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Coherent coupling between the motional fluctuation of a mirror and a trapped ion
inside an optical cavity: Memory, state transfer, and entanglement
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We show how the motional fluctuations of two systems of very different sizes—a trapped ion and a mirror—
can be coupled coherently, via their common interaction with an optical cavity. Specifically, we show that the
fluctuations can be transferred from one system to the other by using pulsed excitation of the cavity mode, and
vibrational fluctuations can exhibit entanglement in steady state. We numerically display a sudden death of this
entanglement at certain pulse parameters and ambient equilibrium temperature. More interestingly, the state of
the driving pulse can also be coherently mapped, in a selective way, into the vibrational mode of the trapped
ion or the mirror, which acts as a quantum memory for the optical pulse. We further present a detailed analysis
to show that it is also possible to map the state of the pulse into a binomial entangled state of its vibrational
fluctuations. We finally investigate how to sympathetically cool the mirror by cooling the ionic vibration, thanks
to an effective coupling between the two modes.
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I. INTRODUCTION

In recent times, there has been a major thrust in research
on cavity optomechanics. It is posed as a suitable platform
to study the interaction of a microscopic system (the elec-
tromagnetic field inside a cavity) with a mesoscopic one
(a nanometer-sized oscillating mirror of the cavity), with a
nontrivial coupling.

The optomechanical coupling, that arises from the radia-
tion pressure force exerted by the cavity field on the mirror,
can lead to exchange of quantum states from one system to the
other, and also to entanglement between them [1,2]. The state
of the cavity field can be coherently transferred, stored, and re-
trieved from the mirror in an optomechanical setup [3,4]. The
mirror can also be used as a switch to control the state transfer
between the two cavity modes in a dual-cavity optomechani-
cal system [5] and the cavity mode can also mediate swapping
of states between two mirror modes with high efficiency [6].
On the other hand, a movable mirror can be entangled with the
cavity mode [7] and the cavity output field [8]. Entanglement
in the two-mode driving field can be mapped into two mirrors
[9], which can be further enhanced by squeezed light [10–12].
Two mirrors can be entangled in a ring cavity by cooling the
mirrors using a phase-sensitive feedback loop [13]. Recently,
entanglement between two mechanical oscillators of different
frequencies has been experimentally demonstrated [14,15].
Further studies on entanglement between two mirrors can be
found in [16–18].

Note that it is demonstrated, in the context of quantum
computing, that a trapped ion can also strongly interact with
the cavity mode [19,20]. Such an interaction can lead to
various quantum effects, namely, transfer of several classes of
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states of photons, squeezing of the motional state of the ion,
and the ion-cavity entanglement [21,22]. Even the motional
state of one atom can be transferred to another atom in a
two-cavity system [23].

While an ion, an atom, or a mirror can directly couple to
a cavity mode, an oscillating mirror does not directly couple
to an ion or an atom. In a hybrid cavity optomechanical
setup [1], this, however, could be possible via their common
coupling to the cavity mode. This idea is quite interesting from
the fundamental aspect: one is able to couple a microscopic
system (i.e., an ion or an atom) with a mesoscopic mirror (of
the size of a few nanometers or more). This leads to coherent
control of motion of one system by that of the other. In
[24,25], the possibility of strong motional coupling between
an atom and a mirror has been explored in a two-mode cavity
in a membrane-in-the-middle setup. The authors have shown
that it is possible to obtain a linear coupling between them by
suitably choosing the location of the atom inside the cavity
(see also [26]) and thereby to dynamically transfer quadrature
squeezed states from the atom to the mirror. On the other hand,
in this paper, we use an optomechanical setup with an ion
trapped in a cavity with one oscillating mirror at the end of
the cavity, in which the linear coupling between the cavity
mode and the mirror is most dominant. Note that the trapping
mechanism of an ion would be very different from that for
an atom. For example, in [24,25], the atom is trapped in an
optical lattice inside a two-mode cavity driven by two lasers
of different frequencies, while these lasers drive the atomic
transitions as well. In the present case, the ion is trapped by
an external Paul trap, within the Lamb-Dicke limit, while the
cavity mode is driven by a separate laser (see, e.g., [27]).
The center-of-mass motion of the ion near the center of the
Paul trap can be modeled as a quantum harmonic oscillation.
Clearly, the coupling mechanism between the motional de-
grees of freedom of an ion and that of an oscillator is quite
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different from that between the motional degrees of freedom
for an atom and an oscillator. In any case, such a coupling
is very weak. Here we show how one can indeed achieve
strong coupling in motional degrees of freedom between a
single ion (instead of an atom) and a mirror. This leads to a
coherent transfer of average fluctuation energy between them,
in steady state, unlike in [24,25]. We further investigate the
preparation of steady-state entanglement and analyze how to
realize a quantum memory of an optical pulse in such a setup.

Note that several authors have suggested how to couple
an atomic ensemble with the vibrational mode of a mirror
[28–31], to achieve cooling of spins, squeezing of light,
and electromagnetically induced transparency. In [28], it was
shown that these two systems can be prepared in an entan-
gled state, via a quantum nondemolition measurement. Such
entanglement can also be generated in steady state [32,33].
We emphasize that our result differs from [28–30,32,33] in
which it is the collective spin of the atoms, and not their
vibration, that couples to the mirror mode, while in [31,34,35]
the collective motion of the ensemble (not of a single atom)
couples to the mirror.

The sympathetic cooling has been used to cool the ion
plasma, proteins, and Bose condensates of rubidium with the
assistance of cooled atoms and ions [36–38]. In sideband
cooling of the mirror, the linewidth of the cavity resonator
should be small as compared to the mirror frequency and
the frequency of the cavity driving field is so chosen that
the corresponding detuning becomes equal to the frequency
of the mirror (the so-called red sideband) [39]. Sympathetic
cooling of the mirror, on the other hand, using a suitably
cooled atomic ensemble [40,41], does not require any specific
constraint on the linewidth and the detuning of the cavity
mode [34]. Moreover, a temperature of the order of a few
hundred micro-Kelvin degrees has been reported [42,43]. In
[44], the atoms are embedded in the mirror and cooling is
obtained both in resolved and unresolved sidebands. In this
paper, we investigate the possibility of sympathetic cooling of
a mirror via the interaction with a trapped ion.

Specifically speaking, we study the dynamics of fluctu-
ations of the vibrational mode of the ion and that of the
mirror. We show that by using a pulsed excitation of the
cavity mode average energy of fluctuation of the mirror can
be deterministically transferred to the ion at the steady state,
in presence of damping. We also show that the mirror can be
sympathetically cooled by the ionic vibration at the steady
state. Such a state transfer or cooling does not require the
atom to be prepared in a specific state, namely, the squeezed
state or Fock state, unlike in [24,25]. We further show that
these vibrational modes can be entangled at steady state by
suitably tuning the pulse parameters. Note that this is unlike
in [24,25], in which the entanglement between an atom and
the mirror changes dynamically with time. More interestingly,
we show how the state of an input pulse can be selectively
stored into the fluctuation states of the vibrational mode of
the ion or of the mirror, which thereby pose as a quantum
memory of an optical pulse. Note that the decay rates of
the vibrational modes are negligibly smaller than that of the
optical mode involved, thereby qualifying these vibrational
modes as suitable memory. The vibrational fluctuations of the
mirror and the ion can also be prepared in a certain class of

FIG. 1. Schematic diagram depicting a trapped ion inside the
cavity optomechanical system.

entangled state, namely, the binomial state, while the cavity
mode remains factorized.

The paper is organized as follows. In Sec. II, we describe
our model with the relevant Hamiltonian. In Sec. III, we obtain
an effective Hamiltonian to describe the coupling between
the ion and the mirror. We show in Sec. IV how to gener-
ate entanglement between them in the bad-cavity limit, by
suitable pulse shaping. The details of quantum memory of
the input pulse are also described in this section. Next, in
Sec. V, we discuss how to achieve the deterministic transfer
of fluctuation energy between the relevant vibrational modes.
The entanglement between them is analyzed in Sec. VI. In
Sec. VII, we have investigated the possibility of cooling the
mirror, by cooling the ion. In Sec. VIII, we conclude our
paper.

II. MODEL

We consider a single ion of mass m trapped inside an
optical cavity with a resonance frequency of ωa (Fig. 1). One
of the cavity mirrors oscillates at a fundamental frequency
ωm, while the other mirror remains fixed. It is assumed that
the dipole moment of the two lowest-lying electronic energy
states of the ion couples to the cavity mode, so that the ion
can be considered as an electronic qubit with a transition
frequency ωel. This coupling g(xv ) depends upon the dis-
placement xv of the ion from its equilibrium position inside
the cavity, as g(xv ) = g0 cos(ηxv ), where g0 is the coupling
parameter proportional to ion cavity field interaction strength.
Here η = k(�x) is the Lamb-Dicke parameter with k as the
wave number for the electronic transition of the ion and �x =√

h̄
2mωv

as the position uncertainty of the ion in its ground

vibrational state in the harmonic potential limit (ωv as the
fundamental vibrational frequency of the ion). The dynamics
of the entire system is therefore governed by the following
Hamiltonian (with h̄ = 1):

H = H0 + Hm + Hc,

H0 = ωaa†a + ωmb†
mbm + ωvb†

vbv + ωelσz,

Hm = −g1a†a(bm + b†
m),

Hc = g(x̂v )(a†σ− + σ+a), (1)

where H0 represents the unperturbed Hamiltonian, and Hm

and Hc describe the interaction of the cavity mode with the
oscillating mirror and the ion, respectively. Here a (bm) is
the annihilation operator for the cavity mode (the mode of
oscillation of the mirror). The term g1 denotes the strength

053822-2



COHERENT COUPLING BETWEEN THE MOTIONAL … PHYSICAL REVIEW A 100, 053822 (2019)

of the optomechanical coupling between the cavity mode and
the oscillating mirror. The operators σ± and σz are usual Pauli
spin operators. Note that we have replaced xv by the relevant
displacement operator x̂v = (bv + b†

v )/
√

2, where bv is the
annihilation operator for the vibrational mode of the ion.

We further drive the cavity with a laser field of frequency
ωp. The corresponding coupling strength � can be written in

terms of the power P of this field as � =
√

2γaP
h̄ωp

, where γa is

the decay rate of the cavity. This interaction can be described
by the following Hamiltonian:

Hp = �(a†e−iωpt + H.c.). (2)

In the rotating frame of the laser frequency, the total
Hamiltonian H + Hp takes the following form:

Htot = �aa†a + ωmb†
mbm + ωvb†

vbv + �elσz

− g1a†a(bm + b†
m) + g(x̂v )(a†σ− + σ+a)

+�(a† + H.c.), (3)

where �a = ωa − ωp and �el = ωel − ωp are the detunings
of the cavity mode and the electronic transition of the ion,
respectively, with the driving field.

III. EFFECTIVE COUPLING BETWEEN THE MIRROR
AND THE IONIC VIBRATION

We will work in the regime where the detuning of the elec-
tronic transition of the ion with the laser determines the fastest
timescale such that |�el| � |�a|. Further we consider that the
decay rates γel, γa, γm, and γv of the electronic excited state
of the ion, the cavity mode, the mirror, and the vibrational
mode of the ion, respectively, are much smaller than |�el|. In
this limit, the probability that the ion will be prepared in the
electronic excited state is negligible and, therefore, one can
adiabatically eliminate the electronic degree of freedom of the
ion from the dynamics. This refers to the approximation σ̇+ ≈
0. Using the Heisenberg equation for σ+, one obtains σ+ ≈
( g(x̂v )a†

�el
). Note that in the limit |�el| � |�a| the excitation

of the electronic state of the ion will be very small. So the
scattering due to spontaneous emission can be neglected in
the limit of �el � γel [45,46]. Replacing σ± with the above
expressions in the Hamiltonian Htot , we obtain the following
reduced form of the Hamiltonian:

H = �a†a + ωmb†
mbm + ωvb†

vbv

−g1a†a(bm + b†
m) + �(a† + H.c.), (4)

where � = (�a + g2(x̂v )
�el

). From the above Hamiltonian, the
Langevin equations for the relevant operators can be obtained
as

ȧ = −(γa + i�)a + ig1a(bm + b†
m) − i� +

√
2γaain,

ḃm = −(γm + iωm)bm + ig1a†a +
√

2γmbin
m, (5)

ḃv = −(γv + iωv )bv + i
g2(x̂v )√

2
a†a +

√
2γvbin

v ,

where g2(x̂v ) = ηg2
0 sin(2ηx̂v )

�el
, obtained using the commutation

property [bv, f (x̂v )] = h̄√
2

f ′(x̂v ) for any function f and its
derivative with respect to x̂v [47]. Here the corresponding

noise operators ain and bin
l (l ∈ m, v) in the above equations

satisfy the following correlations [48]:

〈a†
in(t )ain(t ′)〉 = 0,

〈ain(t )a†
in(t ′)〉 = δ(t − t ′),〈

bin†
l (t )bin

l (t ′)
〉 = nlδ(t − t ′),〈

bin
l (t )bin†

l (t ′)
〉 = (nl + 1)δ(t − t ′), (6)

where nl = {exp [h̄ωl/(kBT )] − 1}−1 is the mean excitation at
the lth subsystem (l ∈ m, v) at an equilibrium temperature T
and kB is the Boltzmann constant.

This Hamiltonian is nonlinear in the cavity mode operators
a, as evident from the term proportional to g1. In order to
study the dynamics of the optomechanical system, we use
the standard linearization procedure [1,32]. We expand the
operators a, bm, and bv as a sum of their respective means
and the fluctuation operators as follows: a → α + δa, bm →
βm + δbm, and bv → βv + δbv , in the limit of large values of
the means, i.e., |α| � 1 and |βm,v| � 1. The time dependence
of these means is governed by the following equations, as
obtained from Eqs. (5):

α̇ = −(γa + i�′)α − i�,

β̇m = −(γm + iωm)βm + ig1|α|2, (7)

β̇v = −(γv + iωv )βv + ig2(x̄v )|α|2,
where g2(x̄v ) is calculated at the equilibrium
position x̄v = (βv + β∗

v )/
√

2 of the ion. Here �′ =
(�a − g1(β∗

m + βm) + g2(x̄v )
�el

) represents the modified cavity
detuning, as the cavity resonance frequency is shifted due to
the motion of the ion and the mirror [49]. At the steady state,
Eqs. (7) can be solved, using α̇, β̇m, β̇v = 0. The steady-state
values of the means can thereby be obtained as

α = �

−�′ + iγa
, βm = g1|α|2

ωm − iγm
, βv = g2(x̄v )|α|2

ωv − iγv

.

(8)
Similarly, the fluctuation operators evolve according to the

following Langevin equations:

δ̇a = −(γa + i�′)δa + ig1α(δbm + δb†
m)

+ i
g2(x̄v )√

2
α(δbv + δb†

v ) +
√

2γaain, (9)

˙δbm = −(γm + iωm)δbm + ig1α(δa† + δa) +
√

2γmbin
m,

(10)

˙δbv = −(γv + iω′
v )δbv + i

g2(x̄v )√
2

α(δa† + δa) +
√

2γvbin
v ,

(11)

where ω′
v = ωv + g2(x̄v )|α|2 is the shifted resonance fre-

quency of the vibrational mode. Here we have made use of the
following Taylor expansion of g2(x̂v ) about the steady-state
position x̄v:

g2(x̂v ) = g2
0 cos2(ηx̄v ) − ηg2

0 sin(2ηx̄v )δxv, (12)

where δxv = (δbv + δb†
v )/

√
2. We have considered only up to

the first order in η in the Lamb-Dicke limit η � 1.
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Clearly, the above set of Langevin’s equations (9)–(11) can
be derived from the following Hamiltonian:

H = �′δa†δa + ωmδb†
mδbm + ω′

vδb†
vδbv

− Gm(δa† + δa)(δbm + δb†
m)

− Gv (δa† + δa)(δbv + δb†
v ), (13)

where Gm = g1α and Gv = g2α/
√

2 = ηg2
0 sin(2ηx̄v )α√

2�el
. This in-

dicates that two vibrational modes bm and bv couple with
each other through the cavity mode, with a coupling constant
proportional to the mean photon number |α|2 inside the cavity.

Stability analysis

From Eq. (8), we derive the following nonlinear equation
for mean photon numbers |α|2 in the cavity in the steady state:

(
−�a + 2ωmg2

1|α|2
ω2

m + γ 2
m

− g2(x̄v )

�el

)2

|α|2 + γ 2
a |α|2 = �2. (14)

To study the bistable behavior, we should have ∂|�|2
∂|α|2 = 0.

From the above equation we have

3

(
2ωmg2

1

ω2
m + γ 2

m

)2

|α|4 +
[(

�a + g2(x̄v )

�el

)2

+ γ 2
a

]

− 4

(
�a + g2(x̄v )

�el

)
2ωmg2

1

ω2
m + γ 2

m

|α|2 = 0. (15)

The above equation is quadratic in |α|2 and will have two
distinct roots when the discriminant is positive, i.e., when

4

(
2ωmg2

1

ω2
m + γ 2

m

)2
[(

�a + g2(x̄v )

�el

)2

− 3γ 2
a

]
> 0. (16)

Clearly, a trivial solution for stability corresponds to the
absence of the optomechanical coupling. For nonzero op-
tomechanical coupling, the condition for obtaining bistable
behavior of the system can be written as[(

�a + g2(x̄v )

�el

)2

− 3γ 2
a

]
> 0. (17)

We can control the bistability behavior by changing the power
of the input laser field, the cavity-laser detuning, and the laser-
ion detuning. In Figs. 2 and 3 we show how |α|2 varies with
the power of the driving laser and the detuning of the cavity
mode with the driving laser, respectively. This clearly displays
a parameter region for which the dynamics becomes unstable.
In this paper, we choose a set of parameters so that we avoid
such an unstable region.

IV. SELECTIVE EXCITATION OF THE MIRROR AND THE
ION: QUANTUM MEMORY OF THE OPTICAL PULSE

Next, we will describe how one can selectively excite the
mirror or the ionic vibration. We will also describe a possible
strategy to transfer fluctuation energy between the mirror and
the ionic vibration, mediated by the cavity.

FIG. 2. The variation of the number |α|2 of photons in the
cavity with respect to the power P of the laser field. The
parameters chosen are ωm = 2π × 10 MHz, ωp/ωm = 351.3 ×
106, �a/ωm = ωv/ωm = 1, g1/ωm = 125 × 10−6, g/ωm = 0.14,
γv/ωm = 0.001, γm/ωm = 0.00001, γel/ωm = 1.12, and g2 (x̄v )

�el
/ωm =

0.02. The dashed portions of the plots represent the unstable regions.

We first start with Eq. (9). In the rotating frame with respect
to �′, ωm, ω′

v , this equation can be rewritten as

δ ˙̃a = −γaδã + iGm(δb̃me−iωmt + H.c.)ei�′t

+ iGv (δb̃ve−iω′
vt + H.c.)ei�′t +

√
2γaainei�′t , (18)

where δã = δaei�′t , δb̃m = δbmeiωmt , and δb̃v = δbveiω′
vt . In-

tegrating the above equation and using the rotating wave
approximation at resonance �′ = ωm = ω′

v , we obtain the

FIG. 3. The variation of the number |α|2 of photons in the cavity
with respect to the detuning �a of the cavity with the laser field. We
choose the power of the driving laser as P = 10 mW, while the other
parameters are the same as in Fig. 2. The dashed portions of the plots
represent the unstable regions.
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following equation:

δã(t ) = iGm

γa
δb̃m + iGv

γa
δb̃v

+
√

2γae−γat
∫ t

t0

eγat ′
ãin(t ′)dt ′, (19)

where ãin(t ′) = ain(t ′)ei�′t ′
, t0 denotes the initialized time, and

we have used the bad-cavity limit γa � Gm, Gv . This refers
to a timescale during which δã decays much faster than the
fluctuation terms δb̃m and δb̃v evolve. Therefore, the cavity
mode fluctuation adiabatically follows the evolution of δb̃m

and δb̃v . Similar approximation can be taken for the input
noise ãin, so that ãin(t ′) can be replaced by ãin(t ) and we obtain
the following form δã in terms of the filtered noise ãin(t ):

δã(t ) = iGm

γa
δb̃m + iGv

γa
δb̃v +

√
2√
γa

ãin(t ). (20)

Equations (10) and (11) can also be rewritten in the rotating
frame, using the rotating wave approximation, as follows:

δ ˙̃bm = −γmδb̃m + iGmδã +
√

2γm b̃in
m,

δ ˙̃bv = −γvδb̃v + iGvδã +
√

2γv b̃in
v , (21)

where b̃in
m = bin

meiωmt and b̃in
v = bin

v eiωvt . Next replacing δã us-
ing Eq. (20) in the above equations, we have

δ ˙̃bm = −γ ′
mδb̃m − Cmvδb̃v + iGm

√
2√
γa

ãin(t ) +
√

2γm b̃in
m,

(22)

δ ˙̃bv = −γ ′
vδb̃v − Cmvδb̃m + iGv

√
2√
γa

ãin(t ) +
√

2γv b̃in
v ,

(23)

where γ ′
m = γm + G2

m/γa and γ ′
v = γv + G2

v/γa are the re-
spective modified decay rates of the vibrational modes of the
mirror and the ion, modified due to their common coupling to
the cavity mode fluctuation. Here Cmv = GmGv/γa represents
the cavity mode mediated effective coupling strength between
the mirror mode and the ionic vibration.

We next integrate Eq. (22) to a time Tm � 1/γ ′
m, such that

δb̃m(Tm) = −Cmv

∫ Tm

t0

eγ ′
m (t−Tm )δb̃v (t )dt

+ iGm

√
2√
γa

∫ Tm

t0

eγ ′
m (t−Tm )ãin(t )dt

+
√

2γm

∫ Tm

t0

eγ ′
m (t−Tm )b̃in

m(t )dt . (24)

We here introduce a time-integrated annihilation operator Am
in

[50], which is a weighted sum of all time-local noise operators
ãin(t ), as given by

Am
in = 1

N

[
iGm

√
2√
γa

] ∫ Tm

t0

eγ ′
mt ãin(t )dt, (25)

where N is a normalization factor. This satisfies the
usual commutation relation [Am

in, Am†
in ] = 1, while N =

[Gm/γa]
√

(γa/γ ′
m)[exp(2γ ′

mTm) − 1]. Here we have consid-
ered the noise operators to be delta correlated in the time
domain. In this way, the operator Am

in can be interpreted as an
annihilator operator of a pulse that exists for a time interval
[t0, Tm].

Therefore we can rewrite Eq. (24) in the limit γ ′
mTm � 1 as

δb̃m(Tm) + Cmv

γ ′
m

δb̃v (Tm)

= Gm√
γ ′

mγ 2
a

Am
in(Tm) + √

γm/γ ′
mBm

in(Tm), (26)

where

Bm
in(Tm) =

√
2γ ′

m

e2γ ′
mTm − 1

∫ Tm

t0

eγ ′
mt b̃in

m(t )dt (27)

is the annihilation operator for structured noise of the mirror
mode. Similar solution of the form of Eq. (26) (with m
replaced by v) can be obtained for Eq. (23) in the limit
γ ′

vTv � 1.
The above solution (26) suggests that for a suitably time-

structured input Am
in (in which the input noises at different

times add up with a weight factor eγ ′
mt to make the input pulse)

can be mapped into the fluctuation mode δb̃m at the long-time
limit Tm � 1/γ ′

m, if Cmv � γ ′
m. Similarly, if the input field is

structured in terms of the weight factor eγ ′
vt , the input pulse

could be mapped into the mode δb̃v at the steady-state limit
Tv � 1/γ ′

v , if Cmv � γ ′
v . This clearly implies that if an input

pulse is suitably shaped its state can be selectively mapped
into the fluctuation of either the mirror or the ionic vibration at
a timescale much longer than that of the relevant decay. Thus
such state transfer is not affected by the decay of the mirror
or the ionic vibration. Note that such a selectivity can be
realized if γ ′

m and γ ′
v are not of the same order of magnitude.

As the decay rate of the cavity mode is much larger than
those of the vibrational modes involved, these modes can be
further interpreted as a quantum memory [51] of the optical
pulse.

It is important to mention that the transfer of the state
in our protocol occurs at steady state, i.e., at a timescale
much longer than 1/γ ′

m or 1/γ ′
v , depending upon the pulse

shaping (i.e., whether the input pulse is modulated by eγ ′
mt or

by eγ ′
vt ). In contrast, in [50], such a transfer is prone to the

decay of the mirror, as the protocol works only for a timescale
less than 1/γm. Note that for a Gaussian temporal shape of
the input pulse into the cavity, i.e., for ain(t ) ∼ exp(−t2/τ 2)
(τ represents the temporal width of the pulse), the effective
shape of the pulse becomes exponentially increasing, when
t0 is a large negative value and Tm = 0 (the moment when
the interaction is switched on) [see Eq. (25)]. The pulse in
this effective exponential shape gets stored into the vibrational
mode of the mirror or the ion, at the steady state (large Tm), as
discussed above.

On the other hand, if Cmv ∼ γ ′
m, then the state of the input

pulse (shaped with a corresponding weight factor eγ ′
mt ) can be
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mapped into a collective fluctuation state of the mirror and the
ionic vibration, as defined by the joint annihilation operator
δb̃m(Tm) + δb̃v (Tm). This would refer to a two-mode binomial
state (a special class of entangled state) [52] of fluctuations of
the two coupled systems, as described below:

|ψ〉in ⊗ |0〉m|0〉v
=

∑
n

Cn[Am†
in (Tm)]n|0〉in ⊗ |0〉m|0〉v

→ |0〉in ⊗
∑

n

Cn[δb̃†
m(Tm) + δb̃†

v (Tm)]n|0〉m|0〉v. (28)

Here the state |ψ〉in is the initial state of the input pulse.
When expressed in the Fock state basis, Cn represents the
probability amplitude of the n photons inside the pulse. Note
that the state |n〉 refers to n quanta corresponding to the
fluctuation operators δÔ (Ô ≡ ã, b̃v, b̃m), in excess of their
respective steady-state number of quanta, namely, |α|2, |βv|2,
and |βm|2; e.g., 〈a†a〉 = |α|2 + 〈δa†δa〉 and so on. It must
be borne in mind that these fluctuation operators satisfy the
usual commutation relation [δO, δO†] = 1, pertaining to the
harmonic oscillator algebra, and hence make a suitable Hilbert
space of Fock states. The size of the finite series of the
binomial state, as obtained above, depends on the temporal
shape of the input pulse.

A similar binomial state can also be obtained if the input
pulse is shaped with a weight factor eγ ′

vt and Cmv ∼ γ ′
v . Note

that Cmv can be made of the order of γ ′
m or γ ′

v by suitable
choice of the steady-state photon number |α|2 inside the
cavity.

V. FLUCTUATION ENERGY TRANSFER BETWEEN
THE MIRROR AND THE ION

We start with Eq. (13), which takes the following form in
the rotating wave approximation at resonance �′ = ωm = ω′

v:

HRWA = −Gm(δa†δbm + H.c.) − Gv (δa†δbv + H.c.). (29)

The above Hamiltonian suggests that it is possible to transfer
the fluctuation of the mirror into the ionic vibration and vice
versa, with the aid of their common coupling to the cavity
fluctuation mode. To this end, one could consider adiabatic
elimination of the cavity mode δa, by putting δ̇a ≈ 0 in
the good-cavity limit �′ � γa. However, such a situation
is vulnerable to the cavity decay. We employ an alternative
approach, based on pulsed excitation technique. Transfer of
population between two states can be obtained by two pulses
which are applied in the so-called counterintuitive sequence,
as in the stimulated Raman adiabatic passage (STIRAP) tech-
nique [53]. Such transfer has been studied using a dark mode
in [54,55]. However, in the present case, both Gm and Gv

are proportional to α, and thereby to the cavity driving field
� [see Eq. (8)]. Therefore we can employ a suitable pulse
shape �(t ) that would simultaneously couple the cavity mode
to fluctuations of the ionic vibration and the mirror. This
would allow us to transfer the fluctuation energy from the
mirror to the ionic vibration via the cavity mode and vice
versa, in a controlled and deterministic way at long times.
Unlike in STIRAP, in this case, the intermediary cavity mode
would be populated and so the pulse duration should be well

FIG. 4. Fluctuation energy transfer between the vibrational
modes of the mirror and the ion. The parameters chosen
are ωm = 2π × 10 MHz, �′/ωm = ω′

v/ωm = 1, Gm/ωm =
Gv/ωm = 0.3 exp(−t2/0.2), γv/ωm = 0.001, γa/ωm = 0.01,
γm/ωm = 0.00001, and T = 0.3 mK.

within the decay timescale of the cavity mode. Note that such
a method of energy transfer is not truly adiabatic, because
it involves exchange of energy between various adiabatic
states.

For suitable numerical simulation, we start with the follow-
ing Langevin equation for the fluctuation δa in the rotating
frame, as obtained using Eq. (29):

δ ˙̃a = −γaδã + iGmδb̃m + iGvδb̃v +
√

2γaãin, (30)

while the equations for δb̃v,m are the same as in Eqs. (21). We
next derive the equations for quadratic combinations of these
fluctuations and solve those equations to study the temporal
dynamics of the fluctuation energies 〈δa†δa〉, 〈δb†

mδbm〉, and
〈δb†

vδbv〉. In Fig. 4, we show how the fluctuation energies can
be transferred from the vibrational mode of the ion to that
of the mirror. We consider a pulse with a Gaussian temporal
profile, that drives the cavity mode, and eventually make
a simultaneous coupling between the cavity mode with the
vibrational modes of the other two subsystems, respectively.
In presence of the cavity decay (with a rate ≈105 Hz), the
fluctuations get transferred almost completely. However, It
is important to note that, unlike in the case of STIRAP, this
nonadiabatic process is vulnerable to the relevant decay rates
and the pulse parameters.

VI. ENTANGLEMENT

We next show how fluctuations of various subsystems,
namely, the cavity mode and the vibrational modes of the
mirror and the ion, can be entangled at the steady state.
As these subsystems are primarily bosonic, we prefer to
consider entanglement in fluctuations of the relevant contin-
uous variables [56,57], namely, in their position and con-
jugate momentum quadratures δxl and δpl (l ∈ a, m, v),

053822-6



COHERENT COUPLING BETWEEN THE MOTIONAL … PHYSICAL REVIEW A 100, 053822 (2019)

defined by

δxa = (δa† + δa)√
2

, δpa = i(δa† − δa)√
2

,

δxm = (δb†
m + δbm)√

2
, δpm = i(δb†

m − δbm)√
2

,

δxv = (δb†
v + δbv )√

2
, δpv = i(δb†

v − δbv )√
2

. (31)

In the following, we employ the treatment in [16], in which
the steady-state entanglement between two bosonic systems,
namely, two mirrors, has been studied.

The quantum Langevin equations for these fluctuations can
be written in a matrix form:

d

dt
R(t ) = MR(t ) + N (t ), (32)

where R(t )T = (δxm, δpm, δxv, δpv, δxa, δpa). Here the coef-
ficient matrix M and the noise vector N are given by [58]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0

−ωm −γm 0 0 2Gm 0

0 0 0 ω′
v 0 0

0 0 −ω′
v −γv 2Gv 0

0 0 0 0 −γa �′

2Gm 0 2Gv 0 −�′ −γa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N (t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0√
2γm pin

m

0√
2γv pin

v√
2γaxin

a√
2γa pin

a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

The vibrational modes are usually affected by a Brown-
ian stochastic non-Markovian noise pin

m and pin
v , respectively

[59,60]. Their two-time correlation functions exhibit a non-
trivial dependence on time, so as to ensure that the operators
maintain their commutation relation for all the times via the
above evolution of R [61]. However, at large temperature
(kBT � h̄ωm, h̄ω′

v) and for large quality factors of the vi-
brating systems (i.e., ωm � γm and ω′

v � γv), these correla-
tion functions represent Markovian dynamics and can be ap-
proximated as 〈pin

l (t )pin
l (t ′) + pin

l (t ′)pin
l (t )〉 ≈ (2nl + 1)δ(t −

t ′) (l ∈ m, v), where nl is the average number of thermal
quanta in the lth subsystem [16,60,62].

The solution of the differential matrix equation for R(t ) can
be obtained as R(t ) = M(t )R(0) + ∫ t

0 dsF (s)N (t − s), where
F (t ) = exp(Mt ). Temporal stability of this solution can be
obtained in the parameter domain, at which the real parts
of all the eigenvalues of the matrix M are negative, which
effectively makes sure that F (t → ∞) = 0.

To study the entanglement in a coupled bosonic system, we
first obtain the covariance matrix V [56,63,64], which satisfies
the following relation [7,65]:

MV + V MT = −D, (34)

where the diffusion matrix D is given by

D = diag[0, (2nm + 1)γm, 0, (2nv + 1)γv, γa, γa].

(35)

In steady state, the system attains a Gaussian state [64]
and its entanglement properties can be derived from the
covariance matrix V at the steady state, when expressed in
the following block form:

V =

⎛
⎜⎜⎜⎝

Vm Vmv Vma

V T
mv Vv Vva

V T
ma V T

va Va

⎞
⎟⎟⎟⎠. (36)

Here Vi j = [〈Ri(∞)Rj (∞) + Rj (∞)Ri(∞)〉]/2, and Ri(∞)
is the ith element in the matrix R, calculated at the steady
state. In Eq. (36) each diagonal element represents a 2 × 2
matrix for quadratures of the lth subsystem (l ∈ m, v, a),
while the off-diagonal elements Vll ′ represent a 2 × 2 matrix
of intersystem covariance (l, l ′ ∈ m, v, a). With such a form
of the matrix V , the correlation between any two subsystems
can be obtained in terms of the corresponding submatrix [59].

To study the entanglement between the vibrational modes
of the mirror and the ion, we compute the logarithm negativity
EN [66,67], given by

EN = max[0,− ln 2μ−], (37)

where μ− = 1/
√

2[A − (A2 − 4detVS )1/2]1/2. Here, VS is the
relevant submatrix, as given by

VS =
(

Vm Vmv

V T
mv Vv

)
(38)

and A = det(Vm) + det(Vv ) − 2det(Vmv ).
A Gaussian state is considered entangled only if μ− <

1/2. Note that this is equivalent to the necessary and suffi-
cient criterion for entanglement, based on nonpositive partial
transpose of Gaussian states [68,69]. We show in Fig. 5
how the entanglement EN between the fluctuations of the
vibrational modes of the mirror and the ion varies with respect
to the detuning �′ for different values of cavity decay rate.
Clearly, with the increase in the decay rate, the entanglement
decreases, as well as the domain of �′ over which the two
subsystems attain steady-state entanglement decrease. There
is an optimal detuning at which the entanglement becomes
maximum. At such a detuning, the entanglement also remains
robust against the variation of the ambient temperature of
the ion and the mirror over a large range (see Fig. 6), while
it experiences sudden death at a finite temperature. It must
be borne in mind that though the mirror and the ion do not
directly interact with each other the cavity mode acts as a
mediator to produce entanglement between their motional
fluctuations.

VII. SYMPATHETIC COOLING

In Sec. V, we have shown that it is possible to transfer
the average energy of motional fluctuation from the ion to the
mirror. This suggests that it would also be possible to cool the
mirror sympathetically by the ion. To further investigate this,
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FIG. 5. Variation of the logarithmic negativity between the vi-
brational fluctuations of the mirror and the ion, with respect to
the detuning �′, for different values of the decay rate γa of the
cavity mode. Here we have chosen ω′

v/ωm = 0.88, Gm/ωm = 0.1,
and Gv/ωm = 0.35. The other parameters are the same as in Fig. 4.

we choose the cavity detuning and its decay to be very large
as compared to all the other frequencies: �′, γa � ωm, ω′

v �
Gm, Gv . We also consider the effective resonance frequencies
of the ionic vibrational mode and the mirror to be equal,
i.e., ω′

v = ωm. Under these conditions, the cavity mode can
be adiabatically eliminated from the effective dynamics of
the system. So, we can write the final Hamiltonian as [see
Eq. (13)]

H = ωmδb†
mδbm + ω′

vδb†
vδbv + G(δb†

vδbm + δbvδb†
m),

(39)

FIG. 6. Variation of the logarithmic negativity between the vi-
brational fluctuations of the mirror and the ion, with respect to the
ambient temperature T , for different values of the decay rate γa of
the cavity mode. We have chosen �′/ωm = 1. The other parameters
are the same as in Fig. 5.

FIG. 7. Variation of the final temperature TMF of the mirror with
respect to the cavity-ion coupling Gv , for different values of the
initial temperature of the ion. Here we have chosen ωm = 2π ×
10 MHz, ω′

v/ωm = 1, �′/ωm = 5, Gm/ωm = 0.02, TMI = 100 mK,
and γa/ωm = 5. The other parameters are the same as in Fig. 4.

where G = 4GmGv�
′

�′2+γ 2
a

is the effective coupling strength between
the mirror and the ionic vibration. Such a coupling can be
employed to sympathetically cool the mirror with the help of
the ion.

To demonstrate the cooling, we first calculate the mean
numbers of quanta nMF and nVF, of the vibrational mode
of the mirror and the ion, respectively, at the steady
state, using the elements of the covariance matrix V , as
follows:

nMF = 1
2

(〈
δx2

m

〉 + 〈
δp2

m

〉) = 1
2 (V11 + V22 − 1),

nVF = 1
2

(〈
δx2

v

〉 + 〈
δp2

v

〉) = 1
2 (V33 + V44 − 1). (40)

These can be represented in terms of the effective tempera-
tures TMF and TVF of the vibrational modes of the mirror and
the ion, respectively, as

TMF = h̄ωm

kB ln
(
1 + 1

nMF

) , TVF = h̄ω′
v

kB ln
(
1 + 1

nVF

) . (41)

We show in Fig. 7 how the temperature TMF of the mirror
varies with respect to the ion-cavity coupling Gv . When the
ion is cooled, for an optimal value of Gv , the mirror also
gets cooled. We have chosen the mirror to be initially at a
temperature of 100 mK. This means that for a large range of
values of Gv and Tm the mirror gets cooled. As the temperature
of the ion increases, such a sympathetic cooling of the mirror,
however, becomes less effective. In absence of the ion, the
mirror could be sideband cooled by the cavity mode. In
contrast, in the presence of the ion, cooling of the mirror gets
enhanced. We further show in Fig. 8 how the temperature
TMF of the mirror varies with respect to the cavity detuning
�′. Clearly, in presence of ion-cavity coupling, the cavity
detuning has negligible effect on the cooling as compared to
the case when the ion is absent. It is further interesting to note
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FIG. 8. Variation of the temperature TMF of the mirror with
respect to the cavity detuning �′, for different values of cavity-ion
coupling Gv . Here we have chosen TVI = 1 mK and TMI = 100 mK.
The other parameters are the same as in Fig. 7.

in Fig. 8 that in presence of the ion the mirror gets cooled
to a temperature lower than could be obtained with sideband
cooling (at �′ = ωm) [42,43].

The effective sympathetic cooling rate for the mechanical
oscillator can be written as [34]

�eff = G2

γv

1

1 + (γv/4ωm )2 . (42)

For γv � ωm, this rate becomes �eff = G2

γv
. In the limit nVI �

nMI [where nαi corresponds to the initial average number of
thermal quanta of the subsystem α (α ∈ v, m) for the vibra-
tional mode of the ion and of the mirror, respectively], the
steady-state occupation number of the mechanical oscillator
can be written as [34]

nMF ≈ γmnMI

γm + �eff
. (43)

Thus the final temperature of the mechanical oscillator is
given by

TMF = TMI(1 + �eff/γm)−1 (44)

where TMI corresponds to initial temperature of the mechan-
ical oscillator. For the parameters used in Fig. 7, we find
that the sympathetic cooling rate is of the order of �eff ≈
2π × 0.001 MHz (for Gv/ωm = 0.04), so that for TMI = 100
mK we get TMF ≈ 9 mK, which is close to that obtained
numerically (see Fig. 7).

The cooling can be further verified from the noise spectrum
of the mirror. The spectral noise density of the mirror can be
defined as

Sm(ω) ≡
∫ +∞

−∞
〈δxm(t )δxm(0)〉eiωt dt . (45)

In Fig. 9, we display the spectrum of the mirror, for different
values of the temperature of the ion. The area of the spectrum

FIG. 9. Spectral noise density (in m2Hz−1) of the mirror, for dif-
ferent values of the ion temperature. Here we have chosen Gv/ωm =
0.04. The other parameters are the same as in Fig. 8.

represents the final temperature of the mirror. Clearly, as the
ion temperature decreases, this area also decreases. Moreover,
for lower values of the ion temperature, the sympathetic
cooling is more effective.

VIII. CONCLUSION

In conclusion, we have analyzed a hybrid cavity optome-
chanical setup to obtain a coherent coupling between the
vibrational modes of two systems: a mirror which is meso-
scopic in size and a trapped ion of microscopic size. Such
a coupling is mediated via their common interaction to the
cavity field. We show that in the bad-cavity limit the state
of the optical pulse driving the cavity can be selectively
mapped into the motional fluctuation of either of these two
systems. This can be interpreted as a quantum memory of
optical information into the vibrational mode of the mirror
or the ion, the decay rate of which is negligibly smaller than
that of the cavity mode. In this limit, by suitably adjusting
the pulse parameters, one can prepare an entangled state of
fluctuation of these two systems. On the other hand, in the
good-cavity limit, we employ a pulsed excitation technique,
to transfer the fluctuation energy of the ionic vibration to
the mirror. We further study the possibility of obtaining
steady-state entanglement between the two vibrating sys-
tems, and the effect of detuning and temperature on this
entanglement. Interestingly, the mirror can be sympatheti-
cally cooled, when at resonance with the vibrational mode
of the ion, by cooling the ion, in the adiabatic limit (i.e.,
in the bad-cavity limit). We have estimated the effective
cooling rate, by taking the heating of the ionic vibration into
consideration.
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