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Stability of out-of-phase solitons and laser pulse self-compression in active multicore fibers
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An out-of-phase soliton distribution of the wave field is found for a multicore fiber (MCF) from an even
number of cores located in a ring. Its stability is proved with respect both to small wave-field perturbations,
including azimuthal ones, and to small deformations of the MCF structure. As an example of using this
soliton distribution, the problem of laser pulse compression in an active MCF is studied. The optimal fiber
parameters, the minimum duration of the output pulse, and the compression length are found, and they are in
good agreement with the results of numerical simulation. In order to achieve high energies in the output laser
pulse, the requirements for MCF deformations are determined.
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I. INTRODUCTION

Successful development of fiber-optic technologies in re-
cent decades has stimulated study of the possibility of replac-
ing high-power solid-state lasers with equivalent laser systems
based on fiber components, which can fundamentally change
the attractiveness of relevant applied developments. This is
due to the small sizes of the fiber laser system, the ease
of controlling them, and the reliability and stability of their
operation. In particular, the use of an array of independent
active light guides is proposed as a promising method for
producing laser pulses with an extremely high power level
[1,2]. The maximum achievable radiation power in each fiber
is limited, but the total power can be arbitrarily large in the
case of coherent summation of pulses from many fibers. One
of the difficulties of this approach is the high sensitivity of
the method of coherent field summation to various disturbing
factors. It is necessary to maintain a constant phase difference
between laser channels under conditions of random variations
in the radiation phase in each channel. Recent work [3–5] has
demonstrated experimentally the possibility of synchronizing
laser radiation at the output of a number of independent light
guides. At this, only eight light guides can be synchronized
for intense wave packets.

Successful development of technologies for manufacturing
multicore fibers (MCFs), which consist of identical weakly
coupled optical cores located equidistantly, stimulates studies
focused on the possibility of coherent propagation of laser
radiation with a total power noticeably greater than that trans-
mittable in a single-core optical fiber. Using MCFs allows one
to split the total high power into cores with a power below any
unwanted nonlinear effects that result in fiber damage. In other
words, laser beams in each core can be safely transported
below the threshold of harmful nonlinear effects, while the
total coherent power can be very high. This stimulated the
study of nonlinear wave processes in spatially periodic media
being sets of a large number of weakly coupled optical cores.
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Unfortunately, these expectations have failed. As shown
by theoretical and experimental studies [6–10], such systems
have their own critical power or energy at which self-focusing
of the quasihomogeneous distribution of the discrete wave
field occurs and the field disintegrates into a set of incoherent
structures [10]. Despite this, a number of interesting results
were obtained in this direction related to studying the pos-
sibilities of generating a supercontinuum [11,12], decreasing
the duration of laser pulses [8–10,13–19], controlling the
structure of the wave field [20–26], and producing light bullets
[27–32]. The presence of a discrete critical power or energy
leads to the fact that the power or energy of the laser radiation
used is also limited by the destruction threshold or self-
focusing in a separate core.

Recently, the research focus has shifted to MCFs with a
small number of cores, e.g., MCFs consisting of a central core
and an even number (2N) of cores located in a ring [17–22]. In
such MCFs, stable inhomogeneous stationary nonlinear wave-
field distributions with a total power much larger than the
critical self-focusing power in continuous media were found
[22]. This includes both the well-known solution localized
in one core and solutions which use all cores (± mode;
where the phase differs by π in neighboring cores), half of
them (“crown”-like distribution, which has the form of in-
phase maxima through the core), or only several optical cores
(mirror-symmetric distributions). In the case of the ± mode,
the total radiation power can be many (2N) times higher than
the critical self-focusing power in a continuous medium.

These successful efforts motivate the search for stable
spatiotemporal soliton solutions for the purpose of coherent
propagation of unchanged laser pulses in all available cores of
such MCFs. The total energy of such a nonlinear structure can
significantly exceed the energy of the nonlinear Schrödinger
equation (NSE) soliton in a single core. The existence of
these nonlinear solutions allows us to easily generalize the
well-known methods of laser pulse compression in a single
core to the case of the MCF, i.e., to take a significant step
in solving the problem of formation of high-energy (sub-μJ),
short-duration laser pulses in systems based entirely on the
fiber design. Note that in the case of a single-core fiber in the
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FIG. 1. Schematic of the considered MCF with cores arranged in
a ring. Color reflects the out-of-phase distribution of the wave field
un ∝ (−1)n.

region of anomalous group velocity dispersion (in the region
of existence of NSE solitons), many schemes for decreasing
the wave-packet duration are well developed; among them
are the use of (i) a high-order soliton [33–35], (ii) adiabatic
change in the parameters of a solitonlike laser pulse in a
waveguide system with a monotonically decreasing dispersion
[35,36], and (iii) adiabatic change in the parameters of a
solitonlike laser pulse in a medium with amplification [37,38].

The goal of this work is to study the existence and stability
of the spatiotemporal soliton in an MCF being a ring of 2N
identical weakly coupled cores (see Fig. 1), with the aim of
the possibility of coherent propagation of unchanged laser
pulses in all available MCF cores. As an example of the use
of this soliton, we analyze the adiabatic decrease in the soliton
duration in the active MCF with a finite Gaussian amplifica-
tion band under the condition of a nonstationary nonlinear re-
sponse of the medium. Based on the variational approach, the
minimum duration and, accordingly, the maximum energy of
the laser pulse were determined. The possibility of generating
a laser pulse of 55-fs duration with a sub-μJ level of energy at
the MCF output at a length of 3 m and at a wavelength of 2 μm
doped with thulium was demonstrated. The requirements for
maximal MCF deformations and the spread of the gain in
the cores for achievement of high energies in the output laser
pulse are determined.

The paper is organized as follows. In Sec. II, the basic
equations are formulated. In Sec. III, the spatiotemporal soli-
ton in the passive MCF is found, and its stability with respect
to azimuthal perturbations is analyzed. In Sec. IV, we consider
the stability of the solution found with respect to small defor-
mations of the MCF structure and the spread of the gain across
the cores. In Sec. V, we perform a qualitative analysis of the
adiabatic decrease in the duration of the found spatiotemporal
soliton in the active MCF with a finite Gaussian gain band
allowing for nonstationarity of the nonlinear response. Sec-
tion VI presents the results of a numerical simulation of the
laser pulse self-compression in a silica MCF made up of six
cores doped with thullium. In the Conclusion (Sec. VII), the
main results of the work are formulated.

II. FORMULATION OF THE PROBLEM

Let us consider the self-action of subpicosecond laser
pulses in an active multicore fiber with a finite-gain bandwidth
taking into account the instantaneous electron (Kerr) and
delayed molecular (Raman) nonlinearities. Next, we consider

an MCF made of an even (2N) number of cores arranged
in a ring. Figure 1 shows schematically an MCF with N =
3. The analysis is based on the standard theoretical model
[6,8,10,17,23,25,39], in the framework of which it is assumed
that the fundamental guided modes of the optical cores ori-
ented parallel to the z axis are weakly coupled. In this case,
the propagation of laser pulses in the MCF can be described
approximately as a superposition of fundamental modes local-
ized in each core,

E �
∑

n

En(z, t )φ(x − xn, y − yn)eiknz−iωt + c.c., (1)

where φ(x, y) is the structure of the lowest spatial mode in the
core, and En is the envelope of the electric-field strength in the
nth core, which slowly changes along the z axis. We assume
that the central frequency of the laser pulse lies in the region of
the anomalous group velocity dispersion. We neglect the gain
saturation of the wave packet, since fiber laser systems have
a high saturation energy. For example, the saturation energy
of erbium fiber laser systems is approximately 10 μJ [40,41],
and the energy of the considered laser pulses is less than 10 nJ
per the core.

The evolution of the wave-field envelope in the nth core
can be affected by linear dispersion and the Kerr nonlinearity
of a single core, amplification in the active medium, and
interaction with the nearest-neighboring cores that arises due
to weak overlapping of their fundamental modes. Assuming
that the cores are weakly coupled, we obtain the following
system of equations for the envelope of the electric field En in
the nth core [10,16,17,41]:

i
∂En

∂z
+ i

∂kn

∂ω

∂En

∂t
= βn

2

∂2En

∂t2
+

2N∑
m=1

χmnEm

+ �nPNL
n + iω0

4πn0nc

∫ +∞

−∞
Xn(ω)En(z, ω)e−iωτ dω. (2)

Here, the subscript n varies from 1 to 2N , ω0 is the carrier
frequency of the laser pulse, c is the speed of light, the
coefficient χmn = χnm determines the coupling between core
m and core n, χnn = kn is the wave number in the cores,
n0n and �n are the linear and nonlinear refractive indexes in
the nth core, respectively, Xn(ω) is the imaginary part of the
susceptibility in the nth core, and βn = ∂2kn/∂ω2 is the group
velocity dispersion in the nth core. The term PNL

n takes into
account the time dependence of the nonlinear response of the
fiber [35,39],

PNL
n = (1 − fR)|En|2En + fREn

∫ ∞

0
|En(t − t ′)|2hR(t ′)dt ′,

(3)

where fR represents the partial contribution of the inertial Ra-
man scattering response to nonlinear polarization. The Raman
response function hR is responsible for the Raman gain and
can be determined from the experimentally measured Raman
spectrum in silica fibers. The approximate analytical form of
this function is as follows [35,39]:

hR(t ) = τ 2
1 + τ 2

2

τ1τ
2
2

exp(−t/τ2) sin(t/τ1). (4)
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For silica fiber, we have τ1 = 12.2 fs, τ2 = 32 fs, and fR =
0.18 [39]. When analyzing the nonlinear dynamics of laser
pulses with a duration of τp � τ2, expression (3) can be
simplified:

PNL
n ≈ |En|2En − τREn

∂|En|2
∂t

, τR = 2 fRτ 2
1 τ2

τ 2
1 + τ 2

2

. (5)

We assume that all cores are the same: �n ≡ �, X =
Xn, χnm = χ̂δn,m±1, βn = β, n0n = n0. In the accompanying
coordinate system moving at the group velocity of the wave
packet, the system of equations (2) taking into account expres-
sion (5) can be written in dimensionless variables as follows:

i
∂un

∂z
= ∂2un

∂τ 2
+ |un|2un − μun

∂|un|2
∂τ

+ χ (un+1 + un−1)

+ δhnun + i

2π

∫ +∞

−∞
G(ω) Sn(ω)e−iωτ dω. (6)

Here, the longitudinal coordinate τ = t − ∂k
∂ω

z and the evo-
lutionary coordinate z are normalized to the characteris-
tic laser pulse duration τin and the corresponding disper-
sion length z0 = 2τ 2

in/β, un = e−ihnzEn
√

�z0 is the com-
plex amplitude of the envelope of the wave packet in the
nth core, hn = k(0)

n z0, kn = k(0)
n + δkn, χ = χ̂z0, δhn = δknz0;

Sn = ∫ +∞
−∞ un(τ )eiωτ dτ is the envelope spectrum; and μ =

τR/τin, G = ω0z0
2n0c X (ω). The Gaussian distribution will be cho-

sen as the gain profile of the active medium G(ω):

G(ω) = γ exp(−ω2/�2). (7)

The second term in Eq. (6) describes the linear dispersion
of the medium, the third term is responsible for the Kerr
nonlinearity, and the fourth term is the inertia of the non-
linear response. Further terms are responsible for coupling
with neighboring cores. The last term, describing the process
of amplification of a laser pulse in an active medium, is
represented through the spectral gain G(ω). In the case of a
single-core fiber, the reduced system of equations corresponds
to the well-known equation from [41].

The applicability of Eqs. (6) is limited by the approxima-
tion of the single-mode wave-field propagation in each core.
It is violated when the radiation power in any of the cores
Pn = |En|2

∫∫
φ2dxdy becomes close to the critical power of

self-focusing in a homogeneous medium Pcr.

III. SPATIOTEMPORAL SOLITONS

A number of stable nonlinear solutions for wave beams
propagating in the considered MCFs were found in [22]. The
most interesting of these is the ± mode un ∝ (−1)n, which
provides transportation of maximum power at a given field
amplitude. Moreover, this solution is stable and exists at all
amplitudes.

The generalization of the ± mode to the pulsed case is
simple, since wave-field amplitudes in all cores are the same.
Indeed, Eqs. (6) in the absence of amplification G = 0 and
an inertia of nonlinear response μ = 0 have a solution in the
form

un(z, τ ) = (−1)n

√
2bei(2χ−b2 )z

cosh(bτ )
. (8)

To prove the stability of the manifold, (8), we use the
second Lyapunov method. It says that the variety of solutions
will be stable if it is possible to find the Lyapunov functional
F[u] that satisfies the following requirements: (i) it is always
positive, F[u] � 0; (ii) the derivative is less than or equal to
0, d

dzF � 0; and (iii) F[us] = 0 only on this manifold.
The key point here is the requirement of uniqueness,

F[u] = 0, for the analyzed solution only. For example, for
the nonlinear oscillator ẍ − x + x3 = 0, the Lyapunov func-
tional F = (ẋ2 − x2 + x4/2 − H0)2 shows the stability of the
manifold of nonlinear oscillations at H0 
= 0 with different
initial phases. However, in the case of H0 = 0, it only proves
the stability of both separatrices as a whole. Moreover, each
individual separatrix (left or right) is unstable, despite the
movement occurring only along individual separatrices. This
reflects the presence of a stochastic layer in the small vicinity
of the saddle point and separatrices, which allows a random
jump from one separatrix to another.

Equations (6) with μ = G = 0 preserve the Hamiltonian H
and the energy W :

H =
2N∑

n=1

∫ +∞

−∞

[∣∣∣∣∂un

∂τ

∣∣∣∣2

− |un|4
2

− χ (unu∗
n+1 + un+1u∗

n )

]
dτ,

(9a)

W =
2N∑

n=1

∫ +∞

−∞
|un|2dτ. (9b)

These are the standard Hamiltonian and total energy of the
wave field in the system of weakly coupled light guides (see
[28] and cited works). The Hamiltonian H is well suited for
the role of the Lyapunov functional, but it is not formally
bounded below. Indeed, an increase in the field amplitude due
to a perturbation can lead to an increase in the nonlinear term
and a decrease in the value of H. Let us find the minimum
of the Hamiltonian H in the class of functions that conserve
energy using the method of indefinite Lagrange multipliers.
The first variation of the functional R[u] = H[u] + λW [u]
with respect to u∗

n gives the equation

−∂2un

∂τ 2
− |un|2un − χ (un+1 − 2un + un−1) + λun = 0 (10)

for the soliton manifold (λm = λ − 2χ cos κm)

u(m)
n = eiκmn

√
2λm

cosh
√

λmτ
, Wm = 8N

√
λm. (11)

The Hamiltonian value for this solution is

Hsol
m = −16Nχ

√
λm cos κm − 8N

3
λ3/2

m

= −2χWm cos κm − W 3
m

192N2
. (12)

Then the functional

Fm[u] =
(
H[u] + W [u]3

192N2
+ 2χW [u] cos κm

)2

(13)

satisfies the conditions of Fm[usol
n ] � 0 and dFm[u]/dz = 0.

The main difficulties arise in proving the uniqueness of the
functional turning to 0 only in solution (11) and nowhere else.
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FIG. 2. Dependence, (9), of the Hamiltonian H on the energy W .
Curves correspond to the extrema, (12), for various m values. Arrows
show qualitative explanations of instability at m = 0.

We first consider the simplest case of N = 1. In this case,
there are only two solutions, with κm = π (out of phase) and
κm = 0 (in phase). Figure 2 shows the dependence of Hsol

m ,
(12), on W , which corresponds to the minimum value of the
Hamiltonian H at a fixed energy value W . Here, the solid
blue curve corresponds to the case κ = π , and the dashed red
line corresponds to κ = 0. On these curves, the functional F
vanishes. Recall that the quantities H and W are integrals of
the problem. Note that the value of the Hamiltonian Hsol

N in
the solution at κm = π is always greater than the value Hsol

0
at κm = 0 (see Fig. 2). If we add a small perturbation of the
field to the solution ũ = u(m) + δu, then the resulting wave
field can turn into a soliton with different parameters (λ, κm)
and some small ripples (the variety of solutions is stable) or
can fall apart completely (unstable). Note that the perturbed
field corresponds to new values of the energy W [ũ] and the
Hamiltonian H[ũ].

An increase in the intensity difference in the cores for the
case of the solution at κm = 0 leads to an increase in the
nonlinear term and thereby to a decrease in the Hamiltonian
H, (9a). This change in the Hamiltonian is easily compensated
by a decrease in the term that contains χ (for example, the
appearance of a phase difference due to the decay to κm = π ).
As a result, the same values of H and W (that is, F0 =
0) correspond to different distributions. Thus, the in-phase
solution is unstable and tends to beats with radiation capture in
one core. On the contrary, the value of the Hamiltonian in the
solution at κm = π is always greater than its value at κm = 0.
This means that a distribution with κm = π cannot decay into
a distribution with smaller κm = 0. Therefore, an increase in
the nonlinear term at κm = π cannot be compensated and
leads to FN > 0. In other words, the values of H 
= Hsol

N and
W sol correspond to different distributions. Thus, the out-of-
phase soliton distribution is stable.

Now, we get back to the case of N � 2. An increase in the
number of cores leads to the appearance of additional modes
at κm = mπ/N . Again, it is possible to show the uniqueness of
the functional F , (13), turning to 0 only for the ± mode with
κm = π (that is, m = N). For all other m 
= N , the functional
(13) can be set to 0 for un 
= u(m)

n . This fact reflects the
presence of filamentation instability at κm 
= π . The situation

FIG. 3. Dynamics of the wave-field envelope |un| in a six-core
MCF (N = 3) with the coupling coefficient χ = 1. The initial distri-
bution is un = √

2b/ cosh(bτ ) with b = 0.7.

in this case is similar to the classical filamentation instability,
which develops on a quasihomogeneous wave packet with
constant energy and Hamiltonian integrals.

Indeed, let us investigate the obtained solution with respect
to filamentation instability for N � 2, using a wave field with
perturbations in the form

u(m)
n = [ fmeiκmn + δse

iλz+iκsn]e−i(2χ cos κm+ f 2
m )z.

Assuming |δs| � fm, we get real eigenvalues

λ2 = 4χ [cos κm − cos κs]
[
χ (cos κm − cos κs) − f 2

m

]
. (14)

For κm 
= π , a stable coherent radiation propagation regime
(λ2 > 0) is realized only when the wave-field amplitude in
the core is less than the critical value fm < fcr. For example,
in the case of an isotropic field distribution on the ring (κm =
0), the filamentation is absent only at amplitudes

f0 < fcr =
√

2χ sin
π

2N
≈

N�1

π

N

√
χ

2
. (15)

Next, we turn to the results of numerical simulations in
order to verify the above qualitative analysis of the stability
of solution (11) for κm 
= π . Figure 3 shows the evolution
dynamics of a laser pulse with initial isotropic (κm = 0)
distribution un = √

2b/ cosh(bτ ) in a six-core MCF (N =
3) with the coupling coefficient χ = 1 and the amplitude
b = 0.7. With these parameters, the initial pulse amplitude
is greater than the critical value (

√
2b > fcr = 1/

√
2). The

results of numerical simulations confirm the instability of
solution (11) at κm = 0. As the wave packet propagates in
the medium, the radiation is captured in an arbitrary core (at
z ∼ 12). This leads to a decrease in the duration of the laser
pulse by several times [17,18]. Further, complex quasiperiodic
dynamics occur, similar to multisoliton dynamics in the case
of a single core.

IV. RESISTANCE TO MCF DEFORMATION

The stability of the found spatiotemporal soliton, (8), with
respect to small perturbations of the wave field suggests its
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FIG. 4. Envelope dynamics of the wave field Re[un(z, τ )] in six-core MCFs (N = 3) in the case of fiber bending hn = h + δh sin(πn/N )
for different values of the coupling coefficient χ : (a, d, g) χ = 10; (b, e, h) χ = 3; and (c, f, i) χ = 1. The top row corresponds to δh/χ = 0.1;
the middle row, to δh/χ = 0.3. The spatiotemporal soliton un = (−1)n

√
2b/ cosh(bτ ) was injected at the MCF input with b = 1. (g, h, i)

Dependence of the fraction of energy η± in the ± mode on the value of the parameter δh/χ . Here, the dashed black line is the estimate, (26),
found for the beam problem. The red line shows the results of numerical modeling. The yellow region represents the fraction of energy in the
± mode, when δhn is random and lies in the range 0 � δhn � δh. Blue dots represent the fraction of energy in the ± mode after averaging over
the ensemble.

stability with respect to small deformations of the MCF struc-
ture (δhn 
= 0). The results of numerical modeling confirm
this conclusion. As an example, consider two cases: (i) the
linear gradient δhn = δh sin(πn/N ), and (ii) the value of δhn

is random and lies in the interval 0 � δhn � δh.
Figure 4 shows the results of the numerical simulation

of the evolution of the wave packet, (8), in a six-core MCF
(N = 3) for different values of the coupling coefficient χ :
χ = 10 [Figs. 4(a), 4(d), 4(g)]; χ = 3 [Figs. 4(b), 4(e), 4(h)];
and χ = 1 [Figs. 4(c), 4(f), 4(i)]. A laser pulse, (8), with b = 1
was injected at the input of the MCF. The top row corresponds
to the case δh/χ = 0.1; the middle row, to δh/χ = 0.3. The
gradient of the refractive index [δhn = δh sin(πn/N )] leads
to the fact that the field distribution becomes inhomogeneous
along the MCF ring. The field amplitude has maximal values
in the cores, where δhn = −δh and, accordingly, minimal
values at δhn = δh. In Figs. 4(g)–4(i), the red line shows the
dependence of the fraction of energy η± = 1/(1 + δW/W ) in
the ± mode on the modulation depth δh/χ for different values
of the coupling coefficient χ , where δW/W is the fraction of
energy in other modes (κm 
= π ). It can be seen that with an
increasing depth of the modulation δh/χ , the fraction of the
energy in the ± mode decreases, obeying a parabolic law.

Figures 4(a)–4(c) show that deformations of the MCF have
almost no effects on the dynamics of soliton propagation in
the case of χ � 3 and the modulation depth δh/χ = 0.1.
Over the entire interval of the numerical calculation, the

soliton duration does not change (z ≫ zdis, where zdis � 1
is the dispersion length) and the ± mode is not disturbed
(the relative phase difference in neighboring cores is π ). The
fraction of the energy in the ± mode is η± ≈ 0.98. With
an increasing modulation depth [see Figs. 4(d)–4(f)] of the
refractive index (δh/χ = 0.3), the temporal structure remains
unchanged only at a large coupling coefficient, χ = 10 [see
Fig. 4(d)]. Only some beats in the amplitude with respect to
z are observed. The fraction of the energy in the ± mode is
η± ≈ 0.82. However, with the coupling coefficient χ = 3 [see
Fig. 4(e)], the temporal profile of pulses deteriorates. In the
case of the coupling coefficient χ = 1, the solution found does
not hold well in the time domain [see Fig. 4(f)]. Therefore, in
the case of the coupling coefficient χ = 10, the deformations
of the MCF do not affect the found spatiotemporal soliton es-
sentially. For a given coupling coefficient, the coupling length
1/χ is 10 times less than the dispersion length. Accordingly,
the soliton manages to adapt itself every time to changes in
the medium.

Results of numerical simulations demonstrate stability of
the spatial distribution in the MCF within the considered
parameter range (χ , δh/χ ). The relative phase difference of
the field in adjacent cores is π . As noted above, the found
solution, (8), is not destroyed in numerical simulation if the
dispersion length is much less than the coupling length, i.e.,
b2 � χ . The result of numerical simulations for the fraction
of the energy in the ± mode can be approximated by the
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expression [dashed black lines in Figs. 4(g) and 4(h)]

η± ≡
∫ ∣∣∑(−1)nun

∣∣2
dτ

2NW
≈ 1 − (δh/χ )2/2, (16)

which is the same as estimate (26) below. It shows that the
perturbation energy is negligible at δh � χ .

Along with this, a series of numerical calculations was
performed (with approximately 1000 realizations) when the
refractive index was changed randomly in the range 0 �
δhn � δh. In this case, the ± mode was also preserved up to
the coupling coefficient χ � 3. In each numerical calculation,
the fraction of the energy in the ± mode was random but
was limited to the region shown in yellow in Figs. 4(g) and
4(h). The dashed blue line shows the fraction of energy in
the ± mode averaged over the ensemble. It follows from
the figure that the average fraction of energy η± for random
perturbations δhn is larger than that in the case of the statically
bending MCF.

Thus, the found spatiotemporal soliton, (8), remains stable
with respect to the MCF deformations in the case where
the dispersion or nonlinear length is much greater than the
coupling length, i.e., χ � b2. The stability estimate, (16), of
the ± modes with respect to the deformation of the MCF
structure (δhn 
= 0) and the amplification distribution over the
MCF cores (γn 
= 0) can also be obtained analytically.

The appearance of large-scale deformations, as a rule,
means that all linear modes in the MCF are excited, which
makes the task difficult for analytical consideration. However,
if the values δhn and δγn = γn − γ are small (where γ =∑

γn/2N), the perturbations of the ± mode will remain small.
If the dispersion length is much less than the average gain
length (γ � B2), i.e., when the amplification of a solitonlike
pulse occurs in the adiabatic mode, then an approximate
solution of Eq. (6) for N � 2 can be sought in the form

un =
√

2B
(−1)n + δn

cosh(Bτ )
e2iχz−iB2/2γ , B = b0e2γ z. (17)

Substituting this into Eq. (6) we find, in the first order of
smallness with respect to δn, δhn/χ, δγn/χ � 1,

i∂zδn ≈ χ (δn+1 + 2δn + δn−1) + (δhn + iδγn)(−1)n. (18)

Here, we have neglected the term 4B2δn/cosh2(Bτ ) due to the
smallness of the coupling length compared to the dispersion
length B2/χ = b2

0e2γ z/χ � 1 and the stability of solution (8)
with respect to small wave-field perturbations (see Sec. III).
Note that the stability of solution (8) to small field pertur-
bations is also preserved in the active medium γ 
= 0 in the
case γ � B2. Equations (18) are a system of coupled linear
oscillators, which is driven by the force (δhn + iδγn)(−1)n. Its
forced (partial inhomogeneous) solution is easily found using
the Fourier series expansion

δn ≈ − 1

2N

∑
m

∑
k 
=N

(δhm + iδγm)
(−1)meiκk (n−m)

4χ cos2 κk
2

. (19)

Typical examples of changes in the refractive index and the
gain are

δhn = δh sin
πn

N
, δγn = δγ sin

πn

N
, (20)

resulting from bending of optical fibers. Here, δh and δγ are
the deformation amplitudes. For such disturbances, the form
of the solution is much simpler:

δn ≈ − δh + iδγ

4χ sin2 π
2N

(−1)n sin
πn

N
. (21)

It can be seen from the obtained formulas that the perturba-
tions remain small (|δn| � 1) in the following cases:

(a) the refractive index perturbation is small compared to
the coupling coefficient,

δhn � 4χ sin2 π

2N
; (22)

(b) the average gain γ is small compared to the dispersion,
and the coupling length is small compared to the dispersion
one,

γ � B2 � χ ; (23)

(c) gain perturbations are small compared to the coupling
coefficient,

δγ � 4χ sin2 π

2N
. (24)

Note that the energy in the perturbed part is a quantity of
the second order of smallness due to the orthogonality of the
perturbations and the ± mode:

δW =
∑ ∫ |un|2 − 4NB2

cosh2(Bτ )
dτ ≈ 4B

∑
|δn|2. (25)

In the particular case of perturbations, (20), the expression for
the fraction of energy in the perturbations takes a simple form:

δW

W
≡ 1 − η± ≈ (δh/χ )2 + (δγ /χ )2

32 sin4 π
2N

. (26)

This estimate is in good agreement with the results of numeri-
cal simulation, (16), at N = 3 [dotted black lines in Figs. 4(g)
and 4(h)].

V. SELF-COMPRESSION OF ± SOLITONS IN
ACTIVE MCFs

This section presents studies of self-compression of out-of-
phase solitonlike laser pulses propagating in an active MCF
[G(ω) 
= 0] with a finite-gain bandwidth under the influence
of Raman nonlinearity (μ 
= 0). As noted above, the found
stable nonlinear solution, (8), is determined by the ± mode in
the transverse direction and has the form of an NSE soliton in
the longitudinal direction.

To obtain analytical estimates, we use the variational ap-
proach, which is generalized to the case of description of
the nonlinear propagation of wave packets in nonconservative
systems with a Gaussian form of the gain profile G(ω) on
the frequency, (7). This will reduce the partial differential
equation to a closed system of ordinary differential equations
for the characteristic parameters of a solitary laser pulse
having a Gaussian form:

un = (−1)n

√
W/2N√

πτp
e
− (τ−q)2

2τ2
p

+iρ(τ−q)2−i� (τ−q)+iθ
. (27)
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Here, the parameters τp, ρ, � , θ , and q characterize the pulse
duration, chirp, frequency, and phase of the wave field at the
center of intensity of the packet, whose position is determined
by q(z).

Despite the complication due to the absence of Hamilto-
nianity in the active medium, the variational approach can be
formulated for Eq. (6) too. At this, along with the Lagrangian
of the conservative part,

L =
2N∑

n=1

∫ +∞

−∞

[
i

2

(
un

∂u∗
n

∂z
− u∗

n

∂un

∂z

)
− 1

2
|un|4 +

∣∣∣∣∂un

∂τ

∣∣∣∣2

−χ (unu∗
n+1 + un+1u∗

n )

]
dτ, (28)

it is necessary to determine the dissipative function

δQ =
2N∑

n=1

∫ +∞

−∞

iG(ω)

2π
[un(ω)δun(ω)∗ − u∗

n(ω)δun(ω)]dω

+μ

2N∑
n=1

∫ +∞

−∞

∂|un|2
∂τ

δ|un|2dτ. (29)

Changing the parameters a j = {W, τp, q, ρ,�, θ} of the
distribution, (27), during the propagation of laser pulses is
described by the Euler equations (ȧ j = da j/dz) [42]

d

dz

∂L
∂ ȧ j

− ∂L
∂a j

=
∫ [

δQ
δun

∂un

∂a j
+ c.c.

]
dτ, (30)

where L are the Lagrange functions, (28), calculated on the
given distribution of the field, (27).

Taking the integrals on the right-hand side of (30), we
arrive at the system of ordinary differential equations for the
parameters of the wave field, (27),

dW

dz
= 2W τp�γ

σ
e−τ 2

p � 2/σ 2
, (31a)

dτp

dz
= 4ρτp − τ 2

p�γ

σ 5

(
4τ 6

pρ2�2 − τ 2
p�2 − 8τ 6

pρ2� 2

+ 2τ 2
p� 2 + 16τ 8

pρ4 − 1
)
e−τ 2

p � 2/σ 2
, (31b)

dρ

dz
= 1

τ 4
p

− 4ρ2 − W/2N√
8πτ 3

p

− 4γ τpρ�

σ 5

(
σ 2 − 2τ 2

p� 2)e−τ 2
p � 2/σ 2

, (31c)

d�

dz
= −μW/2N√

2πτ 3
p

− 2τp��γ

σ 3

(
1 + 4τ 4

pρ2
)
e−τ 2

p � 2/σ 2
,

(31d)

dq

dz
= 4τ 5

pρ��γ

σ 3
e−τ 2

p � 2/σ 2 − 2�, (31e)

where σ =
√

τ 2
p�2 + 4τ 4

pρ2 + 1. Equation (31e) for the ve-

locity of the center of intensity of the wave packet is isolated
from the rest of Eqs. (31).

The system of equations (31) is greatly simplified if in-
jected laser pulses have a solitonlike form corresponding to
the equilibrium state of Eqs. (31b) and (31c). This gives a

FIG. 5. Phase plane (τp, � ) of Eqs. (33) drawn for different
values of the coefficients: (a) γ = 0.01, μ = 10−3; (b) γ = 0.1,
μ = 10−3. The dashed vertical line represents the estimate of the
minimum laser pulse duration, (38). Calculations were performed at
� = 10.

relation between the energy W , the frequency modulation ρ,
and the laser pulse duration τp:

W ≈ 2N

√
8π

τp
, ρ � − γ

4τ 2
p�2

. (32)

We assume that the frequency modulation is small on the
scale of the wave packet ρτ 2

p � 1. As a result, we obtain the
following system of equations that determines the decrease in
the duration τp and the shift of the center frequency � down
the spectrum of the wave packet of the soliton form:

dτp

dz
= −2

τ 2
p�γ√

1 + τ 2
p�2

e
− τ2

p �2

(1+τ2
p �2 )2 , (33a)

d�

dz
= −2μ

τ 4
p

− 2��γτp

(1 + τ 2
p�2)3/2

e
− τ2

p �2

(1+τ2
p �2 )2 . (33b)

The phase planes of this system of equations are shown in
Fig. 5.

The nonstationarity of the nonlinear response leads to the
appearance of the minimal duration τlim, to which the wave
packet can be shortened during amplification. It follows from
Fig. 5 that at the initial stage, when the Raman nonlinearity
does not affect the wave-field dynamics, an adiabatic decrease
in the wave-packet duration at a constant center frequency
is realized. At the final stage, the Raman response stops the
decrease in the duration of the laser pulse due to a significant
shift of the wave-field spectrum to the long-wavelength region
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and to further removal of the radiation spectrum from the gain
band of the active medium � � �. It can be seen (Fig. 5)
that with a decrease in the gain γ at a constant value of
the coefficient μ, an increase in the minimum value of the
duration τlim of the compressed laser pulse takes place.

Let us estimate the minimal duration τlim depending on the
parameters based on Eqs. (33). Let a laser pulse with the initial
parameters be injected at the input of a nonlinear medium:
τin� � 1 and �in = 0. As noted above, there is a decrease
in the duration of the laser pulse at a practically constant
frequency at the initial stage. So, Eq. (33a) reduces to

dτp

dz
� −2γ τp (34)

and has the solution

τp(z) = τin exp(−2γ z). (35)

At the final stage, the frequency of the wave packet shifts
down the spectrum rapidly due to the nonstationary nonlinear
response of the medium, in accordance with Eq. (33b):

d�

dz
� −2μ

τ 4
p

. (36)

Substituting the expression for the wave-packet duration, (35),
into Eq. (36), we find a solution for changing the carrier
frequency:

� (z) = − μ

4γ τ 4
in

exp(8γ z) ≡ − μ

4γ τ 4
p

. (37)

The exponential decrease in the laser pulse duration will stop
when the central radiation frequency is shifted beyond the
medium gain band |� | ∼ �. This gives an estimate of the
minimal duration of the compressed laser pulse depending on
the medium parameters:

τlim =
(

μ

4γ�

)1/4

. (38)

It can be seen from this expression that large gain values γ

yield shorter wave-packet durations.
In Fig. 5, thedotted black line shows the position of the

minimal duration τlim. The estimated value of τlim is in good
agreement with the results of a numerical analysis of the
phase plane of Eqs. (31). Note that in the case where the
carrier frequency of the injected wave packet is additionally
shifted up the spectrum �in = �, the degree of compression
of the laser pulse can be slightly increased, by approximately

4
√

2 ≈ 1.19 times.
In dimensional variables, the compression length, the min-

imum duration, and the maximum laser pulse energy are

Lcomp = 1

2γ
ln

τin

τlim
= 1

2γ
ln

[
τin

4

√
8γ�

τRβ

]
, (39a)

τlim = 4

√
τRβ

8γ�
, (39b)

Wlim = 4
√

πN

�

4

√
2β3�γ

τR
. (39c)

Note that the wave-packet duration at half-maximum inten-
sity is τ FWHM

lim = 2
√

ln 2τlim.
Recall that the proposed method for decreasing the dura-

tion of the out-of-phase solitonlike laser pulse in the active
MCF adiabatically is possible under applicability conditions
(22), (23), and (24).

VI. NUMERICAL SIMULATIONS

To illustrate the proposed method of laser pulse self-
compression, we turn to the results of numerical simulation
within the framework of the initial equation, (2), with the
nonlinear response PNL

n , (3). A laser pulse at the wavelength
λ = 2 μm with an initial duration of τ FWHM

in = 1 ps (half-
height intensity) was injected into the input of a six-core
silica MCF (N = 3) doped with thulium. The calculations
were performed for a fiber with the following parameters: the
group velocity dispersion β = 100 ps2/km, the nonlinearity
coefficient � = 1/(W km), and the gain band 1/� = 30 fs
[43].

Figure 6 shows the evolution of a laser pulse in a medium
with the gain γ −1 = 20 m, which corresponds to the adiabatic
mode of wave-packet amplification (the dispersion length is
less than the gain length). A laser pulse was injected at the
MCF input in the form of the found spatiotemporal soliton,
(8),

En = (−1)n 17.54

cosh
(
τ/τ in

sol

) , (40)

where |En|2 is measured in watts, and τ in
sol =

1
2 acosh

√
2
τ FWHM

in = 0.57 ps is the duration of the soliton. The

dispersion length is (τ in
sol )

2/2β ≈ 1.6 m. This corresponds to
an initial energy in the MCF with six cores, W 6 cores

in = 2.1 nJ.
From expressions (39) it follows that at the MCF output
Lcomp ≈ 23 m long, the wave-packet duration will reach the
minimum value τ FWHM

lim ≈ 97 fs. To ensure the regime of
stable laser pulse propagation in the MCF, it is necessary to
choose the coupling coefficient χ so that the coupling length
is much less than the dispersion length, (23), estimated for the
minimal duration τ FWHM

lim . This corresponds to the coupling
coefficient χ−1 < 0.5 cm.

Figure 6(a) shows the dynamics of the wave packet En(z, τ )
and its spectrum [Fig. 6(b)] along the propagation path z. The
electric-field strength and its spectrum are normalized to their
maximum values. The horizontal dashed lines in Fig. 6(b)
show the boundary of the gain band ω = −�/2 = −17 ×
1012 s−1. As shown in Fig. 6(a), the ± mode is preserved
during the laser pulse evolution in the active MCF (the relative
phase difference of the fields between neighboring nuclei is
π ). Figures 6(d) and 6(e) show the distribution of the total
wave field |∑(−1)nEn(τ )| and its spectrum distribution for
different z. The dotted red line shows the initial distribution,
the black line shows the current distribution, and the dashed
vertical line shows the border of the gain band. At the ini-
tial stage (z � 20 m), as the wave packet propagates in the
medium, an adiabatic decrease in the laser pulse duration
takes place [see Fig. 6(a)]. At this, the spectrum broadens
uniformly in both directions at a constant center frequency
of the laser pulse [see Figs. 6(b) and 6(e) at z = 10 m].
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FIG. 6. Dynamics of the wave packet En(z, τ ) (a) and its spectrum En(z, ω) (b) along the propagation path z (the electric-field strength
and its spectrum are normalized to their maximal values), the maximal amplitude (c), and the laser pulse duration (f) depending on z. (d, e)
Distribution of the total wave field |∑(−1)nEn(τ )| and its spectrum for different z values. The dashed horizontal line in (f) shows the value,
(39b). The dashed vertical line in (e) is the boundary of the gain band of the active medium, ω = −�/2 = −17 × 1012 s−1. Dashed vertical
lines in (a–c) and (f) are the medium length, Lcomp ≈ 23 m, at which the wave-packet duration reaches the minimal value, (39a), τ FWHM

lim ≈ 97 fs.
Calculations were performed for τ FWHM

in = 1 ps, β = 100 ps2/km, 1/γ = 20 m, 1/� = 30 fs, χ−1 = 3 mm, and � = 1 (W km)−1.

Subsequently, the spectrum of the wave field begins to shift to
the long-wave part due to the influence of the nonstationary
nonlinear response. The laser pulse spectrum goes beyond
the gain band at z ≈ 24 m [see Figs. 6(b) and 6(e)], and the
decrease in the duration of the wave packet stops. Further, the
center of the laser pulse spectrum monotonically shifts to the
long-wavelength region for a constant duration of the wave
packet [see Fig. 6(b)].

Figures 6(c) and 6(f) show the dependences of the maxi-
mum amplitude Emax [Fig. 6(c)] and the wave-packet duration
τp [Fig. 6(d)] along the propagation path of z. Values are
normalized to their initial values. The dotted red line shows
the approximation of the laser pulse parameters umax ∝ e2γ z,
τp ∝ e−2γ z. It can be seen that throughout the evolution of the
wave packet in the MCF, the adiabatic decrease in the duration
of the found spatiotemporal soliton, (8), is maintained. The
vertical line in Figs. 6(c) and 6(f) shows the position of the
estimated compression length Lcomp, (39a), and the dashed
horizontal line in Fig. 6(f) shows the position of the minimal
duration τlim, (39b). It is shown that the maximum increase
in the field amplitude and the maximum decrease in the
duration of the laser pulse are achieved on the path z ≈
Lcomp. Subsequently, the considered quantities reach station-
ary values. Therefore, the obtained estimates of the minimal
duration of the wave packet τlim and the compression length
Lcomp are in good agreement with the results of numerical
simulation.

Thus, at the output of an active MCF of length Lcomp ≈
23 m, the wave packet is shortened by about 10 times, from
τ FWHM

in = 1 ps to τ FWHM
out ≈ 97 fs, for the gain γ −1 = 20 m.

However, implementation of such an extended active medium
seems difficult. In this regard, we consider an MCF with
a larger gain, γ −1 = 2 m. An increase in the value of the
parameter γ by an order of magnitude should lead to a
decrease in the compression length and to a decrease in the
minimal wave-packet duration in comparison with the case
γ −1 = 20 m, according to estimate (39).

Figure 7 shows the dynamics of the wave packet and its
spectrum. Three stages of the evolution of a laser pulse can
be distinguished here. The first stage is characterized by a
noticeable discharge of radiation in the time domain [Fig. 7(a)
at z � 1.8 m]. The reason is a violation of the adiabatic
amplification condition for a soliton-shaped pulse (when the
dispersion length is small with the gain length) for such a
high value of the parameter γ . At this stage, the dependence
of the maximum amplitude and minimum duration on the
evolution variable z differs significantly from the exponential
law umax ∝ 1/τp ∝ e2γ z [Figs. 7(c) and 7(f)]. A decrease in the
laser pulse duration by several times leads to the second stage,
where the pulse duration and maximum amplitude begin to
change exponentially (quasiadiabatic regime), since at this
stage the dispersion length becomes less than the gain length.
At this stage, there is no radiation discharge. In accordance
with the estimate, (39), the wave-packet duration reaches the
minimal value of τ FWHM

lim ≈ 55 fs at the MCF output Lcomp ≈
2.9 m. Despite the initially nonadiabatic regime of ampli-
fication, the obtained estimates of the minimal laser pulse
duration τlim and the compression length Lcomp are in good
agreement with the results of numerical simulation [Figs. 7(c)
and 7(f)]. At the third stage (z � 3.2 m), the duration of the
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FIG. 7. Same as Fig. 6. Calculations were performed for τ FWHM
in = 1 ps, β = 100 ps2/km, 1/γ = 2 m, 1/� = 30 fs, χ−1 = 3 mm, and

� = 1 (W km)−1. The dashed vertical line in (a–c) and (f) is the medium length, Lcomp ≈ 2.9 m, at which the wave-packet duration reaches the
minimal value, (39a), τ FWHM

lim ≈ 55 fs.

laser pulse does not change, since the spectrum of the laser
pulse has shifted beyond the gain band.

It should be noted that due to the nonstationarity of the
nonlinear response, the main signal is purified from the back-
ground radiation generated in the first stage due to the differ-
ence in group velocities. This is clearly shown in Fig. 7(d) at
z = 2.8 m (the background radiation is located to the left of
the main signal). Moreover, this difference in speeds increases
with the growth of the z path, since the frequency of the main
signal decreases as it propagates in media. As a result, the
spatiotemporal soliton is purified of the background radiation
quickly.

So, the performed qualitative analysis based on the vari-
ational approach is in good quantitative agreement with the
results of numerical simulations performed within the frame-
work of initial equation (2).

So, at the output of a 3-m-long MCF, it is possible to
shorten the laser pulse from τ FWHM

in = 1 ps to τ FWHM
lim ≈ 55 fs

[Fig. 7(d)]. In this case, the energy contained in the spatiotem-
poral soliton at the output of a six-core MCF is W 6 cores

lim ≈
38.4 nJ (the energy in one core is W 1 core

lim ≈ 6.4 nJ for these
parameters). This energy can be significantly increased if

TABLE I. Maximal energy and requirements for δh for a differ-
ent number of cores in the MCF.

No. of cores (2N) Wlim δh/χ

6 ≈38.4 nJ �1
20 ≈128 nJ �0.1
60 ≈384 nJ �0.01
200 ≈1.28 μJ �0.001

one uses a large number of cores on the ring, N ≫ 1. For
example, in the case of 240 cores (N = 120), the energy in
the laser pulse is W 240 cores

lim = 1.5 μJ. Unfortunately, the laser
pulse compression in an MCF from such a large number of
cores becomes sensitive to MCF deformations, (22), and gain
inhomogeneities, (24), which contribute to the rescattering of
the ± modes to other modes (see Sec. IV). As a result, the
maximum achievable energy of the output wave packet in the
proposed scheme is determined only by the technological ca-
pabilities of manufacturing an MCF with identical cores (see
Table I). The gain homogeneity requirements δγ

γ
� 2χ

γ
π2

N2 � 1

are significantly weaker due to the large factor, 2χ/γ ∼ 103,
for typical parameters χ−1 < 0.5 cm, γ −1 = 2 m.

VII. CONCLUSION

In this work we consider the propagation of out-of-phase
wave packets in a multicore fiber (MCF) made of an even
number of cores located in a ring. The exact nonlinear solution
was found, (8), in the form of solitons with an out-of-phase
distribution in the transverse direction. Its stability is proved
with respect to both small perturbations of the wave field,
including azimuthal ones, and small deformations of the MCF
structure. The proof of the existence of a stable out-of-phase
soliton opens up wide possibilities for its use as an analog
of the fundamental mode for the considered MCFs, with the
goal of significantly increasing the energy transported through
MCFs and greatly exceeding the energy of the NSE soliton in
a single core.

As an example of using this soliton distribution, we study
the problem of compression of laser pulses in an active MCF
with a sign-constant gain profile of a Gaussian form. The
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qualitative analysis of the wave-packet self-action in the con-
sidered MCF is carried out based on the variational approach.
The optimal fiber parameters, the minimal duration of the
output pulse, and the compression length are found and are
in good agreement with the results of numerical simulation.
The requirements for MCF deformations and for the gain

magnitude and uniformity are determined in order to achieve
high energies in the output laser pulse.
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