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Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup
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We propose a quantum metrology scheme in a cavity QED setup to achieve the Heisenberg limit. In our
scheme, a series of identical two-level atoms randomly pass through and interact with a dissipative single-mode
cavity. Different from the entanglement-based Heisenberg limit metrology scheme, we do not need to prepare the
atomic entangled states before they enter into the cavity. We show that the initial atomic coherence will induce an
effective driving to the cavity field, whose steady state is an incoherent superposition of orthogonal states, with
the superposition probabilities being dependent on the atom-cavity coupling strength. By measuring the average
photon number of the cavity in the steady state, we demonstrate that the root mean square of the fluctuation of
the atom-cavity coupling strength is proportional to 1/N2

c (Nc is the effective atom number interacting with the
photon in the cavity during its lifetime). It implies that we have achieved the Heisenberg limit in our quantum
metrology process. We also discuss the experimental feasibility of our theoretical proposal. Our findings may
find potential applications in quantum metrology technology.
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I. INTRODUCTION

A highly accurate physical quantity estimation is of great
importance and has pushed forward the development of sci-
ence and technology. In classical physics, the estimation
precision is bounded by the standard quantum limit (also
named the shot-noise limit) with �x ∼ 1/

√
N scaling, where

�x is the fluctuation of the estimated parameter x and N is
the number of resources employed. By use of the quantum
effects, the standard quantum limit can be promoted to the
Heisenberg limit where the precision will achieve �x ∼ 1/N .
The quantum metrology has been widely used in many fields,
such as gravity wave detection [1–3], radar [4], quantum
sensing [5,6], optical imaging [7–9], phase estimation [10,11],
as well as atomic clocks [12,13].

Entangled states are usually utilized to improve the param-
eter estimation accuracy and attain the fundamental Heisen-
berg scaling allowed by quantum mechanics. However, we
have to face two challenges. One challenge is the diffi-
culty in preparing entangled states. For atom or artificial
atom systems, only some few-body entangled states, such
as Bell states, W states, as well as Greenberger-Horne-
Zeilinger states, have been successfully prepared in exper-
iments [14–18]. Motivated by the applications in quantum
communication [19], people have made great efforts to pre-
pare the eight and ten (or even more) photon entangled states
[20–24], but the photon number is still not large enough for
performing quantum metrology. The other challenge is the
unavoidable interaction between the system and the environ-
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ment, which destroys the entanglement and, therefore, limits
the estimation accuracy. To deal with this issue, dynamical
decoupling [5,25], feedback control [26–28], and many other
approaches have been developed. Moreover, non-Markovian
effect is also shown to be effective to maintain entanglement-
induced high measurement precision [29,30]. Most of the
above works focus on how to prepare or protect entangled
states for quantum metrology. In an alternative way, it is
natural to ask how to perform a high-precision parameter
estimation which beats the Heisenberg limit without preparing
entangled states [31].

To address such a problem, we propose a cavity-QED
scheme where a series of two-level atoms randomly pass
through a single-mode cavity [32]. By preparing the atom
with some coherence initially, a recent experiment [33] has
demonstrated the single-atom superradiance effect. That is,
the steady-state average photon number of the cavity is pro-
portional to the square of (but not linearly dependent on) the
number of the effective coupling atoms Nc during the lifetime
of a photon. It motivates us to estimate the physical parameters
(for example, the atom-cavity coupling strength, which is
proportional to the atomic dipole moment) through measuring
the photon number of the cavity field. Our results show that
the quantum metrology with the assistance of superradiance
[34,35] will achieve the Heisenberg limit. Here, we have
regarded the atoms instead of the photons as the prepared
source, but the final measurement is performed on the photons
in the cavity. So, the Heisenberg limit here means that the root-
mean-square fluctuation of the atom-cavity coupling strength
is proportional to 1/N2

c . The advantages of our scheme com-
pared with other proposals are as follows: (I) We do not need
to prepare the atomic entangled states initially before they
enter the cavity. (II) Since we measure the photon number of
the cavity field in the steady state, it is also not necessary to

2469-9926/2019/100(5)/053825(7) 053825-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.053825&domain=pdf&date_stamp=2019-11-12
https://doi.org/10.1103/PhysRevA.100.053825


CHENG, HOU, WANG, AND YI PHYSICAL REVIEW A 100, 053825 (2019)

maintain the atomic entanglement, which is generated by their
coupling to the cavity field.

In our paper, we first obtain the average values of the
operators of the cavity field in its steady state by solving the
effective master equation. Then, we discuss the dependence of
the root mean square of the fluctuation of the atom-cavity cou-
pling strength on Nc. Furthermore, we reconstruct the density
matrix of the steady state for the cavity with the assistance
of the Gaussian state theory [36,37]. We find that the initial
atomic coherence, which induces an effective driving to the
cavity mode, serves as a core factor in our high-precision
quantum metrology scheme. When the coherence is absent,
we show that the steady state of the cavity is a thermal
state with the equilibrium temperature close to zero and the
precision of the parameter estimation will be bounded by the
standard quantum limit. On the contrary, when the atomic
coherence is present, the steady state of the cavity becomes
a displaced thermal state (the details will be shown below)
with a large amount of excited photons which is proportional
to N2

c . More interestingly, the steady state of the cavity can
be described as an incoherent superposition of orthogonal
states, and the superposition probabilities are dependent on
the estimated parameter. Meanwhile, the major component of
the steady state is a coherent state with the average photon
number proportional to N2

c , and it makes an irreplaceable
contribution to the Heisenberg limit in quantum metrology.

The rest of the paper is organized as follows. In Sec. II, we
present our model and derive the master equation. In Sec. III,
we show that the initial atomic coherence will induce an
effective driving to the cavity, which leads to the Heisenberg
limit in the quantum metrology process. In Sec. IV, we discuss
the underlying physics behind the Heisenberg limit. In Sec. V,
we give a short summary. In Appendices A and B, we present
some detailed calculations.

II. MODEL AND MASTER EQUATION

We consider a cavity QED setup as shown in Fig. 1, which
contains a single-mode cavity field of frequency ω and a series
of identical two-level atoms whose energy separation between
the excited-states |e〉 and the ground-states |g〉 are ω0. As
shown in the figure, the two-level atoms are rapidly injected
into the cavity with random time intervals to interact with the
electromagnetic field in the cavity. We assume that the cavity
mode is coupled to each atom within the same time duration
τ , and there is, at most, one atom inside the cavity at any
moment. In this paper, we will consider a simple situation
where the two-level atoms are resonant with the single-mode
cavity, that is, ω = ω0. Then, in the interaction representation,
the coherent coupling between a single two-level atom and
the single-mode cavity field can be described by the Jaynes-
Cummings Hamiltonian (here and after, we set h̄ = 1)

VI = g(âσ+ + â†σ−), (1)

and the evolution operator during the time-interval τ is readily
given by [38]

U (τ ) = cos(gτ
√

ââ†)|e〉〈e| + cos(gτ
√

â†â)|g〉〈g|

− i
sin(gτ

√
ââ†)√

ââ†
â|e〉〈g| − iâ† sin(gτ

√
ââ†)√

ââ†
|g〉〈e|.

(2)

FIG. 1. Schematic of our entanglement-free quantum metrology
model. A series of two-level atoms which are prepared in the same
initial state randomly pass through a single-mode cavity one by one.

Herein, g is the coupling strength between the cavity field and
the two-level atom. â and â†, respectively, are the annihilation
and creation operators of the cavity field and obey the com-
mutation relation [â, â†] = 1. The Pauli operators σ+ and σ−
are defined as σ+ = σ

†
− = |e〉〈g|.

We can denote the atomic injection rate as r, which repre-
sents the average number of atoms injected into the cavity per
unit time interval. Then, r δt (<1 in our consideration) is the
probability that an atom arrives at the cavity during the time
interval δt , whereas 1 − r δt is the probability that there is no
atom in the cavity. In a realistic experimental scheme, the cav-
ity field not only interacts with the injected atom, but also with
the external environment. However, similar to the treatment in
Refs. [32,33], we neglect the effect of the environment when
the atom is inside the cavity by assuming that the duration of
the atom-cavity interaction is much shorter than that between
two adjacent injections. Under such approximation, the time
evolution of the density matrix of the cavity mode ρ̂(t ) in a
time-interval (t, t + δt ) can be expressed as

ρ̂(t + δt ) = (1 − r δt )[ρ̂(t ) + Lρ̂(t )δt] + r δt M(τ )ρ̂(t ),
(3)

where

M(τ )ρ̂(t ) := Tra[Û (τ )ρ̂(t ) ⊗ ρ̂aÛ
†(τ )], (4)

Lρ̂(t ) := κ

2
[2âρ(t )â† − â†âρ(t ) − ρ(t )â†â]. (5)

Here, κ is the decay rate of the cavity mode, ρ̂a is the initial
density matrix of the atom. Tra is the partial trace over the
atom, and we have restricted the temperature to be zero.
Neglecting the second-order terms of δt in the limit of δt → 0,
we obtain the master equation,

˙̂ρ = lim
δt→0

ρ̂(t + δt ) − ρ̂(t )

δt
≈ r[M(τ ) − 1]ρ̂ + Lρ̂. (6)
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III. COHERENCE-INDUCED DRIVING
AND HEISENBERG LIMIT

Similar to the case in the recent coherent superradiance
experiment [33], we prepare all the atoms in the same initial
state, which yields the initial density matrix (in the basis of
{|e〉, |g〉}),

ρ̂a =
(

pe λ

λ∗ pg

)
. (7)

Here, pe and pg, respectively, are the probability for the atom
in its excited and ground states and λ is the coherence of the
two-level atoms. Without loss of generality, we will consider
that λ is real positive in the following parts of this paper.

In the presence of the atomic coherence (λ 
= 0), the master
Eq. (6) can be further reduced by keeping up to the second
order of τ to [32]

˙̂ρ ≈ i[ρ̂, Heff ] + J ρ̂, (8)

where the effective Hamiltonian is

Heff = ξ â† + ξ ∗â with ξ = rgτλ, (9)

and

J ρ̂ = 1
2γ1(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†)

+ 1
2γ2(2âρ̂â† − â†âρ̂ − ρ̂â†â) (10)

is the modified dissipator with γ1 = αpe, γ2 = αpg + κ , and
α = r(gτ )2.

The Hamiltonian in Eq. (9) implies that the initial atomic
coherence actually induces an effective coherent driving to
the single-mode cavity field. This effective driving leads the
steady state to deviate from the thermal state, whose equilib-
rium temperature is close to zero in our consideration (see the
detailed analysis in Sec. IV). Due to the effective driving, the
cavity field will acquire appreciable excitations in the steady
state. Since the intensity of the effective driving and, hence,
the average photon number in the steady state is dependent on
the atom-cavity coupling strength, this model provides us a
path to measure or estimate the atom-cavity coupling strength.

In the current scheme, the single-mode cavity can be
regarded as a driven-dissipation system. The dissipation orig-
inates from the external environments and the diagonal ele-
ments of atomic density matrix and is described by the dissi-
pator in Eq. (10). The driving comes from the off-diagonal
elements of atomic density matrix (the atomic coherence)
and is described by the Hamiltonian Heff in Eq. (9). In what
follows, we will demonstrate that the effective driving plays a
crucial role in achieving the Heisenberg limit in the quantum
metrology.

As shown in Appendix A, under the stead-state condition
˙̂ρ = 0, the average photon number is solved as

〈â†â〉 = γ1

γ2 − γ1
+ 4|ξ |2

(γ2 − γ1)2
. (11)

To demonstrate the effect of the injecting atoms on the steady
state of the cavity, we now define the effective atom number
Nc as

Nc := r

κ
. (12)

FIG. 2. The log-log plot of the root mean square of the fluctua-
tion versus Nc. The parameters are set as τ = 100 ns and pe = 0.5.

We note that r is the atomic injection rate and 1/κ is the
lifetime of the photon in the cavity, therefore, Nc is the
effective atom number which can interact with the photon
during its lifetime. In the parameter regime of

Nc(gτ )2 � 1, (13)

the steady-state photon number is approximated as

〈â†â〉 ≈ Nc(gτ )2 pe + 4N2
c (gτ )2λ2. (14)

It is shown in the above equation that the steady average
photon number is proportional to g2, which implies that the
coupling strength between the atom and the cavity mode
can be detected by measuring the average photon number.
According to the error transfer formula, the root mean square
of the fluctuation �g2 associated with the photon number
measurement can be expressed as [39,40]

�g2 = 〈(â†â)2〉 − 〈â†â〉2

(∂〈â†â〉/∂g)2

≈ 1

4τ 2Nc[pe + 4Ncλ2]
, (15)

where 〈(â†â)2〉 can be obtained by solving the Langevin
equation as shown in Appendix A.

In Fig. 2, we plot the fluctuation �g2 as a function of
Nc on a log-log scale for different λ’s. When the atom is
initially prepared without any coherence, that is, λ = 0, we
will obtain a standard quantum limit �g2 ∼ 1/Nc. As for
the nonzero initial atomic coherence (λ 
= 0), the fluctuation
behaves differently for small and large Nc. We first discuss
the situation for large Nc, which satisfies 4Ncλ

2 � pe. In
this case, the first term in the denominator of Eq. (15) can
be neglected safely, and it yields that �g2 ∼ 1/N2

c , which
implies the Heisenberg limit in quantum metrology. This
can be observed clearly in Fig. 2 where the curves can be
approximated as straight lines for large Nc. Furthermore, the
slope of the line for λ = 0 is about −1 whereas it becomes −2
for λ 
= 0, implying a jump from the standard quantum limit
to the Heisenberg limit with the assistance of the effective
driving. For the case of small Nc in which the first term in

053825-3



CHENG, HOU, WANG, AND YI PHYSICAL REVIEW A 100, 053825 (2019)

the denominator of Eq. (15) is comparable to the second term,
the curves for λ 
= 0 are a bit off the straight lines. It is
meaningless to talk about the Heisenberg limit for such small
Nc. However, the coherence-induced driving still enhances the
estimation accuracy dramatically. Taking Nc = 10 as an exam-
ple, the estimate precision is enhanced by about 9(23) times
for λ = 0.3(0.5) compared with that for λ = 0. Note that, in
the recent experiment which demonstrates the single-particle
superradiance [33], the value of Nc has been achieved by 7.3.
This means that the enhancement in quantum metrology by
the atomic coherence can be observed experimentally and will
be more significant for large Nc, which yields the Heisenberg
limit.

IV. DISCUSSION

As demonstrated above, the initial atomic coherence will
effectively drive the cavity field and, thus, is beneficial for
achieving the Heisenberg limit in quantum metrology. Our
scheme differs from most of the traditional quantum precision
measurement schemes in the following two aspects. First,
people usually prepared the entangled states for the employed
source before parametrization (the parametrization is usually
implemented through the dynamical evolution process) to
achieve a higher parameter estimation accuracy, for example,
the Heisenberg limit [10,41,42]. In our scheme, the atoms
only possess some coherence initially, but preparing the initial
entangled states is not necessary. Second, in the traditional
schemes, the states of the sources themselves (for example,
the atoms or photons in the interferometer) are measured
after parametrization. In our scheme, we have considered the
injected atoms as the source, and the final measurement is per-
formed on the photons of the cavity field. In such a situation,
it is plausible to investigate the characterization of the steady
state of the cavity and discuss the experimental feasibility.

A. Characterization of the steady state

Remember that the dynamical behavior of the cavity field
is governed by the effective Hamiltonian with a quadratic
form [note that the dissipators in Eq. (10) can be obtained
by regarding the cavity field to interact with the environ-
ments via a quadratic Hamiltonian], the steady state yields a
Gaussian state. After some detailed calculations as shown in
Appendix B, the density matrix of the steady state is expressed
as

ρ̂ = D̂(α0)ρ̂T D̂†(α0), (16)

where

α0 = −2iNcλgτ, (17)

and

D̂(α0) = exp(α0â† − α∗
0 â) (18)

is the displace operator. ρ̂T is the thermal state,

ρ̂T = 1 + Nc(gτ )2(1 − 2pe)

1 + Nc(gτ )2(1 − pe)

×
∑
n=0

{[
Nc(gτ )2 pe

1 + Nc(gτ )2(1 − pe)

]n

|n〉〈n|
}
, (19)

with |n〉 being the Fock state of the cavity field with n photons.
Similar to the previous discussion, we keep up to the first order
of Nc(gτ )2, it yields

ρ̂T ≈ [1 − peNc(gτ )2]|0〉〈0| + peNc(gτ )2|1〉〈1|. (20)

When all of the atoms are prepared in the mixed state
with λ = 0, the cavity is equivalently immersed in a thermal
reservoir, and the effective driving disappears in that ξ = 0 in
Eq. (9). In this case, the steady state is the thermal equilibrium
state, whose density matrix is expressed in Eq. (20). It is noted
that the average photon number in the above thermal state
is 〈â†â〉 = peNc(gτ )2, which is very small in our considered
parameter regime. In other words, the cavity field will reach a
thermal equilibrium state of nearly zero temperature when the
atomic initial coherence is absent.

However, when the atoms possess some coherence initially,
an effective driving field with intensity ξ coexists with the
reservoir. As a result, we find an extra displacement on the
thermal state, the amplitude of the displacement α0 is pro-
portional to the initial atomic coherence λ. Subsequently, the
steady state will possess appreciable excitations. In the above
discussions, we have named the state given by Eq. (16) as the
displaced thermal state.

In a recent investigation of the single-atom superradiance
[33], the authors kept up to the first order of gτ so that ρ̂T ≈
|0〉〈0| and the steady state was predicted to be the coherent
state ρ̂ ≈ D̂(α0)|0〉〈0|D̂†(α0) = |α0〉〈α0|. However, in all of
our previous calculations, we have always kept to the first
order of Nc(gτ )2, it leads to the steady state,

ρ̂ ≈ [1 − peNc(gτ )2]|α0〉〈α0|+peNc(gτ )2D̂(α0)|1〉〈1|D̂†(α0),

(21)

It is clear that the steady state is an incoherent super-
position of two orthogonal states |ψ1〉 = |α0〉 and |ψ2〉 =
D̂(α0)|1〉 with the superposition probabilities p1 = 1 − x and
p2 = x, respectively, where x = peNc(gτ )2 � 1 in our con-
sideration. Then, the average photon number in Eq. (14) is
reexpressed as

〈â†â〉 = (1 − x)〈ψ1|â†â|ψ1〉 + x〈ψ2|â†â|ψ2〉, (22)

which is a weight summation of the average photon number
in the two steady-state components. Now, let us discuss the
property of the fluctuation. The fluctuation for state |ψn〉 is

�g2
n = 〈ψn|â†ââ†â|ψn〉 − 〈ψn|â†â|ψn〉2

(∂〈ψn|â†â|ψn〉/∂g)2

= 2n − 1

16N2
c τ 2λ2

(23)

for n = 1, 2. We emphasize that �g2
1 ≈ �g2 [�g2 is obtained

in Eq. (15)] in the condition of Nc � 1. That is, the coherent-
state component in the steady state makes a dominant contri-
bution to the Heisenberg limit in quantum metrology.

Meanwhile, it is obvious that �g2 
= (1 − x)�g2
1 + x �g2

2.
The reasons come from two aspects. One is the fact that
〈â†â〉2 
= 〈ψ1|â†â|ψ1〉2 + 〈ψ2|â†â|ψ2〉2. The more interesting
reason comes from the dependence of x on the estimated
parameter g, which may play an important role in reaching
the Heisenberg limit. To clarify this point, we just assume a
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quantum state given by the density matrix,

ρ̂ ′ = (1 − y)|α0〉〈α0| + yD̂(α0)|1〉〈1|D̂†(α0), (24)

which is an incoherent superposition state of |α0〉 and
D̂(α0)|1〉 with y being independent of the estimated parameter
g. Then, the fluctuation is obtained as

δ2g′ = (2y + 1)

16N2
c τ 2λ2

+ (y − y2)

64N4
c g2τ 4λ4

. (25)

In the limit of large Nc, it will reach the Heisenberg limit when
y is also independent of Nc and reach the standard quantum
limit when y is linearly dependent on Nc. Therefore, the
dependence of the incoherence superposition probabilities for
different components on the estimated parameter also plays an
important role in a general quantum metrology process, and
we will leave the more systematic investigations to the future
work.

B. Experimental feasibility

At last, it is instructive to outline the working parameter
regime in our scheme. From Eq. (15), we note that the
relative error satisfies �g/g ∼ 1/(Ncgτ ) when Nc � 1 and
λ = 1/2. For the realistic experimental scheme, both of the
two following conditions must be satisfied.

(1) A measurement process is only valid when the value of
the fluctuation is much smaller than the measured value itself,
that is, �g/g � 1, which leads to the condition,

1

Ncτ
� g. (26)

(2) In our above discussions, we have imposed a strong
limitation that there is, at most, one atom in the cavity at any
moment so that the time interval between two neighboring
atom injections should be much longer than the atom-cavity
interaction time, that is, 1/r ≡ 1/(Ncκ ) � τ , which then
yields

κ � 1

Ncτ
. (27)

Combining the two conditions in Eqs. (26) and (27), it nat-
urally requires κ � g, which is actually inside the strong-
coupling regime in the cavity-QED setup. Since the strong
coupling in natural atom systems [43–45] and the ultrastrong
and deep-strong couplings in quantum circuit systems have
both been realized [46,47], we believe our high-precision
measurement scheme based on coherence-induced driving can
be performed in the foreseeing experiments.

It should be noted that, in the recent single-atom superra-
diance experiment [33], the atom is prepared in the coherent
superposition state |φ〉a = sin(θ/2)|e〉 + cos(θ/2) exp(iφ)|g〉,
where θ is the mixing angle and φ is the atomic phase
imprinted by the pump laser. This phase is introduced to
guarantee the sufficient interaction between the atom and
the cavity field. In our theoretical studies, we have as-
sumed the phase to be zero so that pe = sin2(θ/2), pg =
cos2(θ/2), λ = sin(θ )/2. When the mixing angle is tuned
to be θ = π/2, the initial coherence achieves its maximum
value, which will induce a strong effective driving to the

cavity field and, hence, enhance the Heisenberg limit quantum
metrology.

V. CONCLUSION

In conclusion, we have demonstrated a quantum metrol-
ogy scheme to beat the Heisenberg limit in a cavity-QED
setup. Unlike previous schemes, the entangled states of the
employed atoms are not required initially before they enter
the cavity, and hence, our scheme is simple and robust to the
environment. In this scheme, the two-level atoms which serve
as the source are randomly injected into the leaky single-mode
cavity one by one, and the steady-state average photon number
of the cavity is measured. The effective coherent driving
to the cavity field, which is induced by the initially atomic
coherence, results in a displaced thermal state as the steady
state. Benefiting from the large average photon number, which
is proportional to N2

c , in the steady state, we can perform
a high-precision measurement on the atom-field coupling
strength, and the precision can achieve the Heisenberg limit.

At last, we point out that the steady state of the atom-
cavity system is actually an entangled state. On one hand,
the interaction between the atom and the cavity field will
undoubtedly induce their entanglement. On the other hand, the
cavity field as a data bus will also indirectly induce the entan-
glement between different atoms. However, the advantage of
our scheme compared with those in Refs. [34,35] is that only
the steady state of the cavity counterpart is measured, so the
preparation (maintaining) of the atomic entanglement before
(after) they interact with the cavity field is not required. We
hope the proposed scheme without entangled states prepara-
tion and protection based on the recent experiment [33] will
stimulate further studies in quantum information processing
and quantum metrology.
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APPENDIX A: STEADY-STATE AVERAGE VALUES

In Eq. (8), we have obtained the master equation of the
system. Here, we give the derivation process of Eqs. (15)
through the dynamical equations of the average values. With
the formula 〈Ô〉 = Tr(ρ̂Ô), where ρ̂ is the density matrix and
Ô is an arbitrary operator, we will have

Ȧ = MA + B, (A1)

where

A = [〈(â†â)2〉, 〈â†ââ†〉, 〈ââ†â〉, 〈â†2〉,
〈â†â〉, 〈â2〉, 〈â†〉, 〈â〉]T ,

B = (γ1, iξ ∗,−iξ, 0, γ1, 0, iξ ∗,−iξ )T , (A2)
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and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2δ −2iξ 2iξ ∗ 0 s1 0 iξ −iξ ∗

0 3δ
2 0 −iξ 2iξ ∗ 0 s2 0

0 0 3δ
2 0 −2iξ −iξ ∗ 0 s2

0 0 0 δ 0 0 2iξ ∗ 0
0 0 0 0 δ 0 −iξ iξ ∗
0 0 0 0 0 δ 0 −2iξ
0 0 0 0 0 0 δ

2 0
0 0 0 0 0 0 0 δ

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A3)
with δ = γ1 − γ2, s1 = 3γ1 + γ2, s2 = γ1 + γ2.

The steady-state solution of MA + B = 0 gives the average
values as

〈â〉 = 2iξ

γ1 − γ2
, (A4a)

〈â2〉 = −4ξ 2

(γ1 − γ2)2
, (A4b)

〈â†â〉 = γ1

γ2 − γ1
+ 4|ξ |2

(γ2 − γ1)2
, (A4c)

and

〈(â†â)2〉 = γ1(γ1 + γ2)

(γ1 − γ2)2
− 4(3γ1 + γ2)|ξ |2

(γ1 − γ2)3
+ 16|ξ |4

(γ2 − γ1)4
.

(A5)

Under the condition of Nc(gτ )2 � 1, we will obtain
Eq. (15).

APPENDIX B: GAUSSIAN STEADY STATE

In the above discussions, we have mentioned that the dy-
namics of the system is governed by a quadratic Hamiltonian,
which means the single-mode cavity field will experience a

Gaussian channel [36]. Therefore, the steady state is undoubt-
edly a Gaussian state. According to the results in Ref. [37], the
Gaussian state of a single-mode bosonic field (denoted by the
annihilation and creation operators â and â†) with frequency
ω can be written as

ρ̂ = D̂(z0)Û0(r, θ, θ1)ρ̂0Û
†
0 (r, θ, θ1)D̂†(z0), (B1)

where ρ̂0 = 2 sinh(βT /2) exp[−βT (â†â + 1/2)] is the ther-
mal equilibrium state with the effective temperature βT =
ω/kBT (note that h̄ has been set to be 1), where kB is the
Boltzmann constant. The operator D̂(z0) is defined in Eq. (18)
and

Û0(r0, θ0, θ1) = exp
[
− r0

2
exp(iθ0)â†2 + H.c.

]
exp(−iθ1a†a),

(B2)
with r0 � 0, −π < (θ0, θ1) � π . The values of z0, r0, θ0,
and θ1 can be determined by the first- and second-order
moments of the field operators â and â† as

〈â〉 = z0, 〈â2〉 = −2μ∗
A + z2

0, 〈â†â〉 = τ0 − 1
2 + |z0|2,

(B3)

and μA = Q
4 sinh(x0) exp(−iθ0), τ0 = Q

2 cosh(x0). The newly
introduced parameters are defined as x0 := 2r0, Q :=
coth(βT /2).

Comparing with the steady-state average values given by
Eqs. (A4) in our system, we will obtain

r0 = 0, Q = 1 + peNc(gτ )2

1 + (1 − 2pe)Nc(gτ )2
, z0 = α0,

(B4)
and the values of θ0 and θ1 which do not affect the results can
be taken as arbitrary real numbers. At last, we will obtain the
steady state in Eq. (16).
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