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Multicore-fiber solitons and laser-pulse self-compression at light-bullet excitation
in the central core of multicore fibers
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The propagation of laser pulses in multicore fibers (MCFs) made of a central core and an even number of
cores located in a ring around it is studied. Approximate quasisoliton homogeneous solutions of the wave field
in the MCF considered are found. The stability of the in-phase soliton distribution is shown analytically and
numerically. At low energies, its wave field is distributed over all MCF cores and has a duration that exceeds the
duration of the nonlinear Schrödinger equation (NSE) soliton with the same energy by many (i.e., five to six)
times. In contrast, almost all of the radiation at high energies is concentrated in the central core with a duration
similar to the NSE soliton. The transition between the two types of distributions is very sharp and occurs at
a critical energy, which is weakly dependent on the number of cores and on the coupling coefficient with the
central core. The self-compression mechanism of laser pulses was proposed. It consists in injecting such MCFs
with a wave packet being similar to the found soliton and having an energy larger than the critical value. It is
shown that the compression ratio depends weakly on the energy and the number of cores and is approximately
equal to six times with an energy efficiency of almost 100%. The use of longer laser pulses allows one to increase
the compression ratio up to 30–40 times with an energy efficiency of more than 50%. The obtained analytical
estimates of the compression ratio and its efficiency are in good agreement with the results of a numerical
simulation.
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I. INTRODUCTION

One of the current trends in modern fiber optics is asso-
ciated with the use of micro- and nanostructured systems for
light-flux control. In recent years, a whole section of nonlinear
science has been formed that is devoted to theoretical and
experimental studies of wave processes in spatially periodic
nonlinear media, in which the main focus is on the following
issues: supercontinuum generation [1–3], shortening of laser
pulse duration [4–10], control of the wave-field structure
[11–17], formation of light bullets [18–24], soliton-like so-
lutions [24,25], and the generation of intense laser pulses in
active fiber systems.

Studies have shown that self-focusing of wide wave-field
distributions with a power exceeding a certain critical value
[26] (which differs from the critical self-focusing power in a
homogeneous nonlinear medium) leads to the decomposition
of the wave field into a set of incoherent structures [6] in
the process of propagation in a medium with a periodic set
of weakly coupled optical fibers. For stable operation with
more powerful wave beams, one can use multicore optical
fibers (MCFs) with a small number of cores. An example is
a MCF consisting of a central core and an even number of
cores located in a ring around it [4,11,16,27]. Nonuniform
stationary nonlinear wave-field distributions in such MCFs
were found, and their stability was shown even at a total power
much higher than the critical self-focusing power [11]. It is
also of interest to study the existence of coherent soliton-like
optical pulses in such MCFs, which can propagate along
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extended paths without changing the structure; in particular,
the formation of three-dimensional spatiotemporal solutions
that retain their shape due to the balance of diffraction, dis-
persion of group velocity, and nonlinear phase modulations.
It is also promising to use self-compression of laser pulses in
the MCF using such solutions.

In this paper, we study analytically and numerically the
existence, the structure, and the stability of soliton-like wave-
field distributions in a MCF, which is an array of 2N identical
cores surrounding a central core (Fig. 1). The main focus is
on the case of a uniform distribution of the wave field over
the ring, which most effectively interacts with the field in
the central core. It is shown that radiation is captured into
the central core of the MCF when the energy of injected
soliton-like laser pulses exceeds some value. This process is
accompanied by a significant decrease in the pulse duration.
Evaluations of the effectiveness of such self-compression and
the achievable minimum pulse duration are confirmed by the
results of numerical simulation.

This work is arranged as follows: In Sec. II, the basic equa-
tions are formulated. Section III discusses soliton solutions
in the absence of the central core. In Sec. IV, approximate
quasisoliton solutions of the wave field in the considered MCF
are found, allowing for the central core. Section V analyzes
the stability of the found solutions. It is shown that only the
branch corresponding to the in-phase solitons in the cores is
stable. In Secs. VI and VII, the method of self-compression of
soliton-like and longer laser pulses is proposed and studied.
This self-compression leads to the formation of a light bullet
in a MCF. Elongated laser pulses ensure a significant in-
crease in the compression ratio. Estimates of self-compression
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FIG. 1. Scheme of the MCF under consideration showing the
cores arranged in a circle around the central core.

effectiveness and the achievable minimum duration of the
resulting light bullet are obtained and confirmed by the results
of numerical simulation. Section VIII is devoted to optimiz-
ing the parameters of laser pulses to achieve the maximum
compression ratio and energy efficiency. In the conclusion, the
main results of the work are formulated.

II. BASIC EQUATIONS

Let us consider the self-action of wave packets in the MCF,
which includes 2N identical cores encircling the central one.
Figure 1 shows schematically such a MCF with N = 3. We
analyze this problem on the basis of the standard theoretical
model [5,6,13,17,26,28], within which it is assumed that the
fundamental guided modes of optical cores oriented parallel
to the z axis are weakly coupled. In this case, the propagation
of laser pulses in the MCF can be approximately described as
a superposition of fundamental modes localized in each core:

E (z, x, y, t ) �
∑

n

An(z, t )F (x − xn, y − yn)eiknz−iωt + c.c.,

(1)
where F is the structure of the fundamental spatial mode in
the core, and An is the envelope of the electric field in the nth
core, which slowly changes along the z axis. The evolution
of the envelope in the nth core during the propagation of
the wave field along the z axis can be influenced by linear
dispersion and Kerr nonlinearity of a single core and the
interaction with the nearest-neighbor cores due to the weak
overlapping of the modes guided by them. Assuming that the
core coupling is weak and does not perturb the structure of
the fundamental mode, we obtain the following system of
equations for the envelope of the electric field An in the nth
core:

i
∂An

∂z
+ i

∂kn

∂ω

∂An

∂t
= 1

2

∂2kn

∂ω2

∂2An

∂t2

+ γn|An|2An +
2N∑

m=0

χmnAm. (2)

Here, the subscript n varies from 0 to 2N , γn is the nonlin-
earity coefficient in the nth core, the coefficient χmn = χnm

determines the magnitude of the coupling between the mth
and nth cores, and χnn = kn is the propagation constant in the
cores.

We assume that all cores are the same, i.e., the propaga-
tion constant kn ≡ χnn ≈ k [where k = ∑

kn/(2N + 1) is the
average propagation constant], the nonlinearity γn = γ , and
the coupling coefficients (χn,n+1, χn,0 at n > 0) are almost
the same for all cores. This allows us to write the system of
equations (2) in dimensionless variables:

i
∂a

∂ z̃
= ∂2a

∂τ 2
+ |a|2a + χ

2N∑
n=1

un, (3a)

i
∂un

∂ z̃
= ∂2un

∂τ 2
+ |un|2un + χa + un+1 + un−1 + δhnun.

(3b)

Here, the evolutionary variable z = z̃/χn,n+1 is normalized
to the coupling coefficient between the cores in the ring,
τ = (t − ∂k

∂ω
z)/( 1

2
∂2k
∂ω2

1
χn,n+1

)1/2 is the dimensionless longitu-
dinal variable in the accompanying coordinate system mov-
ing with the group velocity of the wave packet; a ≡ u0 =
eikzA0

√
γ /χn,n+1, un = eikzAn

√
γ /χn,n+1 are the complex

amplitudes of the envelope of the wave packet in the central
and nth cores, respectively. The tilde sign will be omitted in
what follows. The parameter χ = χn,0/χn,n+1 is the normal-
ized coefficient of coupling with the central core. Perturba-
tions of the propagation constant, δhn = (kn − k)/χn,n+1, will
be assumed to be zero everywhere, except in special cases.

The applicability of Eqs. (3) is limited by the approx-
imation of single-mode propagation of the wave field in
each core. It will fail when the radiation power in any core
Pn = |An|2

∫∫ |F |2dxdy approaches the critical power for
self-focusing in the environment Pcr , i.e., for

|un|2 � 4πc

χn,n+1ω0
∫∫ |F |2dxdy

≫ 1, (4)

where ω0 is the carrier frequency of the laser pulse, and c is the
speed of light. Here, the small factor ω0

c χn,n+1
∫∫ |F |2dxdy �

1 determines the degree of localization of the fundamental
mode on the scale between the cores.

In this paper, we confine ourselves to study the simplest
case, which corresponds to a uniform distribution of the wave
field over the ring (un = f ). In this case, system of equations
(3) takes the form

i
∂a

∂z
= ∂2a

∂τ 2
+ |a|2a + 2Nχ f , (5a)

i
∂ f

∂z
= ∂2 f

∂τ 2
+ | f |2 f + χa + 2 f . (5b)

Equations (5) conserve the total energy of the wave packet
in the process of evolution:

W =
∫ +∞

−∞
(|a|2 + 2N | f |2)dτ = const. (6)
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In addition, the presence of the Lagrangian of Eqs. (5),

L =
∫ +∞

−∞

{
i

2

(
a
∂a∗

∂z
− a∗ ∂a

∂z

)
−

∣∣∣∣ ∂a

∂τ

∣∣∣∣
2

+ 1

2
|a|4

+ iN

(
f
∂ f ∗

∂z
− f ∗ ∂ f

∂z

)
− 2N

∣∣∣∣∂ f

∂τ

∣∣∣∣
2

+ N | f |4

+ 2Nχ (a f ∗ + a∗ f ) + 4N | f |2
}

dτ, (7)

means conserving of the Hamiltonian

H =
∫ +∞

−∞

(
1

2
|a|4 + N | f |4 −

∣∣∣∣ ∂a

∂τ

∣∣∣∣
2

− 2N

∣∣∣∣∂ f

∂τ

∣∣∣∣
2

+ 2Nχ (a f ∗ + a∗ f ) + 4N | f |2
)

dτ = const.

III. SOLITONS IN MULTICORE FIBER WITHOUT
CENTRAL CORE (χ = 0)

First, we study the simplest case of the absence of the cen-
tral core (χ = 0). Then, one can find a soliton-type solution
for Eqs. (5):

un = f =
√

2be−i(2+b2 )z

cosh(bτ )
. (8)

Unfortunately, this solution will be stable only at small am-
plitudes. This can be seen from a rough estimate of the
field amplitude, at which the solution becomes unstable with
respect to azimuthal perturbations. For example, for a wave
field with perturbations having the form

un = [ f0 + δmeiλz+iκmn]e−i(2+| f0|2 )z, |δm| � | f0|, (9)

we get real eigenvalues

λ2 =
(
| f0|2 − 4 sin2 κm

2

)2
− | f0|4 � 0 (10)

only for small wave-field amplitudes [11]:

| f0| < fcr =
√

2 sin
π

2N
≈

N	1

π√
2N

. (11)

Next, we turn to the results of numerical simulations
to confirm the qualitative stability analysis of solution (8).
Figure 2 shows the dynamics of propagation of a laser pulse
with initial distribution (8) for the case of b = 0.7 in a MCF,
which consists of six cores (N = 3), in the absence of a central
core (χ = 0). The initial wave-field amplitude is greater than
the critical value (

√
2b > fcr = √

2/2) for these parameters.
The figure shows that the instability in this case is quite
pronounced. As the wave packet propagates in the medium,
radiation is captured in a core (at z ∼ 12), which further
reduces the duration of the laser pulse by several times.

Note that the introduction of a small modulation of the
wave amplitude to the initial distribution of the wave field
un = √

2b[1 + 10−2 cos(πn/3)]/ cosh(bτ ) allows one to lo-
calize radiation in the required core, in contrast with the
previously considered case, Eq. (8). Further localization of
the radiation could lead to a decrease in the duration of the
laser pulse. This mode was studied in Ref. [4]. Unfortunately,
such a regime is rather sensitive to the initial parameters of the

FIG. 2. Dynamics of the wave-field envelope |un| in a MCF
consisting of six cores (N = 3), in the absence of a central core
(χ = 0). A laser pulse with initial distribution (8) with b = 0.7 was
injected into the fiber.

wave packet; in particular, to the initial amplitude b and to the
amplitude of the perturbations.

Thus, the laser pulse having the form described by Eq. (8)
and an amplitude greater than critical value (11) will be
unstable with respect to the azimuthal perturbations in the
MCF. In this case, the critical amplitude fcr is not large and
tends to zero as the number of MCF cores increases (N →
∞).

IV. SOLITONS IN MULTICORE FIBER WITH
CENTRAL CORE (χ �= 0)

Consider the case where the central core is present (χ �= 0):
it becomes possible to transfer energy between the central
core and the cores around the MCF. The presence of the
central core should provide additional stability with respect
to azimuthal perturbations.

Finding analytical soliton solutions of Eqs. (5) seems rather
difficult. Due to this, at the initial stage, we turn to numerical
analysis. Figure 3(a) shows the dynamics of the wave-field
envelope in a MCF consisting of seven cores (N = 3), with a
coupling coefficient χ = 1. The initial wave-field distribution
had the following form:

a = un =
√

2

τ0 cosh (τ/τ0)
, τ0 = 2.8. (12)

It is seen in the figure that the typical dynamics of the laser
pulse is associated with the consequent transfer of its energy
from the central core to the ring and back. Figure 3(b) shows
the dynamics of the wave-packet intensity at different points
along z. It can be seen that the duration of the laser field in the
MCF cores also varies slightly obeying a periodic law. Thus,
the results of numerical simulation predict the possibility of
existence of soliton solutions for Eqs. (5).

Stable nonlinear modes were found in Ref. [11] that de-
scribe the coherent propagation of wave beams in the MCF
under consideration. Therefore, to construct an analytical
solution for pulsed radiation, it seems reasonable to use a
class of factorized functions when the transverse distribution
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FIG. 3. (a) Dynamics of the wave-field envelope in a MCF
consisting of seven cores (N = 3) with χ = 1. The initial distribution
is given by Eq. (12). (b) The intensity distribution of a laser pulse in
the central (|a|2, red lines), and the first (|u1|2, blue dotted line) cores
in different MCF cross sections.

is formed and supported by the MCF structure, and the
longitudinal one is the same in all cores.

We use the variational approach to find an approximate
quasisoliton solution in the MCF. This will allow a more
accurate determination of the initial parameters of the laser
pulse to eliminate the energy beating between the central core
and the ring in order to eliminate the change in the laser pulse
duration in the MCF.

Let us assume that the wave-field distribution is close
to the form 1/ cosh(τ ). This distribution corresponds to the
nonlinear Schrödinger equation (NSE) soliton for a single
fiber (8). Then, an approximate solution should be sought for
in the form

a(z, τ ) =
√

WA

2τp

ei(φ+θ+στ 2 )

cosh(τ/τp)
, (13a)

un(z, τ ) = f =
√

W (1 − A)

4Nτp

ei(φ+στ 2 )

cosh(τ/τp)
, (13b)

where W is the total energy (6), A is the fraction of energy
in the central core, τp is the pulse duration, σ is a parameter
of the frequency chirp, θ is the relative phase difference
between the central core and the ring, and φ is the common
(global) phase of the wave field. Here, we used the presence

of the integral of problem (6), which is associated with the
conservation of the total energy.

Substituting the fields in the form of Eq. (13) into ex-
pression (7) and integrating over the variable τ , we get the
truncated Lagrangian

L = W
dφ

dz
+ WA

dθ

dz
+ 2χW

√
2NA(1 − A) cos θ

+ π2W

12

(
τ 2

p

dσ

dz
− 4σ 2τ 2

p

)
+ W 2(1 − A)2

12Nτp

+ W 2A2

6τp
− W

3τ 2
p

+ 2W (1 − A). (14)

The change in the wave-field parameters along the propaga-
tion path in the MCF is determined by the Euler equations

d

dz

∂L
∂ ȧ j

− ∂L
∂a j

= 0, ȧ j = da j

dz
. (15)

Varying Lagrangian (14), we arrive at the following system of
ordinary differential equations for changing the parameters of
wave packet (13) in the MCF:

dA

dz
= −2χ

√
2N

√
A − A2 sin θ, (16a)

dθ

dz
= χ

√
2N

2A − 1√
A − A2

cos θ − W

× (2N + 1)A − 1

6Nτp
+ 2, (16b)

dτp

dz
= −4στp, (16c)

dσ

dz
= 4σ 2 + 1

π2τ 3
p

[
2NA2 + (A − 1)2

2N
W − 4

τp

]
. (16d)

The first two equations describe the dynamics of the wave
field between the cores, i.e., the change in the fraction of
the energy A in the central core and the phase difference θ .
The two latter equations determine the dynamics of the pulse
duration and the frequency chirp along the MCF. Note that the
equation for the common (global) phase φ splits off from the
dynamics of other parameters of the wave packet:

dφ

dz
= −4N (1 + χ )

2N + 1
− W 2

16(2N + 1)2 . (17)

Equations (16c) and (16d) have a stationary point of the
center type,

τ sol
p = 4

W

1

A2 + (1 − A)2/2N
, σ sol = 0, (18)

which corresponds to soliton-like propagation of a laser pulse.
The oscillations near this center are similar to those in the
duration of a quasisoliton pulse in the NSE.

In the stable soliton solution, there are no beats between
the wave field in the central core and the isotropic field on the
MCF ring. Next, we analyze the possible types of solutions
of equations (16a) and (16b), taking into account the relation
(18) obtained on the phase plane, the form of which essentially
depends on the total energy of the wave packet W .
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FIG. 4. (a)–(d) Phase plane of Eqs. (16a) and (16b) allowing
for relation (18) for N = 3, χ = 1, and different values of energy
W . Bold lines show separatrices. The dotted line corresponds to
homogeneous filling |a| = | f |. (e) Equilibrium states depending
on the energy W . Dashed and dash-dotted lines indicate unstable-
equilibrium states.

Figures 4(a)–4(d) show the phase plane at various energies.
Here, the bold lines show the separatrices. Figure 4(e) presents
equilibrium states depending on the energy W . As follows
from Eq. (16a), there are two distributed equilibrium states
of the saddle type (A = 0 and A = 1), whose positions do
not depend on the input energy W . These are degenerate
one-dimensional manifolds corresponding to the localization
of the wave packet of the field only in the central core (for
A = 1), or only on the MCF ring (for A = 0).

The phase plane in the case of a low total energy W of the
injected wave packet is presented in Figure 4(a). It can be seen
that system of equations (16a) and (16b) has four equilibrium
states: two distributed equilibria of the saddle type (A = 0 and
A = 1) and two centers. With a low energy (W → 0), these
two roots AI and AII are

A0
I = 1

2
− 1

2
√

2Nχ2 + 1
, θ = 0, (19a)

A0
II = 1

2
+ 1

2
√

2Nχ2 + 1
, θ = π. (19b)

As the wave-packet energy increases [see Fig. 4(b)], the
positions of the centers will shift. The center at θ = 0 shifts
upwards [branch I in Fig. 4(e)], and the center at θ = π

shifts downwards (branch II). It can be seen in Figs. 4(a) and
4(b) that the main type of dynamics is the sequential transfer
of energy from the central core (A decreases) to the MCF
ring and back. Moreover, the beats occur with a significant
amplitude if the initial energy fraction in the central core A is
not close to the stationary value AI or AII.

With an energy increase to the level

Wcr � 8
√

3√
1 − 1/(2N )2

≈ 8
√

3 ≈ 13.86, (20)

a bifurcation occurs, and a new pair of equilibrium states
appears: a center and a saddle [see Fig. 4(c)]. It is impor-
tant to note that the critical energy does not depend on the
coefficient χ of coupling with the central core. In the dimen-
sional form [see Eq. (3)], the critical energy is proportional
to ( ∂2k

∂ω2 χn,n+1)1/2/γ , i.e., it can be increased by a denser
arrangement of the cores in the ring, which increases the
coupling coefficient χn,n+1. With a further increase in energy,
the second bifurcation happens, which is associated with the
merging of the lower center with the born saddle. In this
case, the born upper center will be pressed to the axis A ≈ 1.
It should be noted that these two bifurcations lead to the
appearance of a hysteresis in curve I [see inset in Fig. 4(e)].
The range of realization of the hysteresis in the energy is
rather narrow, so the change in A has the form of a jump
in the case of a small change in W . The position of the
found hysteresis is shown in branch I as the black dotted line.
Finally, there is a third bifurcation at

W = W∗ ≈ 12 4
√

3
√

χN3/2 + 6 4
√

3(5χ − 6
√

3)
√

χN, (21)

which is associated with the birth of two equilibrium states:
the center and the saddle, which corresponds to the appear-
ance of the third branch in Fig. 4(e).

At high energies W 	 1, one can find the asymptotics of
all three found branches, which correspond to three equilib-
rium states of the center type:

AI ≈ 1 − 288χ2N

W 4
, θ = 0, (22a)

AII ≈ 1

2N + 1
+ 24N (2χN + 2 − χ )

W 2
, θ = π, (22b)

AIII ≈ 4608χ2N5

W 4
, θ = 0. (22c)

Note that branch AII tends to a uniform intensity distribu-
tion |a|2 = | f |2 that has A = 1/(2N + 1).

V. SOLUTION STABILITY ANALYSIS

Let us analyze now the stability of the found soliton solu-
tions. First, we focus on the simplest case, which corresponds
to branch III. One can see in Fig. 4(e) that this solution exists
only at high energies, W > W∗. In the case of N = 3 and
χ = 1, this corresponds to the situation of W∗ � 75. It follows
from this figure that the energy fraction in the central core A
tends to zero with the increasing energy W . This means that
almost all of the energy is concentrated in the cores located in
the ring. Obviously, this solution is not stable with respect to
azimuthal perturbations. This situation is similar to the case of
absence of a central core that we considered earlier (Sec. III).

Let us analyze the remaining two branches. The first branch
corresponds to the stationary point {AI, θ = 0, σ = 0, τp},
and the second branch, to {AII, θ = π, σ = 0, τp}. The du-
ration τp of the wave structure is determined by expression
(18). A condition necessary for the stability of the found
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soliton solution is the presence of a local minimum of the
Hamiltonian

H = −2χW
√

2NA(1 − A) cos θ + π2W

3
τ 2

pσ 2

− W 2

12Nτp
(A − 1)2 − A2W 2

6τp
+ W

3τ 2
p

+ 2AW. (23)

This corresponds to positive definiteness of the second deriva-
tive of the Hamiltonian in the vicinity of the stationary point.
In the case of the Hamiltonian having the form of Eq. (23), the
condition of local positive definiteness is noticeably simpler.
The reason is that most cross derivatives of the solution are
zero:

∂2H

∂σ∂A
= ∂2H

∂σ∂θ
= ∂2H

∂σ∂τp
= ∂2H

∂θ∂A
= ∂2H

∂θ∂τp
= 0. (24)

Moreover, some of the second derivatives of the solution are
always positive.

∂2H

∂σ 2
= 2π2

3
W τ 2

p > 0, (25a)

∂2H

∂τ 2
p

= 2W

3τ 4
p

> 0. (25b)

Thus, a necessary stability criterion is(
∂2H

∂A∂τp

)2

< 4
∂2H

∂A2

∂2H

∂τ 2
p

, (26a)

where

∂2H

∂A∂τp
= 2AN + A − 1

6N

W 2

τ 2
p

,

∂2H

∂θ2
= 2χW

√
2NA(1 − A) cos θ > 0, (26b)

∂2H

∂A2
= χW

√
N/2 cos θ

(A − A2)3/2
− (2N + 1)W 2

6Nτp
> 0. (26c)

Obviously, the latter conditions (26b) and (26c) are not ful-
filled for mode II, since these second derivatives are negative
for θ = π . Thus, as follows from the qualitative analysis,
branch II is unstable.

Numerical simulation confirms the instability of branch II.
Figure 5 shows the typical dynamics of wave packets (13)
and (18) in a MCF consisting of seven cores (N = 3), with
a coupling coefficient χ = 1. A laser pulse with an energy of
W = 20 was injected into the fiber input,

a(τ ) = − 2.272

cosh(1.1982τ )
, un(τ ) = 1.066

cosh(1.1982τ )
. (27)

The minus sign corresponds to the fact that the field in the
central core and in the MCF ring are in antiphase. Here, the
dispersion length (the length at which the duration of the wave
packet has increased by

√
2 times) is Ldis ≈ 0.2. Figure 5

shows that this distribution is unstable in the longitudinal
direction. As the wave packet propagates in the MCF, a
“dispersion loss” of the wave field takes place (formation
of a wave ripple extending from the main wave structure),

FIG. 5. Amplitude distributions of the laser pulse in the central
|a(τ )| (solid red line) and in first |u1(τ )| (blue dotted line) cores in
different MCF cross sections. A laser pulse (27) was injected into
the MCF input, corresponding to found branch II at θ = π , W = 20.
The dispersion length is Ldis ≈ 0.2.

which leads to an increase in the duration of the laser pulse.
However, in the process of further evolution of the wave
packet, a two-scale quasistable distribution of the wave packet
is formed (see Fig. 5 for z > 10). Along with this, the results
of numerical simulation demonstrate an important point that
the phase difference of the wave field between the central core
and the ring varies monotonically in the range 0 � θ � 2π .
This means that the coherence of the wave field between the
central core and the cores located on the ring is lost.

Let us analyze relations (26) for the solution that cor-
responds to branch I. First, we consider the case of low
energies W � Wcr, when the energy fraction in the central
core A is close to the value (19a). Thus, the second deriva-
tive of ∂2H/∂A2 (26c) is positive, since the first term in
the expression (26c) is proportional to the energy W and is
obviously larger than the second term, which is proportional
to W 3. It is easy to see that the product of the derivatives
(∂2H/∂A2)(∂2H/∂τ 2

p ) ∝ W 6 is much larger than the square of
the mixed derivative (∂2H/∂A∂τp)2 ∝ W 8. Thus, in the case
of low energies W � Wcr, conditions (26) are satisfied.

For large values of the wave-packet energy W 	 Wcr, the
asymptotic decomposition of the energy share A in the central
core (22a) allows us to make the same conclusion. Indeed, the
second derivative ∂2H/∂A2 ∝ W 7 is positive, since the first
term in expression (26c) is obviously greater than the second
term. Along with this, the product of (∂2H/∂A2)(∂2H/∂τ 2

p ) ∝
W 12 is much larger than the square of the mixed derivative
(∂2H/∂A∂τp)2 ∝ W 8. Thus, the performed qualitative analy-
sis demonstrates the stability of branch I.

Numerical simulation of branch I shows its stability, too.
Figure 6 shows the nonlinear dynamics of the wave packet in
a MCF fiber consisting of seven cores (N = 3, χ = 1). The
laser pulses relate to branch I and have energies W = 10 <

Wcr (AI = 0.342) and W = 20 > Wcr (AI = 0.999). Their ini-
tial profiles are

a(τ ) = 0.899

cosh (0.47τ )
, un(τ ) = 0.509

cosh (0.47τ )
, (28)

a(τ ) = 7

cosh (0.2τ )
, un(τ ) = 0.23

cosh (0.2τ )
. (29)
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FIG. 6. Dynamics of the wave-field envelope in a seven-
core MCF fiber (N = 3, χ = 1). The initial distributions are
(a) Eq. (28)—branch I with energy W = 10; (b) Eq. (29)—branch
I with energy W = 20. Dispersion lengths are 1.5 and 0.015,
respectively.

The complex field amplitudes are in phase and are close to
each other in all cores for W < Wcr [Fig. 6(a)]. The wave
field is almost entirely concentrated only in the central core
for W > Wcr [Fig. 6(b)]. According to Eq. (18), the initial
duration in the second case τ sol

p = 0.2 is approximately 10
times shorter than in the first case. The stability of branch I at
high energies is obviously associated with the existence of a
discrete solution localized in a single core [13]. Wave packets
stably propagate up to z = 30, what is much larger than
dispersion lengths in both cases. Thus, results of numerical
simulations (Fig. 6) confirm the validity of the factorization
(13) used for the solution derivation.

VI. SELF-COMPRESSION OF QUASISOLITON PULSES

A distinctive feature of the found stable soliton solution
(branch I) is the presence of hysteresis in the vicinity of W ≈
Wcr. In the inset in Fig. 4(e), the hysteresis-related transition is
shown by a vertical dashed line. At low energies (W < Wcr),
the energy fraction A in the central core is almost constant,
A ≈ A0

I = 1/2 − 1/(2
√

2N + 1). This corresponds to the fact
that the wave field of the found solution is distributed quasi-
uniformly over all MCF cores. However, at high energies

(W > Wcr), the wave field is concentrated mainly in the central
core (A ≈ 1) and has the form of a “light bullet” with duration
(18) close to the duration of the NSE soliton of the same
energy (τNSE

p = 4/W ). Otherwise (W < Wcr), the duration of
the found solution turns out to be five to six times longer
than the duration of the NSE soliton of the same energy.
Note that the energy fraction in the central fiber is almost
constant in the found solution. This allows us to fix its value
at Ain = 1/2 − 1/(2

√
2N + 1). The jump between the two

parts of branch I at W ≈ Wcr allows us to suggest a method
of self-compression of a laser pulse with an energy greater
than the critical one, Wcr, when laser radiation is captured in
the central core (forming a stable distribution with A ≈ 1 in
the form of light bullets). The rationale for the optimality of
selected parameters is given at the end of the section.

The transition from one part of branch I to another occurs
almost without a loss of energy in the hysteresis region W ≈
Wcr. It yields the compression ratio (the ratio of the initial
τp and final τ out

p durations) of a laser pulse as Q = 1/[A2
in +

(1 − Ain)2/2N]. A further increase in the initial wave-packet
energy W at the fixed value of A = Ain will divert the initial
wave-packet distribution further from the hysteresis region.
Accordingly, the capture of radiation in the light-bullet mode
becomes possible for an ever smaller fraction of the energy
η < 1.

To capture laser radiation effectively in the central core,
it is necessary to get into a small neighborhood of a sta-
ble equilibrium state with the parameters A ≈ 1 and θ = 0.
Looking at Figs. 4(c) and 4(d), we can estimate the region
between the separatrix as |θ | � 1. If the pulse parameters will
hit this region then the pulse will be captured as whole into
the central core. An increase in the fraction of the energy A
is obtained automatically when the central core interacts with
a large number of cores in the ring. The second condition is
more difficult to reach. Indeed, assuming that the length of
the energy transfer to the center is of the order of magnitude
of 1/2χ , we can roughly estimate the change in θ from
Eqs. (16b) and (18) for A ≈ Ain:

|θ | ≈ 1

2χ

W 2

48N2
[(2N + 1)Ain − 1]

[
2NA2

in + (1 − Ain)2] � 1.

Thus, the proximity condition to the desired equilibrium state
|θ | � 1 can only be fulfilled for energies being lower than

Wlim � 4N
√

6χ√
[(2N + 1)Ain − 1]

[
2NA2

in + (1 − Ain )2
] . (30)

For the considered parameters χ = 1, N = 3, and Ain = 0.31,
the maximal energy is equal to

W � Wlim ≈ 26 ⇒ τ out
p � 4/Wlim ≈ 0.15. (31)

Consequently, the energy of the light bullet generated in the
process of self-compression is limited by the energy value
Wlim ≈ 26, and the duration of the output pulse will be longer
than 0.15.

The idea of the minimum duration and, accordingly, the
maximum energy of the resulting light bullet allows us to
predict the dynamics of the wave field with a further increase
in the initial energy. Indeed, as soon as the difference between
the initial W energy and Wlim exceeds the critical energy
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Wcr, the system will be able to form several diverging, less
energetic pulses. In other words, in the process of capturing
radiation into the central core, the laser pulse will be split up
in the longitudinal direction into several wave structures for
energies

W � Wlim + Wcr ≈ 40. (32)

Let us estimate the compression efficiency η. It is obvi-
ously close to 100% (η � 1 at W = Wcr) near the hysteresis on
the phase plane (Fig. 4). Suppose that the efficiency changes
continuously with an increasing total energy, and at the total
energy W � Wlim + Wcr, in the process of splitting, two wave
structures arise with an energy being of the order of the critical
value, i.e., η � 2Wcr/(Wlim + Wcr) at W � Wlim + Wcr. Then,
the simplest approximation for the efficiency is

ηest ≈ 2Wcr

W + Wcr
. (33)

This estimate is most suitable for the pulses, which are close
to the solutions in the hysteresis region. In any case, the
compression efficiency will be at least

ηmin ≈ Wcr

W
, (34)

which corresponds to the formation of a light bullet with an
energy equal to the critical value Wcr.

All this allows us to estimate the compression ratio Q as
the ratio of the initial τp and the final τ out

p durations

Q = τp

τ out
p

≈ 1

4
ηestW τp = ηest

A2
in + (1 − Ain)2/2N

, (35)

where the final duration τ out
p ≈ 4/ηW is determined by ex-

pression (18) with A = 1 and the energy ηW , the initial
duration τp is related to the energy of W by the expression
(18) with A = Ain. The compression cannot exceed Qmax =
1/[A2

in + (1 − Ain )2/2N] obtained at the 100% light-bullet
excitation efficiency (η ≈ 1). In the case of N = 3, this yields
Qmax ≈ 5.68.

Thus, the use of pulses with the energy W � Wcr allows
one to compress the pulse by 5.68 times with an energy
efficiency of 100% in a seven-core MCF (N = 3). Unfortu-
nately, a change in the number of MCF cores leads only to
an insignificant change in the compression ratio for A = Ain

(Fig. 7). It follows from the figure that the compression ratio,
in fact, does not depend on the number of cores 2N + 1. Note
that the local maximum is reached at N = 5 (11 cores). At
the same time, an increase in the compression ratio at the
maximum is only 6% as compared with the case of N = 3.
An increase in the pulse energy while maintaining the value
of the product W τp (laser pulses of the soliton form) also leads
only to a decrease in the compression ratio due to a decrease
in the energy efficiency η with increasing energy (33).

The results of numerical simulations of wave-packet cap-
turing in the central core are in good agreement with the
estimates presented above. In all the calculations presented
below, the initial energy fraction Ain = A0

I in the central core
is equal to that in the linear case [Eq. (19a)].

FIG. 7. Compression ratio calculated by expression (35) with
ηest = 1 and A = Ain.

First of all, we consider a laser pulse with the energy W =
15 � Wcr and the duration determined by formula (18):

a(τ ) = 1.24

cosh (0.66τ )
, un(τ ) = 0.75

cosh (0.66τ )
. (36)

Figure 8 shows that the wave field transforms to a distribution
localized predominantly in the central core for the path z ≈ 3.
The magenta line in Fig. 8(c) shows the dependence of the
fraction of the energy in the central core on the evolutionary
variable z. It is seen that the energy fraction in the central
core increases from 0.31 to a value comparable with 1 in the
process of transformation of the initial distribution. The black
line shows the dependence of the wave-packet compression
ratio Q = τ in

p /τ out
p on the coordinate z. It can be seen that

this process is accompanied by a decrease in the duration of
the wave packet by about 5.6 times, which is consistent with
the above qualitative analysis. The initial dispersion length
of Ldis = 0.8 is significantly less than the length zcol of the
capture in the central core. This means that the considered
process is adiabatic.

Figure 8(a) shows the presence of radiated emission (dis-
persion loss) along the fiber in the process of wave-packet
capturing in the central core. This is due to the fact that the
value of the energy fraction in the central core is set to Ain =
0.31 in the numerical simulations, which is slightly different
from the exact value [see Fig. 4(e)]. As follows from Fig. 8(c),
the energy in the central core is comparable to the critical
value Wcr. Analysis of the results of the numerical simulation
shows that the formed structure does not have a time chirp.
It is natural to call this spacetime nonlinear structure a light
bullet.

The observed oscillations in the evolution of the compres-
sion ratio Q and the energy fraction η in the formed light bullet
are mainly associated with the periodic transfer of energy
between the central core and the MCF ring. These energy
beats are due to the fact that the parameters of A and θ for the
formed wave structure differ slightly from the exact values of
the center on the phase plane [see Fig. 4(e)].

A twofold increase in the energy of a laser pulse leads to
a stronger dispersion loss and, accordingly, to a decrease in
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FIG. 8. (a), (b) Dynamics of the wave-field envelope in a MCF
consisting of seven cores (N = 3, χ = 1) for the energy W = 15.
Panel (b) shows the intensity distribution of a laser pulse in the
central core |a|2 at different z. Panel (c) shows the dependencies of
the compression ratio Q (thick black line) and the fraction of energy
η in the central core (thin magenta line) on the z coordinate. The axis
for Q is normalized to the maximum value (35) with ηest = 1.

the compression ratio. Figure 9 shows the dynamics of a wave
packet with the energy W = 30 and the duration according to
Eq. (18):

a(τ ) = 2.48

cosh (1.32τ )
, un(τ ) = 1.51

cosh (1.32τ )
. (37)

One can see a much more complex and prolonged (up to
z ≈ 7) dynamics of light-bullet formation. Moreover, this
process is accompanied by a noticeable radiation emission in
the longitudinal direction [oblique “tails” in Figure 9(a)]. At
the same time, efficiency estimate (33) shows good agreement
with the results of the numerical simulation [the dotted line in
Fig. 9(c)]. In this case, the compression ratio turned out to be

FIG. 9. (a), (b) Dynamics of the wave-field envelope in 7-core
MCF (N = 3, χ = 1) for the energy W = 30. The initial distribution
is determined by Eq. (37). Captions for the figure are the same as in
Fig. 8. The dotted line in panel (c) shows the efficiency estimated by
Eq. (33).

Q ≈ 3.6 < Qmax ≈ 5.7 with efficiency of about 63%. Thus,
an increase in the energy of the wave packet with preservation
of the soliton pulse shape [according to Eq. (18)] leads to
deterioration of all compression parameters as the distance
from the critical energy decreases. This agrees well with the
previous qualitative analysis.

To conclude this section, we give the integral dependencies
of the compression ratio and energy efficiency on the initial
energy fraction in the central core A and on the total pulse
energy W (Fig. 10). It can be seen from the figures that the
maximum energy efficiency is close to the found solution
branch I [solid curves in Fig. 10(b)]. Conversely, the degree of
compression increases with decreasing A and becomes close
to the maximum value at A = Ain [dashed line in Fig. 10(a)].
Thus, the optimal compression happens in the region A ≈ Ain
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FIG. 10. Dependencies of the (a) compression ratio and (b) en-
ergy efficiency on the initial energy fraction in the central core A and
on the total pulse energy W for a MCF consisting of seven cores
(N = 3, χ = 1). Solid curves show branch I [see Fig. 4(e)]. Dashed
lines denote A = Ain.

and W � Wcr. It is these parameter values that were chosen
earlier to demonstrate the compression.

A few words should be said about the stability of the pro-
posed compression method. Since the compression process is
quite fast, then only strong perturbations of the MCF structure
can disrupt it. Such perturbations that the spatial period of the
beats along the ring (inversely proportional to the perturbation
amplitude δh) is greater than the capture length to the center
core (inversely proportional to χ ). Numerical simulation in
the 7-core MCF shows that the compression is disrupted only
for D > χ if perturbations of the propagation constant have
the form δhn = D sin πn

3 (Fig. 11).

VII. SELF-COMPRESSION OF LONG PULSES

Thus, it is not possible to obtain output pulses shorter
than 4/Wlim in the process of radiation capturing into the
central core. However, we can get the same pulse from an
initially longer laser pulses and thereby significantly increase
the compression ratio. Increasing neither the number of cores,
nor the energy of a soliton-like wave packet allows one to
achieve a compression ratio greater than six. Therefore, the
only possibility to increase the compression ratio Q is to
increase the initial duration of the wave packet τp at a fixed
total energy, i.e., using the wave packet in the form of (13)
without the explicit relation (18) of duration and energy at the
equilibrium state.

Figure 12 shows the possibility of a significant increase
in the compression ratio Q of a laser pulse compared with
Qmax ≈ 6. In the figure, the green surface shows the depen-
dence (18) of the duration τ sol

p of the found solution on the

energy W and the fraction of the energy in the central core A.
The red line shows the equilibrium states of {τ sol

p , AI} at the
stable branch I depending on the energy W [see Fig. 4(e)].
Also, Fig. 12 shows the trajectories of the wave-packet pa-
rameters {τp, A} calculated in the framework of Eqs. (16) for
three cases. The black line corresponds to the wave packet
with the duration equal to the found solution τin = τ sol

p at
the energy W ≈ Wcr and A = Ain. It can be seen from the
figure that the duration of the wave packet decreases as the
radiation is captured in the central core (A → 1). In this
case, the trajectory is trapped in the vicinity of equilibrium
state.

The use of longer initial pulses [five times longer for the
cyan curve in Fig. (12)] allows us to distinguish two stages in
the dynamics. Initially, the nonlinearity significantly exceeds
the media dispersion, and the duration of the wave packet
decreases obeying the law d2τp/dz2 ∝ −W/τ 2

p . In this case,
the fraction of the energy in the central core almost does
not change A ≈ Ain. At that moment, when the wave-packet
duration becomes approximately equal to the value of the
equilibrium state [Eq. (18); red line in Fig. 12], the capture is
taking place in the central core and accompanied by a decrease
in the wave-packet duration similar to the black curve. It can
be seen from the figure that the trajectory of τp, A (cyan line)
turns out to be in the vicinity of the equilibrium state (red line).
In this case, the generalization of the expression (35) for the
compression ratio in this case is trivial:

Q = τp

τ out
p

≈ 1

4
ηestW τp ≡ ηestW/W0

A2
in + (1 − Ain)2/2N

. (38)

Here, we introduce the definition of the energy

W0 = 4

τp

1

A2
in + (1 − Ain)2/2N

� W,

which characterizes the initial duration of τp in accordance
with Eq. (18).

Note that the use of long pulses with an energy significantly
lower than the critical one (W = 5 < Wcr for the magenta
curve in Fig. 12) leads to oscillations in the duration near the
equilibrium state, similar to the oscillations of the quasisoliton
solution for the NSE. The reason is the absence of a stable
solution for such energies corresponding to the capture in one
core.

Numerical simulation confirms that the use of longer laser
pulses can significantly increase the compression ratio at the
expense of a slight decrease in the energy efficiency. Figure 13
demonstrates this through the example of a wave packet
with the initial energy W = 30 and the duration τp = 7.58
(corresponding to W0 = 3):

a(τ ) = 0.784

cosh (0.132τ )
, un(τ ) = 0.477

cosh (0.132τ )
. (39)

The figure shows three characteristic stages of the wave-
packet evolution. At the first stage (z � 6), the dynamics of
the wave packet is close to the periodic evolution of a high-
order one-dimensional NSE soliton. There is a compression
of the excessively large initial duration of the wave packet
by three to four times due to the nonlinear superposition
of the structures. The resulting wave structure can be quite
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FIG. 11. The same as Fig. 8 for MCF with bending δhn = D sin(πn/3). Parameters are D = 1 for panels (a), (c), (e), and D = 3 for panels
(b), (d), (f).

effectively captured in the central core. The discreteness of the
system is strongly manifested in the second stage 6 � z � 20,
when the compressed laser pulse is captured in the central
core [Fig. 13(a)]. This capture is clearly seen in Fig. 13(c),
which shows the evolution of the compression ratio and the
laser pulse energy in the central core. It can be seen that the
duration of the wave packet decreased additionally by almost
ten times and the laser pulse energy fraction in the central
core, η = ∫ |a|2dτ/W , increased from 0.3 to 0.6. Moreover,
the process of the wave-packet capturing in the central core
is accompanied by a significant dispersion energy loss, which
occurs in the first two to three oscillations of the field between
the center and the ring. At the third stage, the background
radiation remaining from the high-order NSE soliton grad-
ually escapes from the main pulse. As a result, initial laser
pulse (39) is compressed by Q = 32 times with the energy

efficiency η = 0.55 in the formed light bullet [Fig. 13(c)].
At the same time, the evaluation of compression ratio (38)
gives the value Q ≈ 36 with the energy efficiency ηest ≈ 0.63
[dotted line in Fig. 13(c)], i.e., the values are quite close to
those obtained in the numerical simulation.

VIII. OPTIMIZATION OF INITIAL PARAMETERS

For compression optimization relative to the initial param-
eters of the laser pulse, integral dependencies of the output
parameters are of interest. Figure 14 shows the dependen-
cies of the minimum laser pulse duration τmin, efficiency
η = ∫ |a|2dτ/W and the wave-packet compression ratio Q =
τp/τ

out
p on the total energy W for different values of the energy

W0 (or the duration of the injected wave packet τp). The
vertical dashed line in the figure shows the boundary, where
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FIG. 12. The green surface is the dependence (18) of the soliton
duration τ sol

p on W and A; the red curve corresponds to the stationary
values of {τ sol

p , AI} on the stable branch I [Fig. 4(e)]; the blue dash is
the duration τ sol

p at A = Ain. The remaining curves show the dynamics
of the wave-packet parameters within Eqs. (16) with the initial A =
Ain for three cases: (i) black line for τp = τ sol

p and W ≈ Wcr; (ii) blue
line for τp = 5τ sol

p and W ≈ Wcr; (iii) magenta line for τp = 5τ sol
p and

W = 5 < Wcr.

the total energy coincides with the critical value, W = Wcr.
The dots show only the numerically found solutions without
splitting, i.e., Fig. 14 contains only solutions leading to the
formation of a single light bullet.

Figure 14(a) shows the presence of the minimal duration
of the output laser pulse. Moreover, the value of the mini-
mal duration corresponds exactly to the estimates obtained
earlier (31). The main difference from soliton solutions oc-
curs for wave packets with large initial durations and small
amplitudes, corresponding to small energies W0 � Wcr. Such
long pulses require a significantly larger trace to reduce the
duration to values of order of Eq. (18) for W = Wcr under
quasi-one-dimensional compression of the multisoliton solu-
tion. Moreover, at low energies W0 = 3 and 4, the duration
of the compressed pulse remains at the level of the critical
value at the hysteresis τcr = 4/Wcr in a relatively wide energy
range Wcr < W < 24. Calculations show that an even greater
increase in the initial duration of the wave packet (up to
τp ∼ 11 for W0 = 2 and more) results in the impossibility of
capturing laser radiation in a single pulse.

The markers in Fig. 13 show only the results of calcu-
lations, in which no pulse splitting occurs. It can be seen
that almost all the markers lie to the left of the analytically
predicted boundary (32). The reason for the laser pulse split-
ting can be explained at a qualitative level. At the energy
W � 30, the characteristic length of the energy transfer from
the cores located in the ring to the central one is commensurate
with the dispersion length (Ldis ∝ 1/τ 2

p ). Therefore, a smooth
amplitude increase in the central core on the scale of the
dispersion length is accompanied by an adiabatic decrease in
the wave-packet duration. However, with an increase in the
laser pulse energy W , the rapid increase in the amplitude in
the central core (the field amplitude increased significantly
without changing the duration of the wave packet) can no
longer be compensated by the media dispersion. This leads

FIG. 13. (a), (b) Dynamics of the wave-field envelope in a 7-core
MCF (N = 3, χ = 1) for the energy W = 30 and the duration τp =
7.58. The initial distribution is determined by Eq. (39). Captions for
the figure are the same as in Fig. 8. The dotted line in panel (c) shows
the efficiency estimated by Eq. (33). The axis for Q is normalized
with respect to the maximum value (38) with ηest = 1.

to the development of modulation instability of the wave field
in the longitudinal direction. As a result, the laser pulse in the
central core is divided into wave structures with the energy
W ∼ Wcr, on which the dispersion and nonlinear lengths will
be approximately the same.

Figure 14(b) demonstrates the wave-field capture in the
central core at energies above the critical value (W � Wcr), as
in the case of the found distributed soliton (13) and (18). The
energy ratio in the central core varies in the range from 1 to 0.5
and coincides well with estimate (33) for not-too-long initial
pulses with τp < 5 (or W0 � 5; see Fig. 14). For longer pulses,
the efficiency decreases, but it cannot be less than Eq. (34),
which corresponds to the formation of a light bullet with an
energy equal to the critical value Wcr.
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FIG. 14. Dependencies of (a) the minimum laser pulse duration,
(b) compression efficiency η = ∫ |a|2dτ/W , and (c) compression
ratio of the wave packet Q = τp/τ

out
p on the energy W for different

initial durations τp (or energies W0 ∝ 1/τp). The calculations were
performed for a 7-core MCF (N = 3, χ = 1). The dotted line in
panel (a) shows the duration of the NSE soliton with the energies
W = Wcr and W = Wlim ≈ 26. The curves in panel (b) correspond to
approximations (33) (solid line) and (34) (dotted line). The vertical
dash-dotted line corresponds to boundary (32). The curves in panel
(c) shows approximation (38).

Figure 14(c) shows the compression ratio Q of the laser
pulse depending on the total energy W for different values
of the parameter W0. The figure shows good agreement with
approximation (38). In this case, significant laser pulse com-
pression is achieved for longer laser pulses with a fixed value
of the total energy W > Wcr. However, the minimum pulse
duration τmin is larger than that for laser pulses with optimal
duration (18).

Thus, the results of numerical simulation are in good
agreement with the rough analytical estimates (32)—(35) and
(38), so the use of this method of laser pulses compression
in MCF makes it possible to achieve a significant (30–40

times) shortening of the laser pulse duration with an energy
efficiency of more than 50%. At this compressed pulse have
no pedestal and no frequency chirp. Note that such a high
compression ratio can be achieved in a single fiber by using
high-order solitons [29]. However, the output pulse will have
a large pedestal (up to 80% of the total pulse energy) and
frequency chirp, and the method itself will be sensitive to
the length of the fiber. At the same time, the use of long
pulses with an energy close to the critical one Wcr = 8

√
3

makes it possible to achieve almost 100% energy efficiency
at the expense of not more than a twofold decrease in the
compression ratio (about 20–25 times).

Let us return to dimensional values (2). The soliton energy
for duration τsol must be larger than the critical one: W =
2|β|/γ τsol > Wcr = 8[3|β|χn,n+1/(2γ 2)]1/2, where β = ∂2k

∂ω2 ,
and τsol ≈ √

3τFWHM is the output pulse duration (τFWHM is
full width at half maximum for intensity). This can be done for
the coupling coefficient χn,n+1 � |β|/(24τ 2

sol ) that is the quite
reasonable requirement for the MCF properties. For example,
an output pulse with a duration of 50 fs and an energy of
1.4 nJ can be obtained by compressing a soliton-like wave
packet with a duration of 300 fs and the same energy using a
two-meter silica MCF [β ≈ −15 ps2/km, γ ≈ 1 (W km)−1]
with a coupling coefficient χn,n+1 � 1 m−1. The use of longer
pulses can significantly increase the compression ratio. For
example, the same output pulse (50 fs and 1.4 nJ) can be
obtained by compressing a wave packet with duration of 1.5
ps and energy of 2.8 nJ over a length of 10 m of the same
MCF light guide. In principle, the method allows one to
obtain shorter pulses, but checking this requires the use of a
more general system of equations (which includes high-order
dispersion, nonstationary media response, and the dependence
of the group velocity on the field amplitude).

IX. CONCLUSIONS

In this paper, we studied propagation of laser pulses in a
MCF consisting of a central core and an even number 2N of
cores located in a ring around it. The main focus was on the
uniform distribution of the wave field around the ring, which
interacts most effectively with the field in the central core.
Approximate quasisoliton solutions of the wave field in the
considered MCF are found. It is shown that there are three
branches of solutions. Branch I corresponds to the in-phase
propagation of solitons in cores, and branch II is antiphase (the
field in the center is in antiphase to the field on the ring). At
low energies W , the wave field, corresponding to branch I, is
distributed quasi-uniformly over all cores, and at high energies
W it is concentrated mainly in the central core. The transition
between the two types of distributions is very sharp and occurs
at the energy Wcr ≈ 8

√
3 [Fig. 4(e)]. At the same time, this

energy is almost independent of the number of optical cores
and the coefficient of coupling with the central core. At high
energies, branch II tends to a uniform intensity distribution.
Branch III describes a situation in which the wave field is
predominantly concentrated only in the ring. The stability
analysis showed that only solutions corresponding to branch
I are stable. This is confirmed by the results of the numerical
simulation.
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The found analytical solution for the wave field in branch
I has an important feature. At low energies, its wave field is
distributed over all MCF cores and has a duration that is many
times (five to six times) longer than the duration of the NSE
soliton with the same energy. In contrast, almost all of the
radiation is concentrated in the central core at high energies,
and its duration is close to the duration of the analogous NSE
soliton. The form of the solution of branch I at high energies is
similar to the light bullet in the MCF. Moreover, the transition
from one mode to another is very sharp, through the hys-
teresis at W = Wcr. This effect can be used to compress laser
pulses.

A method for laser pulse compression by light-bullet exci-
tation in the MCF is proposed and studied. It is shown that
a soliton-like wave packet with an energy greater than the
critical value (W > Wcr) is captured into the central core. This
process is accompanied by a decrease in the duration of the
laser pulse. The formed light bullet has no frequency chirp
and no pedestal. We demonstrate analytically and numerically

that the compression ratio (the ratio of the initial duration to
the output one) as a whole does not depend on the energy and
number of optical fibers and is approximately equal to 5.7.
The use of the initial distributions with much longer durations
and energies higher than the critical energy allows one to
increase the laser pulse compression ratio significantly (up to
30–40 times). Estimates were obtained for the compression
efficiency and the minimum attainable duration of the output
light bullet, as confirmed by the results of the numerical
simulation (Fig. 14).
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