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Thermal-difference states of light: Quantum states of heralded photons
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We introduce thermal-difference states (TDSs), a three-parameter family of single-mode non-Gaussian
bosonic states whose density operator is a weighted difference of two thermal states. We show that the states of
“heralded photons” generated via parametric down-conversion (PDC) are precisely those among the TDSs that
are nonclassical, meaning they have a negative P function. The three parameters correspond in that context to the
initial brightness of PDC and the transmittances, characterizing the linear loss in the signal and the idler channels.
At low initial brightness and unit transmittances, the heralded photon state is known to be a single-photon state.
We explore the influence of brightness and linear loss on the heralded state of the signal mode. In particular,
we analyze the influence of the initial brightness and the loss on the state nonclassicality by computing several
measures of nonclassicality, such as the negative volume of the Wigner function, the sum of quantum Fisher
information for two quadratures, and the ordering sensitivity, introduced recently by us [S. De Bièvre, D. B.
Horoshko, G. Patera, and M. I. Kolobov, Phys. Rev. Lett. 122, 080402 (2019)]. We finally argue that the TDSs
provide benchmark states for the analysis of a variety of properties of single-mode bosonic states.
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I. INTRODUCTION

An optical field in a single-photon state [1] is an essen-
tially quantum object, interesting for fundamental science and
having numerous applications in quantum technologies like
quantum cryptography [2,3], linear optics quantum compu-
tation [4,5], boson sampling [6–8], as well as in detector
calibration [9,10] and radiometry [11]. Single photons can be
obtained from single emitters, such as quantum dots [12,13],
color centers [11,14,15], or organic molecules [16,17], and by
all-optical methods either directly [18,19] or conditionally by
a photon-heralding technique [20–31]. The latter technique
consists of generating a photon pair in two modes and de-
tecting a photon of one (idler) mode, preparing thus the other
(signal) mode in a single-photon state. In the ideal case, where
exactly one photon pair is generated in a given time window
and there is no loss, the conditional state of the signal field is
the one-photon Fock state. However, in realistic experimental
conditions, two and more pairs can be simultaneously gener-
ated by the source and the light collection and detection are
accompanied by loss and nonunit quantum efficiency of the
photodetector. These factors lead to the appearance of multi-
photon and vacuum components in the state of the signal field.
Traditionally, these components are viewed as an undesirable
“contamination” of the single-photon state of the signal mode,
whose “purity” is determined by the intensity correlation
function at zero delay [25,26]. We argue in this paper that, in
fact, an interesting family of non-Gaussian nonclassical states
is produced in such photon-heralding experiments, including,
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in particular, truncated thermal states [32,33] and photon-
added thermal states [34,35], well studied in the past.

We consider parametric downconversion (PDC) as a source
of photon pairs and find an explicit expression for the density
operator of the signal mode conditioned by photon detec-
tion in the idler one. We take into account three physical
parameters of this photon-heralding scheme: the strength of
nonlinear coupling of the PDC process, measured by the
initial brightness ξ , the transmittance η of the idler channel,
which includes the quantum efficiency of the photodetector,
and the transmittance μ of the signal channel. Our goal is
to understand how these parameters affect the nature of the
signal-mode state and in particular its nonclassicality. An
almost single-photon state is obtained in the signal mode when
μ = 1 and in the limit of small ξ , i.e., in a spontaneous PDC
regime, corresponding to a rather low rate of photon pair
generation. Thus, a trade-off exists between the brightness
and the quality of conditionally generated single photons. We
are interested in including high-gain PDC in our consideration
and exploring if a similar trade-off exists between the bright-
ness and the nonclassicality. For that purpose, we use several
measures of nonclassicality, including a recently introduced
one, the ordering sensitivity (OS) of a quantum state [36]. The
main results of our approach have been reported in Ref. [37].
The structure of the conditional state was independently found
in Ref. [8] in the context of boson sampling with heralded
photons.

The paper is organized as follows. We first show in Sec. II
that the conditional states of the signal mode belong to a
larger three-parameter family of single-mode optical states,
which we call thermal-difference states (TDSs) because they
are weighted differences of two thermal states. In Sec. III,
we show that the family of TDSs includes—possibly as
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FIG. 1. Schematic representation of the production of heralded
photons by means of PDC. NC—nonlinear crystal, where a two-
mode squeezed state is generated with the rate ξ . PD—photodetector,
whose click conditions (heralds) a quasi-single-photon state in
mode A.

limiting cases—not only the single-photon state, but also such
well-known states as the photon-added and photon-subtracted
thermal states, the truncated thermal state, the thermal state,
and the vacuum. It turns out that the signal-mode states
obtained through the photon-heralding technique are precisely
those TDSs that are nonclassical, meaning their Glauber-
Sudarshan P function is nonpositive. This is shown in Sec. IV,
where we calculate the Glauber-Sudarshan P function and the
Wigner function of the TDS, which are simply obtained as
weighted differences of Gaussians, making the analysis of
their positivity straightforward. In Sec. V, we then analyze
quantitatively the sensitivity of the degree of nonclassical-
ity of the TDSs to changes in their parameter values by
computing several measures of nonclassicality, such as the
negative volume of the Wigner function, the sum of quantum
Fisher information (QFI) for two quadratures, and the OS.
We show that the three-parameter family of TDSs introduced
here constitutes an excellent testbed for the study of various
properties of single-mode photon states. Indeed, they include
a number of well-known such states, are non-Gaussian except
in some limiting cases, have easily computable and nonsin-
gular quasiprobability distributions (notably the P function)
and explicit occupation numbers. Section VI summarizes the
results and concludes the paper.

II. DEFINITION OF THERMAL-DIFFERENCE STATES
AND THEIR GENERATION IN A HERALDING

EXPERIMENT

In the process of PDC, an undepleted classical pump wave,
passing through a nonlinear crystal, produces signal and idler
waves, see Fig. 1. In a typical PDC scenario, these waves are
multimode, and a set of Schmidt modes [38,39] can be defined
for each wave such that a signal mode is correlated to the
corresponding idler mode and the joint state of two photons is
entangled. However, for the production of heralded photons, a
single-mode regime can be realized by tuning the pump pulse
spectral width to that of the phase-matching function [40]. Let
us accept that this regime is realized. We denote the signal
mode by A and the idler mode by B and ascribe to these modes

annihilation operators a and b, respectively. The joint state of
the two modes at the crystal output is [41]

|ψ (r)〉AB = er(a†b†−ab)|0〉A|0〉B

= sech r
∞∑

n=0

tanhn r|n〉A|n〉B, (1)

where |n〉 is the n-photon Fock state, and r is the degree of
squeezing determined by the pump amplitude, the nonlinear
susceptibility of the crystal and its length.

The state of the signal mode alone can be obtained by
tracing the above state over the space of the idler mode. As
a result, we obtain a thermal state [42],

ρth(ξ ) = (1 − ξ )
∞∑

n=0

ξ n|n〉〈n|, (2)

where the parameter ξ = tanh2 r ∈ [0, 1) is a parameter re-
lated to the temperature T and the mean photon number
〈n〉th by

ξ = e− h̄ω
kBT = 〈n〉th

〈n〉th + 1
, (3)

with ω being the circular frequency of the mode and kB the
Boltzmann constant. As shown by Eq. (2), the thermal state is
diagonal in the Fock basis and the number of photons follows
the geometric distribution. The condition ξ = 0 corresponds
to zero temperature and zero mean photon number, i.e., to
the vacuum state ρth(0) = |0〉〈0|. The opposite limit ξ → 1
corresponds to infinitely growing temperature. In general, ξ is
a monotonically increasing function of temperature T and can
be considered as “alternative temperature.” On the other hand,
in the context of PDC, ξ gives the probability of observing
at least one photon in mode A, so it has the meaning of the
photon pair generation rate.

We are interested in finding the state of mode A under
condition of a click of the detector monitoring mode B in
the general case, where the losses in the idler and the signal
channels are characterized by their intensity transmittances η

and μ, respectively.
We consider first the simplest case of no loss and unit

quantum efficiency of the detector, η = μ = 1. A detector not
resolving the number of photons and having unit quantum
efficiency is characterized by the positive-operator valued
measure (POVM) consisting of just two operators: operator
�B

off = |0〉BB〈0| corresponding to no click and operator �B
on =

IB − |0〉BB〈0| corresponding to a click. Here IB is the identity
operator for mode B. Under the condition of observing a
click at the detector monitoring mode B, the conditional
(unnormalized) state of mode A is

ρ̃A = TrB
{
�B

on|ψ (r)〉ABAB〈ψ (r)|}
= sech2 r

∞∑
n=1

tanh2n r|n〉AA〈n|

= ρth(ξ ) − (1 − ξ )|0〉AA〈0|. (4)
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Upon normalization of Eq. (4), we obtain the conditional state
of mode A,

ρA = ρ̃A

Tr{ρ̃A} = 1 − ξ

ξ

(
ρth(ξ )

1 − ξ
− |0〉〈0|

)
, (5)

which corresponds to the “truncated thermal state” [32] or the
“vacuum-removed thermal state” [33]. This state contains no
vacuum component, which has a simple physical explanation:
In the absence of losses, a click in mode B corresponds to the
presence of at least one photon in mode A. Note that in the
limit ξ → 0, ρA converges to the single-photon state:

lim
ξ→0

ρA = |1〉〈1|. (6)

So, for a small degree of squeezing r, the state of the signal is
close to the one-photon Fock state.

Now we consider a more complicated scenario, where the
quantum efficiency of the idler channel 0 < η � 1 can be less
than 1, but there are no losses in the signal channel. In this
case, the POVM of the detector is given by the operator [43]

�̃B
off =

∞∑
n=0

(1 − η)n|n〉BB〈n| = ρth(1 − η)

η
, (7)

corresponding to no click, and the operator �̃B
on = IB − �̃B

off,
corresponding to a click. Under condition of observing a click
at detector B, the conditional (unnormalized) state of mode A
reads

ρ̃A = TrB
{
�̃B

on|ψ (r)〉ABAB〈ψ (r)|}
= ρth(ξ ) − 1 − ξ

1 − ξ (1 − η)
ρth(ξ (1 − η)), (8)

which is a weighted difference of two thermal states of
mode A.

The final scenario includes losses of mode A, which are
modeled by a beam splitter with the intensity transmittance
μ ∈ (0, 1], whose reflected field is traced out. The resulting
channel ρ → �(ρ) is known as the lossy quantum channel.
When a field in a thermal state ρth(ξ ) passes through such a
channel, the state of the transmitted field is a thermal state
with a lower temperature ρth(q). The value of q can be found
from the transformation of the mean photon number 〈n〉 =
μ〈n〉0, where 〈n〉0 = ξ/(1 − ξ ) and 〈n〉 = q/(1 − q) are mean
photon numbers at the input and the output of the beam
splitter, respectively. Solving this equation for q, we find

q = μ〈n〉0

μ〈n〉0 + 1
= μξ

1 − ξ (1 − μ)
. (9)

The lossy quantum channel �(ρ) is linear in the input density
operator ρ. Applying the transformation ρth(ξ ) → ρth(q) to
both summands of Eq. (8) and normalizing the resulting state,
we arrive after some algebra at the state of the signal mode, a
TDS, which is given by the following expression:

ρ (−)(q, p, d ) = C
(

ρth(q)

1 − q
− d

ρth(qp)

1 − qp

)

= C
∞∑

n=0

(qn − d (qp)n)|n〉〈n|, (10)

FIG. 2. Parameter space of the thermal-difference states. Each
point inside the cube corresponds to a positive density operator. The
green plane d = p is the border, above which the state corresponds
to some value of the physical parameters (ξ, η, μ) of Fig. 1. The
edge denominated “single-photon” is multivalued and corresponds
to a state (1 − μ)|0〉〈0| + μ|1〉〈1|, where μ determines the angle at
which the edge is approached. The edge denominated “photon-added
thermal” is also multivalued, see Sec. III D.

where

C = (1 − q)(1 − qp)

1 − qp − d (1 − q)

= 1 − ξ

ηξ

1 − ξ (1 − η)

1 − ξ (1 − μ)
(11)

is a normalization factor, guaranteeing that Trρ (−)(q, p, d ) =
1. The parameters (q, p, d ) vary from 0 to 1 and are related
to the physical parameters ξ ∈ [0, 1), η,μ ∈ (0, 1] by Eq. (9)
and

d = 1 − ξ (1 − μ)

1 − ξ (1 − η)(1 − μ)
, (12)

p = (1 − η)d. (13)

Note that, for the states produced in this manner through
photon heralding with a nonzero detector quantum efficiency,
p is strictly less than d due to Eq. (13). On the other hand,
in Eq. (10) the parameters (q, p, d ) can in fact be allowed to
vary in the full range from 0 to 1. More precisely, it is easy
to see that for q ∈ [0, 1) and p ∈ [0, 1), d ∈ [0, 1], the density
operator, defined by Eq. (10), is always positive, since C > 0
and qn − d (qp)n � 0 for any n, and normalizable. Hence,
Eq. (10) defines a density operator for all these values, that
thus fill a cube in the parameter space. Each point of this
cube corresponds to a positive density operator, i.e., some
physical state of an optical mode. The states obtained via
photon heralding fill “half” of this cube, with parameters
0 � p < d < 1. (See Fig. 2.) In this half cube, the physical
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parameters (ξ, η, μ) are expressed through the mathematical
ones (q, p, d ) by the relations

ξ = q + (1 − q)
1 − d

1 − p
, (14)

η = 1 − p

d
, (15)

μ = q(d − p)

(1 − q)(1 − d ) + q(1 − p)
, (16)

which are obtained by reversing Eqs. (9), (12), and (13).
It should be noted that the influence of losses on the photon

statistics in the signal channel was studied before in detail
[44–47]. However, the density operator of the conditional
state, Eq. (10), was not written explicitly in these works.

It is often convenient to use the mathematical parameters
(q, p, d ) to describe the TDS because the simplicity of the
expression in Eq. (10) implies that a variety of quantities
associated to the TDS—and in particular their quasiprobabil-
ity distributions—can be easily expressed in terms of those
parameters. We will see several examples of this observation
below. For their physical interpretation in terms of photon
heralding, we will each time come back to the physical param-
eters (ξ, η, μ). If different methods for generating the TDS
experimentally are found, one may expect different physical
parameters to be relevant and perhaps different regions of the
parameter cube to be realized experimentally.

In conclusion to this section, we have established that
the states generated in a photon-heralding experiment realize
one-half of the parameter volume of the TDS, determined by
operator positivity. The physical meaning of this part of the
parametric space will become clear in Sec. IV, where it will
be shown that it corresponds precisely to those TDSs that are
nonclassical.

III. EXPLORING THE FAMILY OF
THERMAL-DIFFERENCE STATES

A. Parameter cube

In this section, we explore TDSs as defined in Eq. (10)
for the set of parameters q ∈ [0, 1), p ∈ [0, 1], d ∈ [0, 1] and
study their physical meaning in the context of a photon-
heralding experiment. The density operator of these states is a
weighted difference of two thermal states ρth(q) and ρth(qp),
where p ∈ [0, 1], i.e., the temperature of the second state is
lower than or equal to that of the first state. The parameters
(q, p, d ) constitute a cube of which the face q = 1 has been
removed, see Fig. 2.

The points in the face q = 1 of the parameter cube have no
particular physical meaning. Indeed, the limit in which q → 1
at fixed p, d , corresponds to infinitely growing temperature,
and the limiting value q = 1 does not correspond to a density
operator.

To understand the meaning of the points on the other faces,
we consider below the limiting procedure in detail.

B. Single-photon state

On the face q = 0, the following limiting states can be
identified. When d < 1, the limit q → 0 yields the vacuum

state:

0 � d < 1, 0 � p � 1 ⇒ lim
q→0

ρ (−)(q, p, d ) = |0〉〈0|. (17)

Note that this is true also if p < d , which means that the states
ρ (−)(q, p, d ), nonclassical under that assumption, approach
the vacuum state, which is classical. The physical conditions
corresponding to this limit become clear from Eqs. (14) and
(16), which give ξ → (1 − d )/(1 − p) and μ → 0. Thus,
the vacuum state is a result of increasing loss in the signal
channel.

On the other hand, when d = 1 and p < 1, the limit q → 0
yields the one-photon Fock state, which is the ultimate goal of
the photon-heralding technique, being a highly nonclassical
state:

d = 1, 0 � p < 1 ⇒ lim
q→0

ρ (−)(q, p, 1) = |1〉〈1|. (18)

In terms of the physical parameters controlling the photon-
heralding technique, the regime d = 1, q → 0, p < 1 corre-
sponds to the situation where ξ → 0 and the signal transmit-
tance μ takes on its maximal value 1. Several considerations
are important here. First, we see that the set of TDSs is discon-
tinuous on the edge d = 1, q = 0: the rest of the face q = 0
corresponds to the vacuum, as shown by Eq. (17). Second, the
limit, given by Eq. (18), is independent of η. Different values
of η correspond to different values of p = 1 − η, and thus to
different points on the edge, all being single-photon states.
Third, this regime requires μ = 1, which is hardly reachable
in practice, and the realistic signal states, generated at d < 1,
are mixtures of the vacuum, single-photon, and multiphoton
components.

A typical regime of photon-heralding experiments consists
of a very low ξ at fixed η,μ < 1. In this regime, we obtain

lim
ξ→0

ρ (−)(q, p, d ) = (1 − μ)|0〉〈0| + μ|1〉〈1| (19)

independently of η. Geometrically, this limiting state corre-
sponds to the same edge q = 0, d = 1, which is approached
at a different angle, determined by μ. Equation (19) reduces to
Eq. (17) or Eq. (18) in the limiting cases of total loss (μ = 0)
or no loss (μ = 1), respectively.

A photon-heralding experiment aims at generating a
single-photon state and is typically characterized by two
parameters: the brightness and the single-photon purity. The
(per excitation) brightness is the probability of observing a
coincidence at the detectors monitoring the signal and the idler
modes. Accepting that the quantum efficiency of the detector
monitoring the signal mode is included into μ, we can obtain
the brightness as the product of the probability of a click of the
idler detector and the probability of having a nonzero photon
number in the signal state, conditioned by this click:

B = (1 − 〈0|ρ (−)(q, p, d )|0〉)Trρ̃A

= [1 − C(1 − d )]
ξη

1 − ξ (1 − η)

= ξημ
1 − ξ 2η̄μ̄

(1 − ξμ̄)(1 − ξ η̄)(1 − ξ η̄μ̄)
, (20)
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where η̄ = 1 − η, μ̄ = 1 − μ. In the absence of losses, η =
μ = d = 1, we find easily B = ξ , i.e., ξ can be understood as
the initial brightness of PDC, before losses occur.

The single-photon purity is determined by the intensity
autocorrelation function at zero delay calculated with the
conditional signal state, Eq. (10):

g(2)(0) = 〈a†2a2〉
〈a†a〉2

= 2
1 − df (1 + p2 f 2) + d2 p2 f 4

1 − 2d p f 2 + d2 p2 f 4

= 1 − (1 − ξ η̄)(1 − ξ )

(1 − ξ 2η̄)2
, (21)

where f = (1 − q)/(1 − qp). It is easy to see that, since
1 + p2 f 2 � 2p f , we have g(2)(0) � 2. The maximal value
of 2, corresponding to a thermal statistics, requires p f = 1,
implying p = 1 or η → 0. As expected, in this limit the TDS
approaches a thermal state, see below, Sec. III D. However,
this state cannot be generated in a photon-heralding experi-
ment, where p < d . Moreover, as follows from Eq. (21), for
the state generated in this experiment the value of g(2)(0) does
not depend on the signal transmittance μ and is always less
than 1, which corresponds to photon antibunching. For a mix-
ture of vacuum and the single-photon state g(2)(0) = 0, which
means the highest single-photon purity. The brightness and the
purity together determine how close the generated state is to
the single-photon state: The brightness determines the fraction
of vacuum, while the purity determines the fraction of 2 and
more photons.

It is generally known that in photon heralding, a high
purity is possible only in exchange to a rather low brightness
[24–31]. For example, to have g(2)(0) = 0.2 in an experi-
ment with realistic values η = μ = 0.8, one needs the initial
brightness ξ = 0.0082, which means that most signal pulses
are empty. In our approach, we are interested in nonclassical
properties of the conditional state, Eq. (10). To this end, we
characterize in Sec. V below the signal state by a nonclas-
sicality measure rather than by its single-photon purity, and
establish the existence of a similar nonclassicality-brightness
trade-off.

C. Truncated thermal state

Let us consider now the face p = 0, 0 < q < 1. In that
case, Eq. (10) yields a TDS obtained simply by substracting
part of the vacuum component from the thermal state ρth(q).
In particular, the edge 0 < q < 1, p = 0, d = 1 corresponds
to the truncated thermal state [32], also called the vacuum-
removed thermal state [33], already encountered in Eq. (5).
This is as expected since, expressed in the physical parameters
of a photon-heralding experiment, p = 0 and d = 1 corre-
spond to μ = 1 = η, i.e., no loss. On the rest of the face 0 <

q < 1, p = 0, 0 < d < 1 the vacuum is partially removed,
having the weight C(1 − d ). This situation corresponds to
losses in the signal mode, but not in the idler mode. The
resulting state can be called “partially vacuum-removed state.”
At the lower edge 0 < q < 1, p = 0, d = 0, the vacuum
is not removed at all and the corresponding state is just a
thermal state. The weight of vacuum C(1 − d ) tends to 1 as
q → 0 for any d < 1, so the partially vacuum-removed state
tends continuously to the vacuum. For d = 1, the vacuum

component is absent and the limiting state at q → 0 is the
single-photon state.

D. Photon-added thermal state

We now study the face p = 1, 0 < q < 1 of the cube.
When d < 1, one can compute Eq. (10) with p = 1 to find
the thermal state ρth(q). If d = 1, the expression Eq. (10) is
singular for p = 1: in that case, the limit p → 1 yields

lim
p→1

ρ (−)(q, p, 1) = (1 − q)2
∞∑

n=1

nqn−1|n〉〈n|

= (1 − q)a†ρth(q)a, (22)

in which we recognize the density operator of the photon-
added thermal state [34], which is nonclassical and has been
much studied, also experimentally [35]. At the limit q → 0,
this state approaches continuously the single-photon state at
the vertex of the parameter cube.

From Eq. (13), we see that in an experiment the regime
p = 1, d = 1 can be approached only at a very low η. It
means that the final brightness will be much lower than the
initial one. However, the initial brightness can be made rather
high in this regime, in contrast to the regime of single photon
generation. For example, setting ξ = 0.5, η = 0.01, μ = 0.8,
we obtain p ≈ d = 0.99, which means that the generated state
is close to a photon-added thermal state with the temperature
q = 0.44. However, its brightness is B = 0.009, which is
rather low. Again we meet a trade-off between the brightness
and the quality of the generated state. Note that generation of
an almost photon-added thermal state in the proposed scheme
is simpler than that of Ref. [35], since it does not require a
thermal seed for the signal field.

The family of TDSs is not continuous on the edge p =
1, d = 1. Again, as in Sec. III B, we have a multivalued edge,
where the state depends on the angle θ to the horizontal
plane, at which the edge is approached. In particular, setting
d = 1 − (1 − p) tan θ and taking the limit p → 1, one finds,
for all 0 < q < 1,

lim
p→1

ρ (−)(q, p, d )

= 1 − q

q + (1 − q) tan θ
(qa†ρth(q)a + ρth(q) tan θ ), (23)

which gives Eq. (22) at θ = 0 and a thermal state at θ → π/2.
At θ = π/4, we obtain the so-called photon-removed thermal
state, aρth(q)a†, which is classical [48]. Its generation in the
considered experiment is impossible, because due to Eq. (13)
we have p < d for any nonzero transmittance of the idler
channel.

We have therefore established that the face p = 1 corre-
sponds to thermal states, with a q-dependent temperature,
except for the d = 1 = p edge, the points of which can be as-
sociated to a variety of states, among which the photon-added
or -removed thermal states. We have seen that the first can
be realized in principle with the photon-heralding technique
provided that the transmittance of the signal channel is high
and that of the idler channel low.
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E. Summary

The full physically relevant parameter space for the TDS
forms a cube with only one missing face, corresponding
to q = 1, see Fig. 2. The face q = 1 and its four edges
correspond to infinite temperature and are not interesting
from the physical point of view. The remaining eight edges
of the parametric cube, on the other hand, correspond to
several well-known states of a single-mode field: the vacuum,
thermal states, truncated thermal states, photon-added and
-removed thermal states, as well as the single-photon state and
mixtures of the vacuum with the single-photon state. They are
marked in Fig. 2. The rest of the cube contains the TDSs we
introduced here.

The states lying above the plane d = p in this three-
parameter family can in principle all be obtained through the
photon-heralding technique. In the next section, we show that
these states are nonclassical, except for some limiting points.

IV. QUASIPROBABILITY DISTRIBUTIONS FOR
THERMAL-DIFFERENCE STATES

A. General s-parameterized distribution

A remarkable and useful property of TDSs is the simple
structure of their quasiprobability distributions. A quantum
state of a single-mode optical field with a density operator ρ

is fully characterized by its s-ordered quasiprobability distri-
bution [49],

W (α, s) =
∫

Tr{ρeλ(a†−α∗ )−λ∗(a−α)+s|λ|2/2}d2λ

π2
, (24)

where s ∈ [−1, 1] is a real parameter, taking values 1, 0, and
−1 for the Glauber-Sudarshan P-representation, the Wigner
representation, and the Husimi Q-representation, respectively.

For a thermal state, given by Eq. (2), this function is a two-
dimensional Gaussian [49]

Wth(α, s|ξ ) = κ (ξ, s)

π
e−κ (ξ,s)|α|2 , (25)

with the inverse variance function defined as

κ (ξ, s) = 2

2ξ/(1 − ξ ) + 1 − s
. (26)

For a TDS, we obtain from Eqs. (10) and (24) a difference of
two two-dimensional Gaussians:

W (−)(α, s|q, p, d ) = C
(

Wth(α, s|q)

1 − q
− d

Wth(α, s|qp)

1 − qp

)
.

(27)

B. P function

The quasiprobability function takes a rather simple form at
s = 1, corresponding to the P representation. Thus, defining
P(−)(α|q, p, d ) = W (−)(α, 1|q, p, d ), we obtain

P(−)(α|q, p, d ) (28)

= C
qπ

(
e−|α|2(1−q)/q − d

p
e−|α|2(1−qp)/qp

)
.

Note that this P function is regular, without any singularities.
As such, the TDSs belong to a larger class of “punctured”

FIG. 3. (a) P function, (b) Wigner function, and (c) photon
number distribution for the TDS generated in a photon-heralding
experiment with ξ = η = μ = 0.5. This corresponds to the param-
eters (q, p, d ) = (0.33, 0.43, 0.86). The negativity of the P function
establishes the nonclassicality of this conditionally prepared state.
Note that the Wigner function is positive for this set of parameters.
The vacuum component (n = 0) appears in the photon number
distribution due to loss in the signal channel (μ < 1).

states [50]. This function is shown in Fig. 3 together with
the corresponding Wigner function and the photon number
distribution 〈n|ρ (−)|n〉 for experimentally feasible values of
the parameters.

We can now easily identify among the TDSs those that are
nonclassical. We recall that a state ρ of one mode is said to be
classical if its P function is positive everywhere. Otherwise,
it is said to be nonclassical. For sufficiently low values of
d , the second term in Eq. (28) is negligible with respect to
the first one and the TDS approaches a thermal state, known
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to be classical. Thus, at fixed values for 0 < q < 1 and 0 �
p < 1, the nonclassical TDSs, which are the most interesting
ones from the point of view of quantum information, are the
states with sufficiently high values of d . More precisely, when
P(−)(α|q, p, d ) is not everywhere positive, its minimal value
is reached at the origin, α = 0, and this value is

P(−)(0|q, p, d ) = C
qπ

(
1 − d

p

)
. (29)

Since this is negative if and only if (iff) d > p (and q 
= 0), it
follows that the TDSs are nonclassical iff d > p. Note that due
to Eq. (12), this is always the case for heralded photons if η >

0. Thus, the half of the parametric cube which is realized in a
photon-heralding experiment is exactly the one corresponding
to the nonclassical TDS. Here we excluded the trivial case q =
0, d < 1, where the signal state is vacuum. For d = 1, q →
0, corresponding to the single-photon state, the P function is
singular at the origin.

We note that the P function of an optical mode, even when
it takes negative values, can in principle be reconstructed from
a series of measurements. For example, the negative P func-
tion of a photon-added thermal state [34] has been success-
fully reconstructed from experimental data [35]. As we have
seen in the previous section, the photon-added thermal state is
a particular limiting member of the family of TDSs, generated
for particular settings of the photon-heralding experiment.
A regular P function can in principle be obtained from the
experimental data in a way analogous to that of Ref. [35] for
other settings of such an experiment, except for extremely low
values of the parameters q and p. At low p, the P function
approaches a singular function,

lim
p→0

P(−)(α|q, p, d ) = C
[

1

qπ
e−|α|2(1−q)/q − dδ(α)

]
, (30)

and cannot be reconstructed. At low q, the first term in
Eq. (30) also approaches a delta function. In all other cases,
it is in principle possible to experimentally establish the
noclassical nature of the generated state by reconstructing
its P function. Note that low p corresponds to η close to 1,
which is hardly reachable in experiment, since the quantum
efficiency is limited for modern single-photon detectors.

C. Wigner function

In contrast to the P function, the Wigner function is not
always negative for TDSs generated in a photon-heralding
experiment. Substituting s = 0 and α = 0 into Eq. (27), we
obtain the value of the Wigner function at the origin

W (−)(0, 0|q, p, d ) = 2C
π

(
1

1 + q
− d

1 + qp

)
, (31)

which is negative for d > p + (1 − p)/(1 + q). Obviously,
the latter condition is more restrictive than the condition of
the P-function negativity, d > p. It is interesting to note that
the Wigner function of the signal mode in a photon-heralding
experiment was successfully reconstructed from the experi-
mental data [26] and its negativity was used as a signature
of the state nonclassicality. Our analysis clearly shows that
even for a positive Wigner function the state of the signal
mode is nonclassical (cf. Fig. 3), and its nonclassicality can

be witnessed by reconstructing the P function of the field. In
general, the Wigner function is smoother than the P function
and, as a result, does not show the same sharp negative peak
at low values of q and p as the P function.

D. Summary

The regularity of their P function, the simple explicit
form of their quasiprobability distributions and occupation
numbers, together with the simplicity of the nonclassicality
condition, d > p, ensure that the TDSs constitute an excellent
benchmark to test the efficiency of various nonclassicality
witnesses and measures. A number of pure quantum states
of a single-mode optical field are traditionally used for this
purpose, the most popular being the Fock state, the squeezed
state [51], and the Schrödinger cat state, either with two
[52,53] or multiple components [54,55]. Mixed states typi-
cally used to that end include squeezed thermal states [56],
photon-added thermal states [34], and thermalized cat states
[57]. The family of TDSs we introduce here widens this class
significantly. In the next section, we show that they allow one
to analyze analytically a number of nonclassicality witnesses
and measures.

V. NONCLASSICALITY OF THERMAL-DIFFERENCE
STATES

We have established that all states of the signal mode in
a photon-heralding experiment are nonclassical since their
P functions are negative at the origin. This is true even when
the transmittances μ and η are small, a situation where the en-
vironment interferes intensely with the system and where one
may therefore have expected nonclassicality to be completely
lost. We will investigate in this section how the nonclassicality
of those states is quantitatively affected by the lowering of the
transmittances away from their optimal value μ = η = 1 at
different levels of the initial brightness ξ . For that purpose,
we will use several measures of nonclassicality, discussed in
the literature.

A. Ordering sensitivity

OS is a recently introduced measure of nonclassicality
[36], defined as the speed of change of the (second order)
Renyi entropy of the s-ordered quasiprobability distribution
with the ordering parameter s:

So(ρ) = ∂

∂s

[
ln

(
π

∫
W 2(α, s)d2α

)]
s=0

. (32)

The OS of all coherent states equals 1 and all classical states
have an OS less than 1, which implies that

So(ρ) > 1 ⇒ ρ is nonclassical. (33)

The OS is therefore a nonclassicality witness. Note that it
can be less than 1 for a nonclassical state. It is shown in
Ref. [36] that a distance-based measure of nonclassicality
can be constructed that is bounded between

√
So(ρ) − 1 and√

So(ρ). Hence, for a sufficiently high So(ρ), its square root is
a good measure of nonclassicality.
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An alternative expression that does not use the Wigner
function is

So(ρ) = − 1

2P (ρ)
Tr([Q, ρ]2 + [P, ρ]2), (34)

where Q = 1√
2
(a† + a) and P = i√

2
(a† − a) are two field

quadratures, while P (ρ) = Trρ2 is the purity of the state. For
pure states, OS coincides with the “total noise,” the sum of
variances of Q and P [58].

For a Fock-diagonal state ρ = ∑
n pn|n〉〈n|, such as a TDS,

the OS is given by

So(ρ) =
∑

n (pn − pn+1)2(n + 1)∑
n p2

n

. (35)

Substituting the values of pk from Eq. (10) and summing up
the geometric series, we obtain an analytic expression for the
OS of TDS:

So(q, p, d ) = C2

P (q, p, d )

(
1

(1 + q)2
+ d2

(1 + qp)2

− 2d
(1 − q)(1 − qp)

(1 − q2 p)2

)
, (36)

where the purity is

P (q, p, d ) = C2

(
1

1 − q2
+ d2

1 − q2 p2
− 2d

1 − q2 p

)
. (37)

Now we analyze the behavior of the OS as function of the
parameters of TDSs. We first look at the situation where there
are no losses in the idler and signal channels so μ = 1 = η

and consequently d = 1, p = 0, q = ξ . In this case, the state
of the signal mode is a truncated thermal state, see Sec. III C,
and we find readily that

So(q, 0, 1) = 1 − q

1 + q
(3 + 2q). (38)

One easily sees this quantity is maximal when q = 0, where
So = 3, which is its value for the single photon state; it then
decreases to 0 as q increases to 1, which clearly illustrates
the decrease of nonclassicality of the truncated thermal states
as their temperature increases. Note that we know that all
truncated thermal states are nonclassical since their P function
is negative at the origin α = 0. In fact, it is singular there,
since it is the difference between a Gaussian and a delta
function at the origin. Nevertheless, as this example shows,
this negative singularity is not indicating a large OS of the
states at high q. This can be further understood if one notices
that the Wigner function of these states is also negative at the
origin α = 0:

W (−)(0, 0 | q, 1, 0) = − 2

π

1 − q

1 + q
< 0. (39)

However, this negative value tends to zero as q tends to 1, also
indicating loss of nonclassicality of the truncated thermal state
with a growing temperature.

Let us now consider how the OS of TDSs is affected if
the transmittance μ of the signal mode is no longer maximal:
μ < 1 but still η = 1. Then p = 0 and d < 1 and Eq. (36)

FIG. 4. Contour plot of the nonclassicality of TDSs (measured
by OS) for η = 1 and ranges of ξ and μ as shown. One notices that
the maximum value for OS, So = 3, is reached at μ = 1, ξ → 0,
corresponding to the single-photon state. OS decreases with growing
ξ and/or diminishing μ. However, at low values of μ < 0.3, OS
grows again and has the second local maximum So = 1 at μ → 0,
ξ → 0, corresponding to the vacuum state.

simplifies to

So(q, 0, d ) =
(

1 − q

1 + q

)
1 + (1 + q)2[d2 − 2d (1 − q)]

1 + d (d − 2)(1 − q2)
.

(40)

The contour plot of So can be seen in Fig. 4. The maximal
value of So = 3 is reached for the single-photon state at μ =
1, ξ → 0. One clearly observes the rather fast loss of OS,
and hence nonclassicality of the states with growing ξ and/or
diminishing μ. For example, with ξ as low as 0.2 and μ as
high as 0.85 one sees that So has decreased from its maximal
value of 3 to 1.99.

It is interesting to note that at low μ, OS grows again
and reaches the second local maximum So = 1 at the vac-
uum state, which may be explained by growing purity as
the state approaches the vacuum. This point is discussed in
Sec. V D below, where different nonclassicality measures are
compared.

In Fig. 5, we observe the dependence of the OS on both
transmittances at low ξ . We see that the dependence on μ is
very strong, while a weak dependence on η exists only at high
μ. The origin of this dependence can be seen from the form
taken by Eq. (10) in the limit ξ � 1 and μ = 1, where we
leave only terms linear in ξ :

ρ (−) ≈ [1 − ξ (2 − η)]|1〉〈1| + ξ (2 − η)|2〉〈2|, (41)

showing clearly that the weight of the two-photon component
decreases at high η and the state becomes closer to the single-
photon state, possessing the maximal nonclassicality. On the
other hand, keeping in the TDS, Eq. (10), only terms up
to the first order in ξ at any μ, we find that the weight of
the two-photon component is μ2ξ (2 − η), so at low μ this
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FIG. 5. Contour plot of the nonclassicality of TDS (measured by
OS) for ξ = 0.05 and ranges of η and μ as shown. One notices that
the OS is highly sensitive to losses in the signal channel and is almost
insensitive to the losses in the idler one.

weight becomes negligible. Thus, the quantum efficiency of
the heralding detector, almost not affecting the nonclassicality
at high signal loss, becomes important when the latter is
small. A similar result was obtained recently in Ref. [59] for
heralding experiments characterized by different figures of
merit.

We also study the dependence of the OS on the brightness
B, Eq. (20), for fixed values of the transmittances in both
channels, Fig. 6(a). We see that the nonclassicality of the gen-
erated state always decreases with growing brightness. This
fact represents a trade-off between the nonclassicality and the
brightness similar to that between the single-photon purity and
the brightness. At a realistic level of losses η = μ = 0.8, the
nonclassicality becomes weak (So < 1) at brightnesses higher
than 0.4. If the losses of the signal mode raise to 50%, the
nonclassicality is weak at all levels of brightness. We conclude
that highly nonclassical TDSs are generated in the considered
scheme at low initial brightness and low signal loss.

B. Sum of quantum Fisher information

Recently, a resource theory of nonclassicality has been
proposed in which the measure of nonclassicality of a mixed
state is the convex roof of the total noise of pure states, into
which it can be decomposed [60,61]. Such convex roofs are,
however, virtually impossible to compute, even on simple
states. Useful lower bounds have been established using the
QFI with respect to the quadrature Qθ = Q cos θ + P sin θ :

F (ρ, Qθ ) = 1

2

∑
a,b

(λa − λb)2

λa + λb
|〈ψa|Qθ |ψb〉|2, (42)

where ρ = ∑
a λa|ψa〉〈ψa| is a spectral decomposition and the

sum is over all a, b such that λa + λb > 0. In our normaliza-
tion for pure states, F (ρ, Qθ ) gives the variance of Qθ . A sum

FIG. 6. Three witnesses of nonclassicality of TDSs (serving also
as measures of nonclassicality when they detect it) as functions
of the brightness. Decreasing curves show a trade-off between the
nonclassicality and the brightness, taking place at any level of losses.
We also see that OS goes below 1 at higher values of brightness than
the sum of QFI, meaning it is a better witness for this family of states.

of QFI for two complementary quadratures,

MQFI(ρ) = F (ρ, Qθ ) + F (ρ, Qθ+π/2), (43)

is independent of the choice of θ and is an effective nonclassi-
cality witness when MQFI(ρ) > 1. It is a lower bound for the
convex roof of the total noise for pure states [60].
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For a Fock-diagonal state ρ = ∑
n pn|n〉〈n|, such as the

TDS, the QFI with respect to any quadrature is

F (ρ, Qθ ) = 1

2

∑
n

(pn − pn+1)2

pn + pn+1
(n + 1), (44)

where the sum is over all n such that pn + pn+1 > 0. For
such states, MQFI(ρ) is simply the double QFI with respect
to any quadrature. Substituting the photon number distribu-
tion pk from Eq. (10) into Eq. (44), we obtain after some
algebra

MQFI(ρ
(−) ) = Cd

(1 − qp)2

1 + qp

[
(A− − A+)2

∞∑
n=0

qn(n + 1)

A+ − pn

+ 2A− − A+
(1 − q)2

− 1

(1 − qp)2

]
, (45)

where A± = d−1(1 ± q)/(1 ± qp). The infinite series in the
last expression cannot be summed up analytically. However,
the summation can be done up to some number M − 1 and the
remainder can be majorized by replacing pn in the denomina-
tor by its maximal value pM . In this way, we obtain

M(maj)
QFI (ρ (−) ) = Cd

(1 − qp)2

1 + qp

[
(A− − A+)2

M−1∑
n=0

qn(n + 1)

A+ − pn

+ (A− − A+)2

A+ − pM

M(1 − q) + 1

(1 − q)2
qM

+ 2A− − A+
(1 − q)2

− 1

(1 − qp)2

]

� MQFI(ρ
(−) ). (46)

The dependence of M(maj)
QFI (ρ (−) ) on the brightness of the TDS

is shown in Fig. 6(b). We see, that similar to the case of
OS, considered in the previous section, the nonclassicality
measured by the sum of QFI of two quadratures always
decreases with growing brightness. The differences between
the two measures are discussed in Sec. V D below.

C. Wigner negative volume

The Wigner negative volume (WNV), defined as the abso-
lute value of the integral of the Wigner function over the area
where the latter is negative, is one more nonclassicality wit-
ness [62], which we denote as NW(ρ). Considering Eq. (27) at
s = 0, we find that the Wigner function of a TDS is negative
in a circle |α| < R, where

R2 = 1

2

ln F
1−qp
1+qp − 1−q

1+q

, (47)

with F = d (1 + q)/(1 + qp), under the condition that F > 1.
The absolute value of the integral of the Wigner function over
this area is

NW(ρ (−) ) =
{

A0F− 1−q2 p
2q(1−p) + 1

2 − 1, if F > 1
0, if F � 1,

(48)

where

A0 = 2q(1 − p)

(1 − q)[1 − qp − d (1 − q)]
. (49)

In the limiting case p = 0, d = 1, q → 0 we find the WNV of
the single-photon state:

NW(|1〉〈1|) = 2

e1/2
− 1 ≈ 0.213, (50)

which coincides with that found by a direct integration of the
single-photon Wigner function [62].

The dependence of NW(ρ (−) ) on the brightness of the TDS
is shown in Fig. 6(c). Again, as in two previous sections, the
nonclassicality always decreases with growing brightness.

D. Comparison of nonclassicality measures

Comparing Fig. 6(a) to Fig. 6(b), one notices that neither
the OS nor the sum of QFI detect the nonclassicality of the
TDS perfectly, confirming that indeed, they are only nonclas-
sicality witnesses and not nonclassicality measures. However,
the OS is more efficient as a witness for these states, since
the region where it identifies their nonclassicality is larger.
We recall that all states for 0 < μ � 1 are nonclassical, and
the nonclassicality is witnessed if So > 1 or MQFI > 1. At
η = μ = 0.8, the OS fails to witness the nonclassicality at
brightness above 0.4, while the sum of QFI fails to do it
for brightness above 0.26. Note that the quantity shown in
Fig. 6(b) is an upper bound, as indicated by Eq. (46), and the
true sum of QFI is even slightly lower. For other values of
transmittances, the situation is the same: The OS outperforms
the sum of QFI. Both these witnesses, however, are outper-
formed by the WNV, which should be positive to witness the
nonclassicality. We see from Fig. 6(c) that the nonclassicality
is always witnessed by the WNV for the considered examples.
For other classes of states, like Gaussian states, the WNV is
completely ineffective.

It is also interesting to compare different witnesses in
the limiting case of η = 1 and low ξ , where the TDS is
close to a mixture of the vacuum and the single-photon state
(1 − μ)|0〉〈0| + μ|1〉〈1|, see Fig. 7.

We see from Fig. 7 that both the OS and the sum of QFI
are growing with decreasing μ, i.e., increasing loss, a fact
which was mentioned above in Sec. V A. However, it happens
in the region where both witnesses are less than 1 and do not
detect nonclassicality. It is known from the resource theory of
nonclassicality [60,61], that the sum of QFI is nonincreasing
(monotone) with loss in the region where it is higher than 1.
Thus, its behavior can be disregarded when it is below this
limit. On the other hand, the square root of the OS, even if it
is less than 1, provides an upper bound for a distance from the
set of classical states [36]. The growth of the OS with growing
loss may mean that either the bound becomes looser with
respect to the true value of the distance or the set of classical
states becomes sparser as one approaches the vacuum state by
a trajectory determined by the considered family of states.

VI. CONCLUSIONS

We have introduced a three-parameter family of non-
Gaussian single-mode optical states, the TDSs. These states
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FIG. 7. Comparison of three nonclassicality witnesses for TDS
with η = 1 and ξ = 0.01. The value for the Wigner negative volume
is scaled to other two witnesses and is given by 3NW(ρ )/NW(|1〉〈1|).
In the region 0.5 < μ � 1, all three witnesses detect the nonclassi-
cality of the state, ascribing to it different measures. In the region
0 < μ � 0.5, the OS and the sum of QFI may be growing with the
increase of loss. However, in this region they ascribe no measure to
the state.

have non-singular P functions, that can take negative values
for some values of the parameters, that we identify. For
those parameter values, the TDSs are therefore nonclassical.
We show furthermore that for these same values, the TDSs
correspond to states of light, conditionally prepared by the
technique of “photon heralding.” In that context, the three
parameters correspond to the losses in the signal and the idler
modes and to the gain in the nonlinear crystal. In the absence
of losses, these states are known to be nonclassical. We have
shown that this remains true for all values of the losses in both
modes. We have shown that some well-known nonclassical
states are members of this family at various limiting parameter
values. A remarkable feature of this family of states is the
possibility to obtain analytic expressions for various nonclas-

sicality witnesses. We have calculated three such witnesses,
the OS, the sum of QFI for two quadratures, and the WNV
and analyzed their dependencies on the three parameters. In
particular, we have shown that the nonclassicality of TDSs
is not very sensitive to the losses in the idler mode, but
much more so to the losses of the signal one. We have
established a general trade-off rule for the brightness and the
nonclassicality of these states.

From the practical viewpoint, the nonclassical states of
this family are non-Gaussian and thus represent a valuable
resource for various protocols of quantum information pro-
cessing. From the purely theoretical viewpoint, this family of
states, whose quasiprobability distributions are differences of
two Gaussians, are an excellent testbed for studying and com-
paring various measures of nonclassicality, non-Gaussianity,
etc.

A practical recommendation follows from the above anal-
ysis: In a photon-heralding experiment with some loss in the
signal and the idler modes (always inevitable), it is much more
efficient to reconstruct the P function of the generated state,
which is always regular and always negative, than the Wigner
function, which may be positive for some combination of the
experimental settings. Reconstruction of negative regions of
the P function will be direct evidence of the state nonclassi-
cality.
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[6] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and
P. Walther, Nat. Photonics 7, 540 (2013).

[7] V. S. Shchesnovich, Phys. Rev. A 89, 022333 (2014).
[8] N. Quesada, J. M. Arrazola, and N. Killoran, Phys. Rev. A 98,

062322 (2018).
[9] D. N. Klyshko, Photons and Nonlinear Optics (Gordon and

Breach, New York, 1988).

[10] G. Brida, M. Genovese, and M. Gramegna, Laser Phys. Lett. 3,
115 (2006).

[11] B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid,
X.-L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher,
and S. Kuck, Optica 4, 71 (2017).

[12] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida,
G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory
et al., Nat. Photonics 10, 340 (2016).

[13] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S.
Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y.
Lu, and J.-W. Pan, Phys. Rev. Lett. 116, 020401 (2016).

[14] I. V. Fedotov, N. A. Safronov, Y. A. Shandarov, A. A. Lanin,
A. B. Fedotov, S. Y. Kilin, K. Sakoda, M. O. Scully, and A. M.
Zheltikov, Appl. Phys. Lett. 101, 031106 (2012).

[15] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya,
A. S. Zibrov, F. Jelezko, and M. D. Lukin, Phys. Rev. Lett. 113,
113602 (2014).

053831-11

https://doi.org/10.1063/1.3610677
https://doi.org/10.1063/1.3610677
https://doi.org/10.1063/1.3610677
https://doi.org/10.1063/1.3610677
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1103/PhysRevA.89.022333
https://doi.org/10.1103/PhysRevA.89.022333
https://doi.org/10.1103/PhysRevA.89.022333
https://doi.org/10.1103/PhysRevA.89.022333
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1002/lapl.200510077
https://doi.org/10.1002/lapl.200510077
https://doi.org/10.1002/lapl.200510077
https://doi.org/10.1002/lapl.200510077
https://doi.org/10.1364/OPTICA.4.000071
https://doi.org/10.1364/OPTICA.4.000071
https://doi.org/10.1364/OPTICA.4.000071
https://doi.org/10.1364/OPTICA.4.000071
https://doi.org/10.1038/nphoton.2016.23
https://doi.org/10.1038/nphoton.2016.23
https://doi.org/10.1038/nphoton.2016.23
https://doi.org/10.1038/nphoton.2016.23
https://doi.org/10.1103/PhysRevLett.116.020401
https://doi.org/10.1103/PhysRevLett.116.020401
https://doi.org/10.1103/PhysRevLett.116.020401
https://doi.org/10.1103/PhysRevLett.116.020401
https://doi.org/10.1063/1.4731762
https://doi.org/10.1063/1.4731762
https://doi.org/10.1063/1.4731762
https://doi.org/10.1063/1.4731762
https://doi.org/10.1103/PhysRevLett.113.113602
https://doi.org/10.1103/PhysRevLett.113.113602
https://doi.org/10.1103/PhysRevLett.113.113602
https://doi.org/10.1103/PhysRevLett.113.113602


D. B. HOROSHKO et al. PHYSICAL REVIEW A 100, 053831 (2019)

[16] X.-L. Chu, S. Götzinger, and V. Sandoghdar, Nat. Photonics 11,
58 (2017).

[17] M. Rezai, J. Wrachtrup, and I. Gerhardt, Phys. Rev. X 8, 031026
(2018).

[18] S. Y. Kilin and D. B. Horoshko, Phys. Rev. Lett. 74, 5206
(1995).

[19] D. Mogilevtsev and V. S. Shchesnovich, Opt. Lett. 35, 3375
(2010).

[20] B. Y. Zel’dovich and D. N. Klyshko, JETP Lett. 9, 40 (1969).
[21] C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).
[22] P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173

(1986).
[23] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,

and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001).
[24] A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley,

Phys. Rev. Lett. 93, 093601 (2004).
[25] S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin,

and H. Zbinden, New J. Phys. 6, 163 (2004).
[26] J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I.

Vistnes, and E. S. Polzik, Opt. Express 15, 7940 (2007).
[27] G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F.

Piacentini, S. V. Polyakov, and I. R. Berchera, Opt. Express 19,
1484 (2011).

[28] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello,
M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt,
Nat. Commun. 4, 1818 (2013).

[29] F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T.
McCusker, and P. G. Kwiat, Optica 2, 1010 (2015).

[30] C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta,
Nat. Commun. 9, 847 (2018).

[31] V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L.
Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino
et al., Opt. Express 26, 2764 (2018).

[32] C. T. Lee, Phys. Rev. A 52, 3374 (1995).
[33] C. Navarrete-Benlloch, An Introduction to the Formalism of

Quantum Information with Continuous Variables (Morgan and
Claypool Publishers, San Rafael, California, USA, 2015).

[34] G. S. Agarwal and K. Tara, Phys. Rev. A 46, 485 (1992).
[35] T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini, Phys.

Rev. A 78, 021804(R) (2008).
[36] S. De Bièvre, D. B. Horoshko, G. Patera, and M. I. Kolobov,

Phys. Rev. Lett. 122, 080402 (2019).
[37] D. Horoshko, S. De Bièvre, G. Patera, and M. Kolobov, EPJ

Web Conf. 198, 00010 (2019).

[38] C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett.
84, 5304 (2000).

[39] D. B. Horoshko, G. Patera, A. Gatti, and M. I. Kolobov, Eur.
Phys. J. D 66, 239 (2012).

[40] W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A 64,
063815 (2001).

[41] S. M. Barnett and P. M. Radmore, Methods in Theoretical
Quantum Optics (Clarendon Press, Oxford, 1997).

[42] U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965).
[43] D. Hogg, D. W. Berry, and A. I. Lvovsky, Phys. Rev. A 90,

053846 (2014).
[44] J. Laurat, T. Coudreau, N. Treps, A. Maître, and C. Fabre, Phys.

Rev. A 69, 033808 (2004).
[45] V. D’Auria, O. Morin, C. Fabre, and J. Laurat, Eur. Phys. J. D

66, 249 (2012).
[46] N. Quesada, Very nonlinear quantum optics, Ph.D. thesis, Uni-

versity of Toronto, 2015.
[47] J. Tiedau, T. J. Bartley, G. Harder, A. E. Lita, S. W. Nam, T.

Gerrits, and C. Silberhorn, Phys. Rev. A 100, 041802(R) (2019).
[48] A. Zavatta, V. Parigi, M. S. Kim, and M. Bellini, New J. Phys.

10, 123006 (2008).
[49] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).
[50] F. Damanet, J. Kübler, J. Martin, and D. Braun, Phys. Rev. A

97, 023832 (2018).
[51] M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999).
[52] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[53] D. B. Horoshko and S. Y. Kilin, Opt. Express 2, 347 (1998).
[54] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms,

Cavities and Photons (Oxford University Press, Oxford, UK,
2006).

[55] D. B. Horoshko, S. De Bièvre, M. I. Kolobov, and G. Patera,
Phys. Rev. A 93, 062323 (2016).

[56] M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, Phys. Rev. A
40, 2494 (1989).

[57] C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011).
[58] M. Hillery, Phys. Rev. A 39, 2994 (1989).
[59] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R.

Shahrokhshahi, C. R. Myers, and K. K. Sabapathy, Phys. Rev.
A 100, 022341 (2019).

[60] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M. Gu,
and M. S. Kim, Phys. Rev. X 8, 041038 (2018).

[61] H. Kwon, K. C. Tan, T. Volkoff, and H. Jeong, Phys. Rev. Lett.
122, 040503 (2019).
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