’s condensation hypothesis [7,18,19]. Beyond the
BEC dispute, the thermodynamic limit is a well-established
means to fulfill the unchallenged desire to establish the sharp
manifestation of phase transitions [7].

Strictly speaking, the continuous spectrum property on its
own is not sufficient to obtain thermodynamical equilibrium.
However, this property can be supplemented by a nontrivial,
deep result for noncommutative algebras of observables which
holds in the infinite volume limit. This result is applicable for
the boson structure of an ideal photon gas. To generalize the
thermodynamical Gibbs equilibrium condition to include the
case of the infinite volume limit, we use the Kubo-Martin-
Schwinger boundary condition (KMS condition). Now the
Tomita-Takesaki theorem states a correspondence between a
thermodynamic KMS state and a time automorphism group
which is given by a “modular operator” [20]. This modular
operator measures the noncommutativity in the observable
algebra; it is intimately related to quantum correlations. Thus,
the Tomita-Takesaki theorem states nothing less than that in
the thermodynamical equilibrium of an infinitely large ideal
quantum gas, the thermal fluctuations can be reduced to quan-
tum fluctuations. The scale factor between the thermal and the
quantum fluctuations is given by the inverse temperature.

We look on the question of thermalization in an ideal
photon gas in a finite cavity more explicitly. This question
had already been decisive for Max Planck’s reasoning on heat
radiation. For an evacuated cavity with perfectly reflecting
walls filled with an arbitrary composition of light rays, he
symbolically postulated the presence of a minute coal dust
to transform any radiation into black body radiation [21]. The
heat capacity of this “minute” black dust is assumed to be neg-
ligible compared to the heat capacity of the radiation within
the cavity. For a real cavity, Planck’s symbolic assumption
is always met by the finiteness of the quality factor of the
cavity due to the finiteness of the electric conductance of the
walls. The walls do the job of the coal dust by absorbing and
re-emitting light rays. (It took some time for Planck to pass
from the picture of light rays to Einstein’s picture of free light
quanta, the photons.)

There is another general argument on thermalization which
deserves to be mentioned besides Planck’s minute coal dust.
For any cavities, ideal cavities with perfectly reflecting walls
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included, we draw attention to their finite size to notice the
spatial uncertainty of the photons therein. This spatial un-
certainty is transformed by Heisenberg’s uncertainty relation
into an uncertainty of the photon momentum which induces
a smearing out of the photon resonances in the cavity. They
are characterized by a line width which is specific for the
cavity. The photon resonances overlap, and we get proba-
bilities for transitions between the resonances. In the ideal
case of a perfectly reflecting wall, all transition probabilities
are nonzero, although a number of them might be extremely
small. We see that the finiteness of a container provides a
means to achieve thermal equilibrium of an ideal quantum
gas, potentially on a large timescale. Having established the
equilibrium, the spectral temperature of an ideal photon gas
in a perfect resonator will be induced by the value of the
photon gas energy; this can be done by the technique of
the Lagrange multipliers. Planck did not have Heisenberg’s
uncertainty relation at hand when working out black body
radiation.

In the common case of cavities with absorbing walls,
the competition between the probabilities for absorption and
the probabilities for transitions dominates the smearing out
due to the uncertainty relation. It is decisive to deal with
this competition when constructing a photon resonator for
BEC. If transition probabilities are sufficiently higher than the
respective absorption probabilities, then a precondition for the
possibility of building up a grand-canonical thermodynamic
equilibrium of photons is fulfilled.

For the sake of concreteness, we add a more familiar
thermalization setting. We use an electron gas as a thermal
reservoir and couple it to the photon gas. Now Compton
scattering between the photons and the electrons induces an
exchange of energy between the photons establishing thermal
equilibrium in the photon gas [22]. This is comparable to the
collision processes between the massive particles of an ideal
gas with the constituents of a heat bath that is in contact with
the gas to attain thermal equilibrium. Instead of an electron
gas, we can employ the nonabsorbing wall of the photon
resonator as an intermediate agent between the photons: The
wall is exposed to the collisions of the photons which imply
a rebounding of the wall to the photon gas. Thus, again,
we see an energy exchange between the photons needed for
thermalization.

B. Conceptual preliminaries: Choice of the thermodynamic
variables; the role of the chemical potential

We shall take the term “canonical ensemble” to re-
fer to a state in which entropy is maximized subject to
the mean energy density being fixed. To this constraint
there corresponds a Lagrange parameter β which stands for
the inverse temperature 1

kT with T and k being the temperature
and the Boltzmann constant, respectively. We shall take the
term “grand-canonical” ensemble to refer to a state in which
entropy is maximized subject to the mean energy density
and the mean particle number density being fixed. To the
additional constraint for the mean particle number density
there corresponds a second Lagrange parameter μ which
is associated with the chemical potential. Only one sort of
particle, the photon, is considered in this paper. For a grand-

canonical photon gas in a finite-size cavity with reflecting
walls, any two of the four thermodynamic variables mean
energy density u, mean photon number density ρ, inverse
temperature β, and chemical potential μ can be used as
independent thermodynamic variables.

For the thermodynamic limit of a photon gas this is no
longer true. In this limit, the lowest energy value of the
photons approaches zero. A finite number density of photons
with infinitesimal energy cannot build up a nonzero energy
density. Therefore, in the infinite volume limit, we have to
carefully distinguish between the mean energy density being
fixed and the photon number density being fixed. In [6],
the thermodynamic limit was performed with mean number
density fixed while in [5], it was the mean energy density
that was fixed for the limit procedure. An essential difference
shows up. In the number density limit, the photon condensate
does not contribute to the mean energy density; the finite oc-
cupation number of the lowest state has to be multiplied by the
respective energy eigenvalue εR

1 , with R being a characteristic
cavity length tending to infinite, such that εR

1 tends to zero, and
therefore the potential condensate contribution to the energy
density tends to zero as well (see below and [6]). Physically
this is not fully satisfactory, although an onset of condensation
emerges. However, in the mean energy density limit, the
condensate necessarily contributes to the mean energy density
while the photon number density diverges. This infrared diver-
gence is in line with physical experience and understanding.
In any case the mean energy density is experimentally accessi-
ble and controllable, as well as the temperature. In this paper
we therefore adopt temperature and mean energy density as
the independent thermodynamic variables thus forming the
grand-canonical photon gas. Consequently the photon number
density and the chemical potential are dependent variables. A
number-conserving thermalization is thus no longer a neces-
sary precondition for the BEC of photons.

In the finite photon gas system, the chemical potential μR

of the photons depends on the size of the cavity. R shall denote
a characteristic length of the cavity with VR its volume such
that R3 = VR. Let the inverse temperature β and the value u
of the mean energy density function uR of the photon gas be
fixed as follows:

uR(β, μR(β, u)) = u. (1)

Equation (1) defines the chemical potential μR as a func-
tion of β and u. We shall see that, in the critical regime where
the value u exceeds u(β ) which is the mean energy density of
black body radiation associated with β, the convergence rate
of μR in the infinite volume limit turns out to be

μR ∼ 1

R4
for R → ∞, (2a)

lim
R→∞

μR(β, u) = 0, for u � u(β ). (2b)

In the limit, the chemical potential of the photon conden-
sate is zero; there are no longer single photons, there is a
new collective phase. In his pioneering work [1], Einstein
already presumed the chemical potential of the condensate to
be zero. For nonrelativistic Bose-Einstein condensates of an
ideal boson gas, this has been proved in general by Lewis et al.
[7]. For boson systems with a persistently gapped spectrum,
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and for pumped laser systems in particular, the chemical po-
tential remains nonzero [23]. The nonequilibrium laser system
can be formally transformed into a grand-canonical equilib-
rium system, where the chemical potential μ �= 0 absorbs
the pumped shift of the spectrum [24,25]: The pumping in
the laser system yields a nonzero chemical potential μ of the
photons. Even in a thermodynamic limit idealization of such
a system, the chemical potential remains nonzero. It can be
regarded as a shifted ground state of the laser-photon system.
This introduces a sharp distinction between BEC, with μ =
0, and laser states, with μ �= 0. Note that in both cases the
systems are described via a grand-canonical ensemble.

The crucial point of our approach is the distinction between
two types of limits that appear in the critical regime. There is,
first, the grand-canonical limit R → ∞ for the mean energy
density uR with variable μR(β, u), and, second, there is the
canonical limit R → ∞ for uR putting the chemical potential
zero a priori. We have

lim
R→∞

uR(β,μR(β, u)) �=
lim

R→∞
uR(β, 0) = u(β ), for u > u(β ). (3)

A nonzero difference u − u(β ) > 0 allows for Bose-Einstein
condensation.

IV. PHOTON CONDENSATION IN THREE
AND TWO DIMENSIONS

We consider a photon gas in a finite cavity of volume VR

with reflecting walls. The lowest eigenvalue εR
1 of the photon

Hamiltonian for the cavity with Dirichlet boundary conditions
is strictly positive, 0 < εR

1 � εR
2 � εR

3 �..., where εR
k , k � 2

denote the excited modes. Assuming temperature T and mean
energy density u as independent thermodynamic variables of
the photon gas implies a deviation of the thermodynamic
Planck equilibrium. To establish this, photons are continu-
ously injected into the photon gas where the frequency and
the power of the radiation into the cavity is suitably adjusted.
Cooling the walls of the cavity the temperature of the photon
gas is fixed at a chosen value. As a result the photon flux builds
up a steady state of energy with some desired value u of the
mean energy of the photon gas. As an example, this setting
was fulfilled in [8]. The Hamiltonian of free photons in the
cavity is given by

h̄c
√

−�R, (4)

with �R denoting the Dirichlet Laplacian defined in the
cavity; h̄ is the reduced Planck constant, c the speed of light.
We switch over to an energy spectrum

λR
k := εR

k − εR
1 , (5a)

with zero as the lowest value. Accordingly, we introduce a
normalized chemical potential

μR � 0. (5b)

The lower bound zero of the spectrum (5a) remains fixed
when the thermodynamic limit process is performed. This is
a mathematical preconditon for the bound to possibly act as a
limit point. The integrated spectral density FR(λ) of the photon
Hamiltonian is a function of the variable λ and counts the

number of the eigenvalues λR
k,α up to the variable value λ [6];

the natural number k denotes the mode numbers, and α the
respective helicity of the photons

FR(λ) := 1

VR
#
{
(k, α) ∈ N × (+1,−1) : λR

k,α � λ
}

= 1

3π2

(
λ

h̄c

)3

− AR

8πVR

(
λ

h̄c

)2

+ O

(
λ

R2

)
; (6)

accordingly, the spectral density is [5,26]

dFR(λ) = 1

π2
(h̄c)−3λ2dλ

− AR

4πVR
(h̄c)−2λdλ + O(R−2)dλ; (7)

with λR
k,α := λR

k , α counting the two helicity values of the
photons; AR denotes the surface area of the cavity. The first
term gives the bulk contribution to the density and the second
one the surface contribution. In the following we neglect
higher orders in R−1. The approximation up to second order,
given in (6), is valid for a large class of sufficiently smooth
geometries covering most physical applications.

The Hamiltonian HR of the photon gas is the second quan-
tization of the free photon Hamiltonian (4) [27]. We include
the two helicity values denoted by α:

HR =
∑

p

εR
p b∗

pbp, p = (k, α) ∈ N × {+1,−1}. (8)

The creation and annihilation operators b∗
p and bp for the

photon field obey Bose statistics. The corresponding particle
number operator is

NR =
∑

p

b∗
pbp. (9)

The grand-canonical state on observables A of the photon
gas is given by their expectation value ER

β,μ which is associ-
ated with the grand-canonical density matrix

DR
β,μ = e− log ZR

β,μ−βHR+βμNR ,

ZR
β,μ := Tr[e−β(HR−μNR )]; (10a)

ER
β,μ[A] := Tr

[
DR

β,μA
]
, (10b)

where Tr denotes the trace over the states of the photon gas.
The grand-canonical expectation value of the photon

Hamiltonian density gives the mean energy density of the
photon gas in the cavity

uR(β,μR) = ER
β,μ

[
HR

VR

]

= 2

VR

∞∑
k=1

(
λR

k + εR
1

)(
eβ(λR

k −μR ) − 1
)−1. (11)

The factor 2 sums the helicities. Using the spectral density
(7), the evaluation of (11) yields [5]

uR(β,μR) = 2εR
1

VR

1

e−βμR − 1

+ 2

VR

∞∑
k=2

(
λR

k + εR
1

) 1

eβ(λR
k −μR ) − 1
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= 2εR
1

VR

1

e−βμR −1
+ 2

VR

∞∑
k=2

(
λR

k + εR
1

) ∞∑
n=1

e−nβ(λR
k −μR )

= 2εR
1

VR

1

e−βμR −1
+

∞∑
n=1

enβμR
2

VR

∞∑
k=2

(
λR

k +εR
1

)
enβλR

k

= 2εR
1

VR

1

e−βμR − 1
+

∞∑
n=1

enβμR

∫ ∞

εR
2

(
λ + εR

1

)
dFR(λ).

(12)

The second term of uR(β,μR) represents the excited states
of the photon gas; we denote it by uR

e (β,μR). In the third
equation, the two infinite summations can be rearranged since
the singular ground state of uR(β,μR) has been isolated. We
evaluate the integral and, thereby, neglect the term with εR

1
which, in the infinite volume limit, tends to 0; the lower
integration bound εR

2 also tends to 0, for R → ∞. The first
two terms of the asymptotic expansion of uR

e (β,μR) with
respect to R are

uR
e (β,μR) ∼ ue(β,μ)

=
∞∑

n=1

enβμ

(
1

n4

6

π2h̄3c3β4
− 1

n3

AR

VR

2

4π h̄2c2β3

)
, (13)

where uR
e (β, 0) is the mean energy density of black body radi-

ation which is constituted by the excited states of the photon
gas. ue(β, 0) turns out to be the critical mean energy density
for the photon condensation. The asymptotic expansion gives
the bulk contribution ubulk

crit (β ) and the surface contribution
usurface

crit (β )

ubulk
crit (β ) := ubulk

e (β, 0) := 6

π2h̄3c3β4
g4(1), (14a)

usurface
crit (β ) := usurface

e (β, 0) := 2

4π h̄2c2β3
g3(1), (14b)

where

gs(z) :=
∞∑

n=1

zn

ns
, ζ (s) = gs(1). (15)

ζ is the Riemannian zeta function; g4(1) = ζ (4) =
π4/90; g3(1) = ζ (3) = 1, 20206 . . . .

Given a temperature β, and a value u of the mean energy
density. Then the chemical potential μR is a dependent vari-
able determined by the equation

uR(β,μR) = u.

In the bulk approximation μR → μ where the thermody-
namic limit μ is a unique solution [28] of

ubulk
e (β,μ) := 6

π2h̄3c3β4
g4(eβμ) = u

if u � ubulk
crit (β ), (16)

and

μ = 0 if u > ubulk
crit (β ). (17)

Equation (17) represents the condensation regime. In this
regime the mean energy density of the condensate is

given by

u1 := u − ubulk
crit (β ) if u > ubulk

crit (β ).

If u � ubulk
crit (β ), we set u1 := 0. (18)

The excess energy u1 (18) is absorbed by the ground state
represented by the first term on the right-hand side in equa-
tion (12). This implies the convergence rate of the chemical
potential μR when approaching zero:

2εR
1

VR

1

(e−βμR − 1)
= 2εR

1

R3
(1 − βμR + . . . − 1)−1 = u1

⇒ μR ∼ 2εR
1

βR3
∼ 1

R4
(19)

since εR
1 ∼ 1

R . To put the chemical potential zero before
performing the infinite volume limit, or to let μR converge
to zero in the infinite volume limit procedure (19), that makes
a decisive difference giving rise to the condensation.

To consider a two-dimensional ideal photon gas, we refer
to the asymptotic expansion of the mean energy density (13).
We drop the bulk term and focus on the two-dimensional
surface term. Also, higher orders in R−1 are neglected. The
independent thermodynamic variables are the mean energy
surface density us (with the unit J/m2), and the inverse tem-
perature β. We follow the reasoning as in the bulk case. The
chemical potential μ is a unique solution of

usurface
e (β,μ) := 2

4π h̄2c2β3
g3(eβμ)

= us if us � usurface
crit (β ) (20)

and

μ = 0 if us > usurface
crit (β ). (21)

If the value us lies in the critical regime (21), the mean en-
ergy surface density of the condensate emerges spontaneously
and is given by

us
1 := us − usurface

crit (β ).

If us � usurface
crit (β ), we set us

1 := 0. (22)

The excess energy (22) occupies the ground state.
The asymptotic expansion of the critical mean energy

density uR
e (β, 0) up to second order can be read off from (13)

and is given by

ucrit(β ) = ubulk
crit (β ) − AR

VR
usurface

crit (β )

= 6

π2h̄3c3β4
g4(1) − AR

VR

2

4π h̄2c2β3
g3(1). (23)

Accordingly the total critical energy of the finite photon gas
up to second order is

Ucrit(β ) = VR
6

π2h̄3c3β4
g4(1) − AR

2

4π h̄2c2β3
g3(1). (24)

V. APPLICATION TO AN OPTICAL MICROCAVITY

Applying this formalism to the case of the two-dimensional
optical microcavity, it is possible to calculate the critical
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power of radiation inside the cavity to induce condensation.
Referring to the paper of Klaers et al. [8], two curved mirrors,
with radius of curvature Rcurv = 1 m and central distance D0 =
1.46 μm, define the geometry of the optical microcavity. The
data imply a volume VR = πD0

2(Rcurv − D0/3)/2 = 3.35 ×
10−12 m3, and a surface area AR = 2 π RcurvD0 = 9.17 ×
10−6 m2. For room temperature of 300 K, the numerical value
of the total critical energy (25) is

Ucrit(300 K)

= VR × 6.1282 × 10−6 J/m3 − AR × 1.3601 × 10−11 J/m2

= 2.05 × 10−17 J − 12.47 × 10−17 J

= −10.42 × 10−17 J. (25)

The surface term dominates the bulk term by a factor
of 6 qualifying this microcavity as an approximately two-
dimensional system. The minus sign of the surface-energy for-
mally results from the Dirichlet boundary conditions [26,29].
(In the Dirichlet case, the eigenfunctions of the Laplacian
are assumed to vanish at the boundary; in the boundary area,
a surplus due to the extrapolated bulk value thus has to be
subtracted.) More generally, the signs of the different terms
in the asymptotical expansion regulate the contribution of the
respective terms. Due to its dominant contribution and our
interest in describing the cavity as two dimensional, we focus
on the surface term contribution to the critical energy. As a
physical quantity we take its positive value.

To compare the theoretical values (25) to the experimental
results from [8], the critical energy of the photon gas has to
be related with the critical power inside the cavity. The power
inside the cavity consists of the contribution from the photon
gas, and the contribution from the pumped dye molecules
forming a thermodynamic reservoir. This last part is about 50
times larger than the contribution from the photon gas (see [8],
same notation):

Nexc/Nph = τexc/τph = 1 ns/20 ps = 50, (26)

where Nph, τph denote the average number of the photons
in the resonator and the average time between emission and
absorption, respectively, Nexc and τexc the number of molecu-
lar excitations and their electronic lifetime in the resonator,
respectively. A characteristic length of the microcavity is
given by the ratio of volume to surface, l0 = VR/AR ≈ D0.

As mentioned, we want to describe the photon gas in the
microcavity as a purely two-dimensional system. So we de-
cide to neglect the bulk contribution, instead of taking the
whole expression from (25). Focussing on the surface term
in (25), U surface

crit (300 K) = 12.47 × 10−17 J, we get the crit-
ical power of the radiation in the two-dimensional photon
gas

Pcrit(300 K) = (1 + 50)U surface
crit (300 K)/(l0/c) = 1.31W. (27)

The theoretical value lies within the tolerance of the experi-
mental value Pc,exp = (1.55 ± 0,60) W of Klaers et al. [8].

VI. LOCALIZATION OF THE CONDENSATE

Now we determine the explicit form of the condensation
state function. The states of an ideal grand-canonical photon

gas in a resonator are given by the Hilbert space vectors
of the symmetric Fock space over the single-photon Hilbert
space H,

F(H) = ⊕N
n=0H

n, (28)

with N denoting the total number of photons, and Hn the
symmetrized n-fold direct product of H. To derive the conden-
sation state of the photon gas, we refer to a three-dimensional
parallelepiped with edges L1, L2, L3:

−Li

2
� xi �

Li

2
, i = 1, 2, 3; (29)

the two-dimensional case, and the case of cavity geome-
tries different from a parallelepiped follow accordingly. The
ground-state function of the photon gas occupied by N1

photons with energy εR
1 , the lowest-energy eigenvalue of the

cavity (29) with Dirichlet boundaries supposed, is given by

3∏
i=1

cos

(
π

Li
x1,i

)
. . . cos

(
π

Li
xN1,i

)
∈ HN1 . (30)

To evaluate (30) in the condensation regime, it is crucial
to observe that the condensate does not contribute to the
grand-canonical entropy density sR. The entropy density sR

is given by the energy density uR, the photon number density
ρR multiplied by the chemical potential μR

∗, and the radiation
pressure pR

sR(β,μR
∗) = 2

VR

∞∑
k=1

kB
{(

βεR
k − βμR

∗)(eβ(εR
k −μR

∗ ) − 1
)−1

+ ln
(
eβ(εR

k −μR
∗ ) − 1

)−1
}

= kBβ{uR(β,μR
∗) − μR

∗ρR(β,μR
∗)

+ pR(β,μR
∗)

}
. (31)

In this thermodynamic relation for the entropy density
the nonnormalized chemical potential μR* � ε1 has to be
used, and the nonnormalized energy spectrum as well. The
nonnormalized μR* and the normalized μR (5b) are connected
as follows:

μR = μR
∗ − εR

1 . We observe εR
k − μR

∗ = λR
k − μR.

Therefore (31) can be written as

sR(β,μR) = kBβ
{
uR(β,μR) − (

μR + εR
1

)
ρR(β,μR)

+ pR(β,μR)
}
. (31′)

The term εR
1 ρR(β, μR) subtracts the ground-state contribu-

tion in uR(β, μR) which is relevant for the thermodynamic
limit with β and u as independent variables. That part of
εR

1 ρR(β, μR), which comprises the excited states tends to
zero, for R → ∞. Also μRρR(β, μR) tends to zero, since
μR ∼ R−4 [see (19)], and ρR(β,μR) ∼ R.

The last convergence rate stands for the infrared catastro-
phe [5] which is well known in quantum electrodynamics. The
limit of the radiation pressure pR is given by (26) in [5]. Thus
we get

lim
R→∞

sR(β,μR(β, u)) := s(β,μ(β, u)) = se(β,μ(β, u)),

(32)
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π

FIG. 1. x1 component of the spatial condensate distribution f N1
1 , for N1= 5, 100, 5000 (starting from left).

where se comprises the thermodynamic limit of the sum
of the excited modes k � 2 in (31). The result (32) in-
cludes the condensation regime: For the condensation regime
u � ubulk

crit (β ), the chemical potential is zero, and we get

s(β,μ(β, u)) = se(β, 0) = 4

3
kBβubulk

crit (β ),

for u � ubulk
crit (β ). (33)

Equation (31′) corrects equation (10) in [5]. Consequently
equation (27) in [5] has to be replaced by equation (32)
above, and equation (40) in [5] by equation (32) above [9,28].
Beyond this correction, details of the above calculations can
be taken from [5].

If we increase u beyond ubulk
crit (β ), the entropy density (33)

remains constant while the energy increase builds up the
condensate. The condensate does not contribute to the entropy,
the entropy of the condensate is zero. This means that, in
the condensation regime, the ground state is not a mixture of
random phases (30) but a pure state, with identical phases for
the cosine functions. This observation implies the following
evaluation of (30):

3∏
i=1

(
cos

(
π

Li
xi

))
N1 ∈ HN1 . (34)

Expression (34), denoted by f N1
1 (x1, x2, x3), gives the spa-

tial condensate distribution. In the idealization N1→ ∞, the
spatial distribution f1 of the condensate is

f1(x1, x2, x3) =
{

1 for xi = 0, i = 1, 2, 3,

0 for 0 < |xi| � Li
2 , i = 1, 2, 3.

(35)

At any point (x1, x2, x3) outside the center, f N1
1 (x1, x2, x3)

forms a bounded number sequence strictly monotonic de-

creasing with respect to N1 which implies the result (35).
(Compare, e.g., to [30].) Figure 1 (see above) visualizes the
convergence rate of (34) for the x1 component for N1= 5, 100,
5000; the last case shows the sharpest distribution.

VII. DISCUSSION

Bose-Einstein condensation in an ideal photon gas can be
realized in three and in two dimensions. The analytical frame-
work developed above allows a formally consistent and quan-
titatively accurate description of the experimental results of
Klaers, Schmitt, Vewinger, and Weitz for a two-dimensional
microcavity [8]. In particular, it can be proved that the photon
condensate is localized at the center of the cavity, in line
with the observation. The proof explains the robustness of
the central localization of the condensate against a spatially
displacement of the pump beam, as noticed in [8]. The central
localization of the photon condensate makes clear that, in the
idealization of an infinite number of (infrared) photons with
infinitesimally small energy, there is no contribution of the
condensate to the radiation pressure, in accordance with the
corresponding proof in [5].

Photon condensation transforms photons from higher fre-
quencies to lower frequencies. At the same time the con-
densate builds up a state of high order. This offers technical
applications for photovoltaic energy conversion and energy
storage, for new electromagnetic radiation sources, and for
photonics.

On the most fundamental level, as described in this paper,
the condensate represents stationary energy. Hence, according
to Einstein’s equivalence of energy and mass, it has to be
associated with a nonzero rest mass; the fundamental criterion
for matter.
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