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Bidirectional shooting method for extreme nonlinear optics
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In this paper we introduce a pseudospectral shooting method to model intense, ultrashort optical pulses
incident on remote targets. The method naturally extends the unidirectional pulse propagation equation to include
backward propagating radiation due to either nonlinear coupling with the “forward” field or reflections generated
at material boundaries. The general applicability of the method is highlighted with several examples, including
a full simulation of a pulse propagating through air across an ultrathin gold film coated on fused silica.
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I. INTRODUCTION

In the field of extreme nonlinear optics, interactions of
ultrashort pulses (USPs) with materials are strongly non-
perturbative and generate spectral responses spanning many
octaves. In this regime capturing the correct physics becomes
extremely challenging. New intense USP laser sources are
rapidly coming online, opening new scientific opportunities
at longer mid-wavelength infrared [1] and long-wavelength
infrared [2] wavelengths. For atmospheric applications, the
impact of turbulent scattering is reduced, and as the critical
power scales with wavelength squared, it is possible to trans-
port hundreds of gigawatts to terawatts in a single nonlinear
filament. In particular, the very large powers available within
individual filaments, together with the relatively flat disper-
sion landscape within atmospheric transparency windows at
longer wavelengths, make it possible to efficiently gener-
ate significant powers in remote higher harmonics or even
THz wavelengths. When modeling long-range atmospheric
propagation, phase matching between the fundamental and
the generated harmonics is extremely sensitive and cumu-
lative, requiring an accurate, ultrabroadband representation
of relevant responses. Although envelope models have been
the method of choice for simulating filaments [3], they fail
to capture this situation. Thus, one must resort to physical
models that resolve the underlying optical carrier wave and,
for efficient wavelength conversion, capture both ultrabroad-
band linear and nonlinear spectral responses. Moreover, in
such extremes, the potential for significant backward scattered
or self-generated fields may appear [4]. For instance, experi-
mentalists interested in remote sensing of the atmosphere have
detected enhanced, ultrabroadband back-scattered radiation
due to the filamentation process of unidirectionally sourced
intense USPs [5,6]. The generation of high-gain backward
lasing in air via a remote USP pump is also being explored
as a means to monitor the atmosphere [7].

The unidirectional pulse propagation equation (UPPE)
[8,9] has emerged as the computational tool of choice as a
nonlinear pseudospectral solver capable of capturing extreme

broadband generation. The strength of the UPPE is that it
solves the linear propagator exactly and is able to accurately
resolve complicated nonlinear dynamics which accumulate
over a much longer propagation scale. Another strength of
the UPPE is the ability to resolve nonparaxial propagation
dynamics [10]. Recent papers have explored the validity of
the unidirectional approximation in the THz regime [11] and
for tightly focused pulses [12,13]. Although the UPPE can be
generalized for particular waveguiding structures using eigen-
mode expansions [14], the method cannot currently account
for nonlinearly induced back-scattering or sharp gradients in
the index of refraction along the direction of propagation.
These limitations are obvious as the UPPE is derived ex-
plicitly assuming the backward and transversely propagating
modes are weak, which is valid for many problems of physical
interest.

We now pose the problem of how to realistically model
an USP’s interaction with a remote scattering boundary. One
possible approach is to couple the output of the UPPE solver
with a full Maxwell solver once near the remote target. Very
few full Maxwell solvers currently exist that can resolve
potentially few-cycle, intense pulse-scattering interactions in
nonlinear media. The finite difference time domain (FDTD)
solver [15,16] represents the current state of the art for
studying full-field interactions in linear and possibly nonlinear
media. However, this scheme is extremely restrictive, being
limited to simulating small-scale objects in three dimensions
due to the Courant-Friedrichs-Lewy stability condition and is
plagued by accumulating numerical dispersion errors. As an
example of the restrictions inherent in the FDTD, consider
a circumstance where it is necessary to resolve a seventh
harmonic. To avoid numerical dispersion, this would require a
minimum of 20 spatial points at the seventh harmonic’s wave-
length (and concomitant fine time step), which would then
enforce a 140 spatial point resolution of the fundamental—
a major overkill which blows up computational resources.
Modeling nonlinear problems with the FDTD method can
also lead to high-frequency instabilities. Another drawback
of the FDTD is the lack of a systematic way to incorporate
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FIG. 1. Dispersion and absorption of infrared light in the at-
mosphere (HITRAN [17]). (a) Real and (b) imaginary parts of the
electric susceptibility.

complicated, ultrabroadband dispersive effects into the simu-
lation. The UPPE currently uses the large HITRAN database
[17], shown in Fig. 1, to model these effects, which would
be impossible to implement in a time-domain solver for
femtosecond-duration pulses.

A more accurate and streamlined approach to simulating
such pulses would be to somehow include back-scattering
modes into the UPPE formalism. These modes could be
generated from purely forward-propagating modes in two
ways: A weak nonlinear coupling between the modes and/or
a nonzero gradient in the index of refraction along the di-
rection of pulse propagation. Both of these scenarios are
addressed in this article. In Sec. II we derive the bidirectional
pulse propagation equation (BPPE) in complete generality
with no simplifying assumptions (i.e., no paraxial, unidi-
rectional, slowly varying-envelope approximations, etc.). We
also present a shooting method which can be used to solve
problems of broadband nonlinear pulse propagation across
stratified boundary layers. Section III consists of several
examples of the BPPE shooting method, including (1) a
converged example of nonnormal incidence, (2) a full (2+1)
simulation of a realistic pulse propagating across an ultrathin
gold film, and (3) the formation of a near-shock front in
the carrier wave of an USP traveling across an air-diamond
interface. We also outline some results on the convergence of
the BPPE iteration scheme and fill in some details on how our
simulations were executed in the Appendix.

II. BPPE SHOOTING METHOD

To begin this section we sketch a derivation of the scalar
BPPE. We first consider the case of propagation without
material boundaries, i.e., backward-propagating radiation is
solely due to nonlinear coupling with the “forward” field.
For simplicity, we assume that the electric field is linearly
polarized and the background media are homogeneous, then
Maxwell’s equations can be cast as a scalar wave equation
with a nonlinear source term

�E (x, t ) − 1

c2
∂tt

[
E (x, t ) +

∫ t

−∞
χ (1)(t − τ )E (x, τ ) dτ

]

= 1

c2
∂tt PNL[E ](x, t ), (1)

where χ (1) is the linear susceptibility and PNL is the
nonlinear part of the polarization response. We let z be
the direction of propagation, take the Fourier transform
of (1) [(t, x, y) → (ω, kx, ky) = (ω, k⊥)], and define the z
component of the wave vector as β = +

√
n2(ω)ω2/c2 − k2

⊥,

where n(ω) is the material’s frequency-dependent index of
refraction, to obtain

∂zzÊ (z, ω, k⊥) + β2(ω, k⊥)Ê = −ω2

c2
P̂NL[E ](z, ω, k⊥). (2)

Equation (2) is essentially a second-order, coupled system
of nonlinear ordinary differential equations indexed over the
continuous parameters ω and k⊥. Indeed, from a numer-
ical perspective (2) becomes a finite system via discrete
Fourier transforms. The linear version of (2) clearly has the
two linearly independent solutions, A+(ω, k⊥) exp(iβz) and
A−(ω, k⊥) exp(−iβz). Equation (2) reduces to a first-order
system in z if we view the “weak” nonlinear term on the
right-hand side of (2) as an inhomogeneity and apply the
elementary variation of parameters method [18]. Recall that
this entails allowing the coefficient terms in the homogeneous
solution to depend on z, so we have the expansion

Ê (z, ω, k⊥) = A+(z, ω, k⊥)eiβz + A−(z, ω, k⊥)e−iβz, (3)

and we need to enforce the free condition

∂zA+(z, ω, k⊥)eiβz + ∂zA−(z, ω, k⊥)e−iβz = 0. (4)

Substituting (3) into (2) and using (4) gives the scalar BPPE:

∂zA+(z, ω, k⊥) = iω2

2c2β
PNL[A+, A−](z, ω, k⊥)e−iβz,

∂zA−(z, ω, k⊥) = − iω2

2c2β
PNL[A+, A−](z, ω, k⊥)eiβz. (5)

Note if we make the unidirectional approximation, which
assumes the nonlinear response can be decoupled, system
(5) becomes two scalar UPPEs. It should be emphasized that
the second-order system (2) is inherently a boundary value
problem, whereas the first-order BPPE (5) is cast as an initial
value problem. Here we are interested in problems where
A+ is specified at some initial point z0, although A−(z0) is
unknown. To solve this problem, we use an iterative method
[19], which is based on integrating (4) over [z0, Z]:

A−(Z ) − A−(z0) = −
∫ Z

z0

∂zA+e2iβz dz. (6)

If we assume that A−(Z ) ≈ 0 (i.e., there are no material reflec-
tions or nonlinear couplings to backward-generated radiation
past Z), we can define the update relation

A(i+1)
− (z0) = iω2

2c2β

∫ Z

z0

P̂NL[E (i)]eiβz dz, (7)

where we take an initial guess A(0)
− (z0) = 0, solve system (5),

update our guess to A(1)
− (z0) using (7) while keeping A+(z0)

constant, and repeat.
We now present an explicit iterative procedure to extend

the BPPE over z-dependent stratified boundary layers, as
shown in Fig. 2. We refer to our complete scheme as the
BPPE shooting method. As will be shown, the method is
able to accurately resolve the nonlinear spectral evolution
of both the reflected and transmitted pulses. For simplicity,
consider a single planar interface located at z1 (z0 < z1 < Z)
which separates two materials (labeled 0 and 1), each having
its own dispersion relation, nj (ω), and Kerr nonlinear index,
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FIG. 2. The BPPE shooting method can capture realistic and
complicated linear, nj (ω), and nonlinear, pNL

j (ω), physics for a
bidirectional pulse propagating across stratified layers in z.

n2, j . Here we consider the (2+1) (space+time) problem and
assume the fields are transverse magnetic (TM). A more
careful derivation of system (5), based directly on the vec-
tor nature of Maxwell’s equations, leads to the inclusion of
a transverse spectral mode, Q(z, ω, kx ), into (5) [19]. This
mode is driven by a nonlinear response in the direction of
propagation, pz, which for near-bidirectional propagation is
extremely weak. We include this mode for completeness. It
is now a straightforward matter to enforce the field boundary
conditions across the interface at z1 in terms of the spectral
amplitudes. Let z−

1 and z+
1 denote just to the left and right

of the boundary, respectively. Ensuring the continuity of the
tangential components of E and B as well as the normal
component of D at z1 leads to

M0A(z−
1 ) + p̂z(z−

1 )ẑ = M1A(z+
1 ) + p̂z(z+

1 )ẑ, (8)

where for j = 0, 1,

Mj =
⎡
⎣ eiβ j z1 e−iβ j z1 0

g jeiβ j z1 −g je−iβ j z1 −kx

−h jeiβ j z1 h je−iβ j z1 n2
j

⎤
⎦ (9)

and

A(z) =
⎡
⎣A+(z, ω, kx )

A−(z, ω, kx )
Q(z, ω, kx )

⎤
⎦, (10)

g j (ω, kx ) = β j (ω, kx ) + k2
x /β j (ω, kx ), (11)

h j (ω, kx ) = n2
j (ω)kx/β j (ω, kx ).

To leading order, expressions (8)–(11) yield a system of
linear equations which must be solved at each spectral grid
point across the boundary at z1. System (8)–(11) can now be
included with the iterative method outlined in the preceding
paragraph to model the nonlinear propagation of an USP
traveling across a material boundary. We give the explicit

steps of the BPPE shooting method as well as some details
on convergence in the Appendix. Now we turn to a numerical
implementation of the method and display converged results.

III. PHYSICAL EXAMPLES

In this section, we highlight the applicability of the BPPE
shooting method with several examples. First, we consider
the linear propagation of a pulse with nonnormal incidence
across an air-diamond interface. We include this simple linear
example here to validate convergence of the fundamental
scheme. The results of this simulation are shown in Fig. 3.

We use the Sellmeier equations for air and bulk diamond
given in Refs. [20,21] and simulate a pulse interacting with
the boundary at a 20◦ angle of incidence. Remarkably, the
solution converges to the correct, angle-dependent Fresnel law
of reflection and transmission with good accuracy after only
five iterations of the BPPE shooting method. In the simple
case of linear propagation, an explicit angle-and-frequency-
dependent convergence requirement for our iteration scheme
can be calculated (see the Appendix). As the BPPE shooting
method is based on bidirectional propagation along the z
axis, it is expected (and confirmed in the Appendix) that for
near-perpendicular angles the BPPE shooting method should
diverge. It is clear that both the UPPE and BPPE (5) fail when
β ≈ 0. Fig. 3(d) shows the power spectrum of the initial pulse
along with the line β = 0. Spectral components sufficiently
close to β = 0 need to be filtered out since they will eventually
diverge. This is problematic only when the pulse spectrum lies
on top of β = 0 and as seen in Fig. 3(d) is not an issue here.
We now turn to nontrivial nonlinear BPPE shooting method
simulations.

FIG. 3. BPPE shooting method simulation (after five iterations)
of a 20 fs pulse (e−2 radius) with a central wavelength of 2 μm
and an initial wavelength-scale beam waist of 6 μm (e−2 radius)
propagating across an air-diamond interface at 20◦. (a), (b), and
(c) The diffracting real field entering the domain from the left, hitting
the boundary and the resulting transmitted and reflected pulses,
respectively. (d) The spectral density of the initial pulse with the light
line, β = 0, plotted for reference.
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FIG. 4. (2+1) nonlinear BPPE shooting method simulation of
a short 10fs pulse with a central wavelength of λ0 = 0.5 μm
(∼0.6 PHz) and beam waist of 10 μm after 10 iterations propagating
across 5 nm gold film. The initial peak intensity of the beam is
4.0 TW/cm2. The field, Ex (z, x, t ), is shown at times (a) 25.50 fs and
(b) 35.28 fs. (c) The on-axis spectral intensity of the generated third
harmonic just before the pulse hits the gold film (blue) and after
propagating through the film (red); (d) the spectral intensity of the
third harmonic at the end of propagation in silica.

Next we simulate the nonlinear propagation of an intense
USP traveling through air at normal incidence into a block
of fused silica coated with a 5 nm film of gold. The optical
response of ultrathin metallic films is also an active area of
applied research [22]. For simplicity, only the instantaneous
Kerr effect of air and silica are included in the nonlinear po-
larization of our simulation (n2 = 5.36 × 10−23 m2W−1 and
n2 = 3.00 × 10−20 m2W−1, respectively). More complicated
nonlinear responses such as stimulated Raman effects and
plasma generation could be included in the BPPE iteration
scheme in the same way they are implemented in UPPE
solvers [9]. The dispersion landscapes for air and silica are
modeled using appropriate Sellmeier equations while the dis-
persive response of the ultrathin gold film is modeled with
interpolated experimental data given in Ref. [23] (data shown
in the Appendix). As stated before, the streamlined implemen-
tation of dispersive data is a major advantage that both the
UPPE and BPPE have over time-domain solvers such as the
FDTD. The result of our simulation is shown in Fig. 4. As
the nonlinear response is weak in both air and silica over the
propagation distances considered, the macroscopic dynamics
are essentially linear, although the bottom row of Fig. 4 clearly
shows the generation of a third harmonic and its evolution
in each medium. Figure 4 shows that the BPPE method
with interface quickly converges to the expected near-Fresnel
phase and amplitude relations between the incident, reflected,
and transmitted pulses with detailed, broadband physical re-
sponses included. In application, the initial USP input into the
BPPE method could be the output of a kilometer-scale UPPE
simulation with a complicated broadened spectrum.

Finally, as a check on the robustness of the BPPE shooting
method, we consider the (2+1) propagation of a pulse across
a single air-diamond interface with an artificially inflated
nonlinear index so that the nonlinear response manifests itself
over the short propagation distance considered. We find that
even in this rather extreme case the BPPE iteration scheme

FIG. 5. On-axis profile of a (2+1) nonlinear BPPE simulation
of a 20 fs pulse with initial peak intensity of 4.0 TW/cm2 centered
at λ0 = 4 μm propagated across an air-diamond interface with an
artificially inflated nonlinear response in air after 20 iterations at var-
ious times (a)–(c). (d) The on-axis spectral intensity of the incident,
reflected, and transmitted pulses.

converges. Figure 5 shows the pulse’s carrier wave forming
a near-shock front (“shark-fin”), due to the weak dispersion
and losses of air and diamond around 4 μm. This behavior
was first observed in intense, few-cycle MWIR pulses using
the UPPE [24]. The carrier-wave steepening in the incident,
reflected, and transmitted pulses generates a significant and
broad spectral response of odd higher harmonics, which are
accurately resolved in the lower right plot in Fig. 5.

IV. CONCLUSION

We have shown that the UPPE can be extended using
the BPPE method to accurately simulate the bidirectional,
nonlinear dynamics of an USP propagating across sharp
physical interfaces. In practice, a pulse could be propagated
over kilometer-scale distances using the UPPE, resulting in
significant pulse distortion and spectral broadening, and then
seamlessly connected with the BPPE solver to propagate the
pulse across boundary layers or to produce localized, non-
linearly generated back-scattered radiation. The output of the
BPPE simulation could then be inputed back into decoupled
“left” and “right” UPPE solvers, continuing multiple pulse
trajectories. In this manner, the BPPE shooting method offers
a streamlined approach to accurately model ultrabroadband,
near-bidirectional USP physics.
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APPENDIX: BPPE SHOOTING METHOD:
PROCEDURE AND CONVERGENCE

We first state the explicit steps of the BPPE shooting
method discussed in Sec. II. For simplicity of notation we
consider the (1+1) TM problem so that kx, Q ≡ 0, and to
leading order (8)–(11) is a 2 × 2 linear system defined at each
spectral grid point. The BPPE procedure for a single interface
at z1 is summarized in the following steps:

1. Set A+(z0, ω) to a given forward-propagating field
and the initial backward-propagating complex amplitude
A(0)

− (z0, ω) to zero. Solve the BPPE (5) through material 0 to
z1.

2. Solve system (8)–(11) to obtain A+(z+
1 , ω) and

A(0)
− (z+

1 , ω).
3. Solve the BPPE given the initial values from step 2

through material 1 to Z .
4. To update iteration A(0)

− (z0, ω), define

A(1)
− (z0, ω) = Ã(0)

− (z−
1 , ω) +

∫ z1

z0

∂zA+e2iβ0z dz,

where

Ã(0)
− (z+

1 , ω) =
∫ Z

z1

∂zA+e2iβ1z dz

and Ã(0)
− (z−

1 , ω) is obtained from the equation above and using
the boundary conditions (8)–(11) again at z1.

5. Update the iteration and repeat:

A(0)
− (z0, ω) → A(1)

− (z0, ω).

We now give some conditional statements for linear con-
vergence for the above BPPE method when including bound-
ary interfaces. For the simplest case of linear, one-dimensional
propagation for a single frequency, ω0, the entire BPPE shoot-
ing method outlined above can be compactly expressed as[

A(k+1)
+ (z0)

A(k+1)
− (z0)

]
= M

[
A(k)

+ (z0)
A(k)

− (z0)

]
+

[
A(k)

+ (z0)
0

]
, (A1)

where M = �1M0
−1M1�0M1

−1M0, k is the iteration num-
ber, and j = 0, 1 is the material label

Mj =
[

ein j (ω0 )ω0z1/c e−in j (ω0 )ω0z1/c

n j (ω0)ein j (ω0 )ω0z1/c −n j (ω0)e−in j (ω0 )ω0z1/c

]
, (A2)

� j =
[
δ j0 0
0 δ j1

]
.

Using (A1) and (A2), it can be explicitly shown that the
method converges to the expected Fresnel law of reflection
and transmission if the index step satisfies

C(ω0; n0, n1) =
∣∣∣∣ (n1(ω0) − n0(ω0))2

4n0(ω0)n1(ω0)

∣∣∣∣ < 1. (A3)

For instance, if n0(ω0) = 1, convergence is achieved under
the condition n1(ω0) < 3 + 2

√
2 ≈ 5.83, which is clearly

fulfilled for many problems of physical interest. The linear
convergence condition for a single interface can be general-
ized in (2+1) for a pulsed source to the expression given in
(A4), which reduces to (A3) when kx = 0. For instance, the
linear simulation shown in Fig. 3 contains only spectral com-
ponents, so that condition (A4) holds. Since the problematic
components play a minimal role in the overall dynamics it is
straightforward to filter them out:

C(ω, kx; n0, n1, β0, β1) = 1

4

∣∣∣∣
[−n2

0n2
1ω

2 + c2
(
k2

x n2
1 + n2

0β0β1
)][−n2

0n2
1ω

2 + c2
(
k2

x n2
0 + n2

1β0β1
)]

n2
0n2

1

(
c2k2

x − n2
0ω

2
)(

c2k2
x − n2

1ω
2
) ∣∣∣∣ < 1. (A4)

The preceding analysis can be generalized further to include
multiple stratified boundary layers. This leads to an analytic
convergence condition for the linear gold film simulation
outlined in Sec. III. For reference, the dispersive data used in
that simulation are shown in Fig. 6. The full convergence con-
dition, C( fc, kx,c,w; n0, n1, n2), depends on the width of the
gold film (w), the central frequency ( fc) and transverse wave
number (kx,c) components of the pulse, as well as the corre-
sponding refractive indices in all three materials. As the de-
rived expression is long and messy, we do not include it here.
Instead, we plot the obtained convergence condition versus
frequency and wave number in Fig. 7 for the particular model
parameters used for the gold film simulation in Sec. III. The
range in frequencies and wave numbers in Fig. 7(a) matches
our numerical grid. As long as our derived condition, C, is
strictly less than one, the linear BPPE scheme will converge.
We have also verified that the linear BPPE method diverges

when including spectral components outside of the window
C < 1. The two diagonal lines clearly seen in Fig. 7(b) match
the light curves for air and silica, across which propagating
waves become evanescent [kx = n j (ω)ω/c]. Clearly, both the
UPPE and BPPE diverge here as the evolution equations
become unbounded [system (5)]. The divergence of the scalar
UPPE and BPPE along the light curves becomes an issue
only when considering pulses with high angles of incidence
(with respect to z-dependent boundaries) and for extreme,
subwavelength nonlinear focusing.

The white vertical line in Fig. 7(a) marks where the de-
rived convergence condition, C, is equal to one. Frequencies
higher than approximately 4 PHz in our example cause the
linear BPPE iteration scheme to diverge. One can easily
filter out these problematic frequencies, leaving only the
spectral components which are primarily responsible for the
pulse’s propagation dynamics (third, fifth, etc., harmonics).
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FIG. 6. The linear dispersion data and initial pulse used in the
BPPE shooting method simulation shown in Fig. 4.

This was done when simulating the pulse shown in Fig. 4.
It should be noted that the strong absorption in the gold
film leads to a more restrictive frequency window (and very
thin film width) for the BPPE method to converge. This
restriction is relaxed when considering stratified dielectric
layers.

FIG. 7. The linear BPPE convergence condition, C, and scaled
initial pulse spectrum used in the gold film example in Sec. III.
Convergence is guaranteed if C < 1. The domain of panel (a) is the
used BPPE computational boundary, and panel (b) is simply panel
(a) zoomed in around the initial pulse.
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