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Stability and variational analysis of cavity solitons under various perturbations
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We theoretically investigate the dynamics and stability of a temporal cavity soliton (CS) excited inside a
silicon-based microresonator that exhibits free-carrier generation as a result of two-photon absorption (TPA). The
optical propagation of the CS is modeled through a mean-field Lugiato-Lefever equation (LLE) coupled with an
ordinary differential equation accounting for the generation of free carriers owing to TPA. The CS experiences
several perturbations [like intrapulse Raman scattering (IRS), TPA, free-carrier absorption (FCA), free-carrier
dispersion (FCD), etc.] during its round-trip evolution inside the cavity. We develop a full variational analysis
based on a Ritz optimization principle which is useful in deriving simple analytical expressions describing the
dynamics of individual pulse parameters of the CS under perturbation. TPA and FCA limit the efficient comb
generation and modify the stability condition of the CS. We determine the critical condition of stability modified
due to TPA and derive closed-form expressions of the saturated amplitude and width of the stable CS. We perform
detailed modulation-instability analysis and obtain stability conditions against perturbations of the steady-state
solution of LLE. The CS experiences FCD, which leads to a temporal acceleration resulting in spectral blueshift.
Exploiting the variational analysis, we estimate these temporal and spectral shifts. We also include IRS in our
perturbation theory and analytically estimate the frequency redshifting. Finally, we study the effect of pump-
phase modulation on a stable CS. All our analytical results are found to be in good agreement with the data
obtained from the full numerical solution of LLE.
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I. INTRODUCTION

Cavity solitons (CSs) are special types of dissipative soli-
tons that persist in driven passive cavity systems, such as fiber
ring cavities and monolithic microresonators, and are ideal
candidates for optical frequency comb generation and all-
optical buffer applications [1,2]. Being solitons, such stable
structures do not spread or dissipate. The group velocity
dispersion (GVD) is balanced by nonlinearity, whereas the
losses are compensated by an external driving field [3–5].
The dynamics of a CS is governed by the mean-field Lugiato-
Lefever equation (LLE) [6] which generally does not contain
any higher-order dispersion or nonlinear terms. However, the
important effect that comes into the picture for ultrashort
pulses is the intrapulse Raman scattering (IRS), which causes
the self-frequency redshift [7–11]. Hence in realistic systems,
the CSs are not only influenced by higher-order GVD [5,12],
but also by higher-order nonlinear effects in terms of IRS
and self-steepening. Owing to its large nonlinearity and wide
transparency, silicon (Si) is highly advantageous as a photonic
platform for integrated optical devices like microresonators
[13]. However, for Si-based microresonators, the presence of
two-photon absorption (TPA) is relevant in the wavelength
range 0.8 < λ0 < 2.2 μm [14,15], which causes free-carrier
(FC) generation. Free carriers limit the efficiency of the device
by introducing free-carrier absorption (FCA) and also change
the refractive index through free-carrier dispersion (FCD) that
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results in a nonlinear cavity detuning [14,16]. The stability
of the CS is sensitive to operating parameters [like detuning,
continuous wave (CW) pump strength, etc.] and modified
under perturbations. The perturbations mentioned here are
mainly device oriented and we do not have much control
over them. In order to investigate the role of various per-
turbations on a CS, we introduce a semianalytical treatment
based on Lagrangian analysis. Further, we extend our analysis
to understand the dynamics of the CS when the driving
field is phase modulated [17] and find that no CS will exist
beyond a critical value of the phase of the driving pump. We
address each perturbation separately to study the stability of
a perturbed CS persisting inside a nonlinear resonator. The
study is based on the mean-field steady-state CW bistability
analysis [18] that leads to different regions for the intracavity
field [3]. Exploiting the CW bistability analysis we derive the
modified stability condition of the system parameters for the
existence of the CS under the influence of TPA, FCA, and IRS.
We further develop the modulation-instability (MI) analysis
[19–24] for all perturbations and obtain the range of values
of the system parameters that define the stability conditions
against perturbation of the steady-state solution of LLE, and
also obtain stable and unstable regions of the bistability curve.
The dynamics of the perturbed CS is theoretically investigated
by adopting Lagrange’s variational technique [25–31] based
on a Ritz optimization, where we assume an initial pulse shape
having different parameters (i.e., amplitude, width, phase,
etc.) that evolves over a round-trip time. This analytical pro-
cess leads to equations of motion of different pulse parameters
in the form of coupled ordinary differential equations (ODEs).
By decoupling the ODEs using suitable approximations, we
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deduce closed-form expressions of the pulse parameters re-
vealing interesting physics. The variational technique is a
standard analytical method used both in conservative and
dissipative systems. A Lagrangian density is introduced that
includes the conservative parts where the dissipative terms
are considered as perturbations. We confirm that the physical
values of all perturbations considered here are small and valid
under perturbative analysis. The small perturbation ensures
the nominal structural deformations of the propagating pulse.
The variational method relies on the proper choice of the
Ansatz which retains its shape during propagation. The Ansatz
is well defined for Kerr solitons governed by a nonlinear
Schrödinger equation (NLSE) [32]. We can choose a Pereira-
Stenflo type of solution as an Ansatz for dissipative systems,
which is governed by the complex Ginzburg-Landau equation
(GLE) [33]. For a nonlinear resonator, however, we do not
have an exact mathematical expression of a temporal CS that
forms over a CW background. Hence, we rely on the sech
function as our trial Ansatz for variational treatment, which
can predict the typical characteristics of a CS under perturba-
tions with good accuracy and reveals interesting physics.

II. MEAN-FIELD MODEL

The nonlinear passive cavity dynamics in the presence of
higher-order nonlinear effects with intracavity field amplitude
u(t, τ ) is modeled through a mean-field normalized LLE (a
damped-driven NLSE) [6–9,14,32,34] which includes higher-
order dispersion, self-steepening, IRS, TPA, and FC effects as

∂u

∂t
=
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]
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φcu
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where the FC effects are included through the rate equation
for the normalized carrier density φc [35]:

dφc

dτ
= θ |u|4 − τcφc, (2)

with the boundary condition φc(t,−TR/2) = φc(t +
�t,+TR/2) (i.e., cumulative accumulation of FC density is
considered over the round trips) [16]. The parameters used
in Eq. (1) are rescaled and given in Table I. In the absence
of TPA (K = 0), higher-order dispersion (δn>2 = 0), IRS
(τR = 0), self-steepening (τsh = 0), and free carriers (θ = 0),
Eq. (1) reduces to the standard LLE, the temporally localized
steady-state solution of which admits the unperturbed CS
[3,36]. Here, we consider the GVD to be negative (δ2 = −1)
and neglect all the higher-order dispersion terms (δn>2 = 0)
for simplicity. The standard split-step Fourier method [32]
is used to solve this inhomogeneous NLSE numerically
by launching a standard sech pulse in the anomalous
dispersion domain. Note that, unlike conservative Kerr
solitons (governed by NLSE) [32] or the Pereira-Stenflo
type of dissipative solitons (governed by GLE) [33], the CS
does not have any well-defined mathematical structure, hence

TABLE I. The rescaled parameters of Eq. (1). L, α, and 


are the cavity round-trip length, total cavity loss, and coupling
power transmission coefficient, respectively. The silicon nonlin-
ear parameter γ = γR + iγI , with γR = 2πn2/(λ0 Aeff ) and γI =
βTPA/(2Aeff ), where n2 ≈ (4 ± 1.5) × 10−18 m2 W−1 and βTPA ≈ 8 ×
10−12 mW−1. At λ0(= 2πc/ω0) = 1.55 μm, the FCA cross section
is C ≈ 1.45 × 10−21 m2 and kc ≈ 1.35 × 10−27 m3 [16,37,38].

Description Rescaled/normalized as Refs.

Slow time, t αt/tR → t [3]
Fast time, τ τ

√
2α/[|β2(ω0)|L] → τ [3]

Fast time normalization
time scale, τs τs = √|β2(ω0)|L/(2α) [3]
Intracavity field
amplitude, A u = A

√
γRL/α [3]

Driving field
strength, Ain S = Ain

√
γRL
/α3 [3]

Phase detuning, δ0 � = δ0/α [3]
nth-order dispersion
parameter, βn(ω) δn = 2βn(ω)/[n!|β2(ω0)|τ n−2

s ] [3]
Round-trip time, tR TR = tR/τs [3]
IRS parameter, TR τR = TR/τs [32]
Self-steepening parameter τsh = 1/(ω0τs ) [32]
TPA coefficient K = γI/γR = βTPAλ0/(4πn2) [15]
FC density, Nc φc = CNcL/α [16]
FC generation term θ = βTPACτsα/(2h̄ω0A2

eff
Lγ 2

R ) [16]
FCD coefficient μ = 2πkc/(Cλ0) [16]
FC recombination time, tc τc = τs/tc

we rely on the sech pulse shape as an input for numerical
simulation.

III. VARIATIONAL ANALYSIS

The governing LLE [Eq. (1)] contains TPA, free carriers,
and higher-order nonlinear terms as perturbations. The im-
portant question is how these terms affect the stability and
dynamics of the CS solution of LLE. One can study their
impact by simply solving Eq. (1) numerically, but this ap-
proach unveils limited physical insight. We treat the four terms
as small perturbations and study their impact theoretically
through a variational analysis. The variational method has
been used with success in the past for many pulse-propagation
problems [25–31] where a suitable Ansatz for the pulse shape
is required. The technique is based on the assumption that
the functional form of the pulse shape remains intact in
presence of small perturbations but its parameters appearing
in the Ansatz (amplitude, width, position, phase, frequency,
etc.) may vary with propagation. In our case, the perturbation
theory is developed by introducing the Ansatz [7,39]

u(t, τ ) =
√

E (t )η(t )

2
sech{η(t )[τ − τp(t )]}

× exp{iφ(t ) − i�p(t )[τ − τp(t )]}, (3)

where the five parameters E (pulse energy), η (inverse of
temporal pulse width), τp (temporal peak position), φ (phase),
and �p (frequency peak position) are now assumed to evolve
with slow time t . The actual CSs are the localized pulses
sitting on top of a CW background. The Ansatz we consider
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here, however, does not include any chirp and background.
We compromise the chirp and background term because in
the presence of these two parameters Eq. (A4) becomes
nonintegrable and it is difficult to deduce any closed-form
expressions which we aim for. However, the present form
of the Ansatz allows for the temporal and spectral shifts of
CSs. The variational method results in the following set of
five coupled (four ODEs and one self-consistent equation)
equations (see Appendix A):
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π
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These equations provide considerable physical insight since
they show which perturbations affect a specific pulse param-
eter. For example, the Raman parameter τR and FC parameter
θ appear in the equation for the frequency shift �p and the
terms containing them have opposite signs. This immediately
shows that the IRS leads to a spectral redshift of the CS,
whereas the FC effect counterbalances this by imposing a
blueshift. The total energy E [Eq. (4)] of the CS is affected
by linear, TPA, and FCA losses, which is compensated by
the driving field (S) and eventually forms a steady state
where dE/dt = 0. Exploiting the variational result we find
that before achieving a steady value E experiences a damped
oscillation. The temporal shift of the CS is also affected by the
free carriers and Raman scattering. These kinds of physical
insights are valuable in interpreting numerical results. In the
following sections, we investigate the effects of individual
perturbation on the stability and dynamics of the CS. We also
compare the analytical results based on variational treatment
with the full numerical simulations of Eq. (1).

IV. IMPACT OF TWO-PHOTON ABSORPTION ON THE
CAVITY SOLITON

In semiconductor-based microresonators, the presence of
TPA is relevant, which modifies the stability criteria of the
system and leads to a change in amplitude and pulse width of
the CS. Using stability analysis based on the CW bistability

−3 −2 −1 0 1 2 3
0

2

4

6

τ

|u
|2

(a)

FIG. 1. (a) Formation of the CS in presence (K = 0.04) and in
absence (K = 0) of TPA at t = 20 is represented by dashed-gray and
dashed-blue lines, respectively, when the sech pulse is used as input.
The solid gray and blue lines give the variational predictions of the
pulse shape for K = 0.04 and 0, respectively. (b) Temporal evolution
of the CS over time t for K = 0.03 with � = 3, S = √

3.5.

analysis [18] and MI analysis [19] we find that in the presence
of TPA the threshold values of the parameters are modified
and as a result the dynamics of the CS is also influenced by
them. We also find that, for a given set of input parameters,
there exists an upper limit of the TPA coefficient (Kmax)
beyond which the CS ceases to exist. In Fig. 1(a) we plot the
output profile of the generated CS in presence (for K = 0.04)
and in absence (K = 0) of TPA. The complete evolution of
the CS is captured in Fig. 1(b) where an initial oscillation
is evident. Note that, in case of a standard Kerr soliton, the
peak amplitude [A(z)] decays adiabatically due to TPA with an
attenuation rate of [1 + 8KA(0)2z/3]−1/2 [40]. In contrast, in
the case of the CS, the amplitude does not decay continuously
but attains a stable value for K < Kmax. It is evident from
Fig. 1(a) that the peak amplitude of the stable CS for K �= 0
is reduced compared to the case when K = 0. Numerically it
is found that, for the input parameters � = 3 and X = |S|2 =
3.5, there is a maximum value of K = Kmax = 0.05. We try
to understand this critical phenomenon by steady-state CW
bistability analysis, MI analysis, and variational method. In
the subsequent sections, we derive all the expressions that are
modified due to TPA.

A. Homogeneous steady-state solutions

In the presence of TPA (K �= 0), the steady-state (∂u/∂t =
0), homogeneous (∂u/∂τ = 0) solution of Eq. (1) satisfies the
following cubic equation:

X = (1 + K2)Y 3 − 2(� − K )Y 2 + (�2 + 1)Y, (9)

where Y = |us|2 and X = |S|2 are the intracavity and CW
driving power, respectively. It is evident that the steady-state
and homogeneous solution of the LLE now depends on the
TPA parameter K . In absence of TPA (K = 0), Eq. (9) is
converted to the well-known cubic equation of dispersive op-
tical bistability for the unperturbed LLE, X = Y 3 − 2�Y 2 +
(�2 + 1)Y [1].

B. CW bistability analysis

Optical bistability analysis in passive Kerr resonators is
useful to retrieve different important properties, such as
threshold conditions of pump power and the pump detuning
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FIG. 2. (a) Kerr bistability in (X,Y ) parameter space in the case of a homogeneous field for three different values of K . The turning points
are shown by X± (for K = 0) and X TPA

± (for K �= 0). (b) Kerr bistability in (X,Y ) parameter space, where the dashed parts are unstable. (c) The
region of the intracavity MI for anomalous dispersion. The modulationally unstable region is indicated by the shaded area. (d) The steady-state
CW intracavity power (black curve), peak intensity of the MI patterns (dashed blue curve), and peak intensity of CSs (solid green curve) as
a function of �. The variation of (e) temporal pulse width (τw = 2η−1) and (f) peak intensity (|u0|2 = Eη/2) over the round-trip time t for
K = 0.03. Saturated peak intensity (g) and temporal pulse width (h) as a function of the TPA coefficient. Equations (16) and (17) give the
closed-form saturated peak intensity and temporal pulse width, respectively.

that initiates the stable pattern structures [3]. In addition to
this, the bistability analysis facilitates the understanding of
the impact of TPA on the steady-state solution of the LLE.
This analysis is important as the coexistence of patterned and
CW solutions results in the formation of the CS [1]. The
threshold value of detuning that initiates the optical bistability
can be evaluated from Eq. (9), by setting dX/dY = 0. For
nonvanishing TPA, the steady-state intracavity power Y± is
given as

Y TPA
± = 2(� − K ) ±

√
(� − K )2 − 3(K� + 1)2

3(1 + K2)
. (10)

It is easy to show from Eq. (10) that the onset of optical
bistability for the unperturbed LLE (�c = √

3) [19,21] is
modified in presence of TPA as

�TPA
± > [4K ±

√
3(1 + K2)]/(1 − 3K2). (11)

Unlike the unperturbed case, here we have a range of K values
for which the bistability can occur. Equation (11) holds for
�TPA

+ with K < 1/
√

3 , and �TPA
− with K >

√
3 . The turning

points on the bistability curve (X±) can be calculated as a
function of � and have the following form:

X TPA
± = 2

27(1 + K2)2
[(� − K ){(� − K )2 + 9(K� + 1)2}

±
√

(� − K )2 − 3(K� + 1)2
3
]. (12)

In the absence of TPA (K = 0), this equation reduces to
the well-known expressions of up-switching (X+) and down-
switching (X−) input powers [1]. Also, we can express Eq. (9)

in terms of detuning � in the presence of TPA as

� = Y ±
√

X/Y − (1 + KY )2. (13)

In Fig. 2(a) we plot the steady-state CW response [Eq. (9)]
for three distinct cases K = 0 (unperturbed), 0.1, and 1. The
curve for K = 0.1 falls within the range of K < 1/

√
3 and

the bistability is evident with � > �TPA
+ (≈ 2.22). There is no

bistability for K = 1 as it is in the forbidden range 1/
√

3 <

K <
√

3. On the other hand for K >
√

3, even though the
bistability occurs for � <

√
3, the intracavity power and the

input power have to be negative to achieve this, which is
not physical. In Fig. 2(a) we also show the up-switching and
down-switching points (turning points) for K = 0 and 0.1.
The dotted curves in between turning points represent the
unstable region, where no stable solution can be found. The
interpretation of this instability is discussed in detail in the
following section using the MI analysis.

C. Modulation-instability analysis

Due to the interplay between dispersion and nonlinear Kerr
effect a CW field spontaneously breaks up into a periodic
structure through the MI dynamics. Under MI analysis we
introduce the Ansatz in the form u(t, τ ) = us + a+(t )ei� τ +
a−(t )e−i� τ which we insert in Eq. (1) that leads to the
matrix equation of sideband amplitudes a+ and a−. The
MI gain, which is the eigenvalue values of the matrix M,
can be evaluated from eigenvalue equation |M − �I| = 0
(see Appendix B). In the case of TPA, the intracavity MI
gain (�TPA) with dimensionless sideband frequency (�) is
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given by

�TPA = −(1 + 2KY ) ±
√

Y 2(1 + K2) − δ̃2
TPA, (14)

where δ̃TPA = (2Y + δ2�
2 − �). An instability arises when

�TPA becomes real positive. In the case of homogeneous
perturbations (� = 0) this can be achieved when√

4Y � − �2 + (K2 − 3)Y 2 � 1 + 2KY. (15)

Note that the simplification of Eq. (15) is identical to the
negative slope of the CW bistability curve (intermediate
branch) which corresponds to the unstable region. So, we can
conclude from MI analysis that under the steady-state CW
case the lower and upper branches are always stable, while
the intermediate branch (negative slope) is always unstable
[shown in Fig. 2(a)].

In the case of periodic perturbation to the intracavity field
(� �= 0), with δ2 = −1, the MI gain is obtained when the
threshold condition corresponding to �TPA = 0 is satisfied
[21]. In the presence of TPA (K �= 0), we calculate the thresh-
old conditions that have to be satisfied in order to bring about
the intracavity MI, which take the form

Y � FTPA and Y � �/2, with FTPA = 2K + √
K2 + 1

1 − 3K2
.

Note that if we neglect the TPA coefficient (K = 0) the
threshold conditions of MI become Y � 1 and �/2, which
is the usual condition of MI for the unperturbed LLE [1].
In Fig. 2(b) we plot the bistability curve in (X, Y ) pa-
rameter space for � = 4 and K = 0.1. The modulationally
unstable region (shaded region) is shown in Fig. 2(c) and
the correlation is drawn with Fig. 2(b). Unlike the case
of Fig. 2(a), here periodic perturbations (� �= 0) make the
upper branch unstable as shown by the dashed portion of
the bistability curve in Fig. 2(b). In Fig. 2(d) we plot the
bistability curve (black curve) � vs Y for X = 3.5 with a TPA
coefficient of K = 0.03. The peak intensity of MI patterns
as a function of � is shown by the dashed blue line. The
minimum value of detuning where MI starts is calculated
from Eq. (13) with the threshold MI condition as �TPA

MI =
FTPA −

√
X/FTPA − (1 + KFTPA)2. We also plot the peak

intensity of the stable CS as a function of � (green curve)
and indicate the limiting points of the CS branch �TPA

↑ [3]
and �TPA

max . The theoretical expression of �TPA
max is calculated

analytically exploiting the variational analysis in the following
section. In Fig. 3 we show an attractor chart of the LLE
[41,42] in the parameter space (X, �). In this plot we illustrate
different dynamical regimes that are separated by transition
lines as indicated in the figure.

D. Perturbative analysis

We adopt a semianalytical variational technique to study
the complex dynamics of a perturbed CS under TPA. The
treatment allows us to explore the problem with greater in-
sights. In this process, we derive a set of coupled ODEs that
predicts the change in amplitude and pulse width of the CS
under TPA. In Fig. 1(a) we plot the shape of the CS obtained
numerically by solving the LLE for K = 0 (blue dotted line)

FIG. 3. Different dynamical regimes of operation and the transi-
tion lines in the LLE in the case of TPA.

and K = 0.04 (gray dotted line). The corresponding varia-
tional Ansätze are also depicted in the same plot. It is observed
that the peak amplitude of the input pulse initially experiences
an oscillation that is damped down to a steady value to form a
CS. This feature is illustrated in Figs. 1(b), 2(e), and 2(f). The
variational results (solid lines) agree well with the numerical
simulations (dashed lines). In the absence of TPA, the satu-
rated peak intensity of the CS is given as |u0|2sat ≈ π2S2/4 [see
Eq. (A10)]. It is obvious that this saturated value will reduce
in presence of TPA (K �= 0). In Figs. 2(e) and 2(f) we plot
the evolutions of temporal width and peak intensity of the CS
for nonvanishing K . The red dotted lines indicate the results
obtained from the full numerical solution of LLE, whereas
the blue solid lines represent the variational outcome that we
achieve by solving the set of coupled ODEs [Eqs. (4)–(8)] for
K �= 0. During both calculations, we have kept other pertur-
bations zero. The coupled equations become more useful if
we decouple them with proper approximations. We can obtain
the saturated values of the intensity and temporal width under
TPA (K < Kmax) by approximating Eqs. (4) and (8), which
takes the following form:

|u0|2sat ≈ 1
4 [A1/3/K − 2A−1/3], (16)

τw sat = 2
√

2/|u0|sat, (17)

with A = 3πSK2 + √
8K3 + 9π2S2K4. In Figs. 2(g) and 2(h)

we demonstrate how the saturated intensity (|u0|2sat) and pulse
width (τw sat) depend on the TPA parameter K (< Kmax). Note
that the variational results [solid line in plot (g)] disagree
more for small values of K . The accuracy of variational
treatment largely depends on the proper choice of initial
Ansatz function. Actually, the results become more accurate
when the Ansatz fits well with the actual pulse shape. If we
carefully study Fig. 1(a), we find that the proposed Ansatz
(solid line) agrees better with the actual pulse shape (dashed
line) for larger K value. Hence it is expected that we get better
agreement for a relatively larger K , which is indeed the case.

The variational analysis [Eqs. (4), (7), and (8)] can also
determine the theoretical limit of �max(= π2X/8) up to which
the unperturbed CS can sustain [see Eq. (A12)]. In the pres-
ence of TPA, using the same analysis we can derive the
equation

�
(

4
3 K� + 1

)2 = �max, (18)
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from which we can calculate the maximum values of � and
K . For a fixed K, the maximum detuning �TPA

max is calculated by
putting � = �TPA

max in Eq. (18) and solving the cubic equation,
that provides a new theoretical limit of the detuning up to
which the CS can sustain under TPA:

�TPA
max = (K − B1/3)2

4K2B1/3
, (19)

where B = K3 + 18�maxK4 + 6
√

�maxK7(1 + 9�maxK ).
For a given K (= 0.03) and an external power X (= 3.5), the
maximum detuning comes out to be �TPA

max = 3.36. For the
same set of (K, X ) we run our simulation and confirm that the
CS exists for the maximum value of detuning � ≈ 3.4, which
agrees closely with our theoretical prediction. Similarly, for
fixed values of � and X we can calculate the maximum value
of the TPA coefficient (Kmax) up to which the CS can sustain.
By solving the quadratic equation for Kmax [Eq. (18)] we
obtain

Kmax = − 3

4�2
(� −

√
�max�). (20)

For a given X = 3.5 and � = 3 we have the theoretical value
of Kmax = 0.0499 up to which the CS can exist, that matches
with our numerical results of K = 0.05.

V. IMPACT OF FREE CARRIERS
ON THE CAVITY SOLITON

The wide transparency and large material nonlinearity of Si
make it an advantageous photonic component for integrated
optical devices such as a microcavity. However, in a realistic
Si-based microresonator, when pumped below 2.2-μm wave-
length, TPA becomes dominant. This leads to the generation
of free carriers in the form of electron-hole pairs that intro-
duces additional loss (FCA) and also changes the refractive
index through FCD. We take into account these effects in the
LLE where the rate equation of FC is coupled to it [Eq. (1)].
The stability and dynamics of CS are expected to be affected
by the FC perturbation. The full numerical simulation reveals
that the spatially accumulated FC density (φc) over multiple
round trips modifies the stability condition of CS excitation.
In order to grasp the role of free carriers on the stability
of CS, we numerically solve the coupled LLE for � = 3,
X = |S|2 = 3.5, and μ = 3.7741 which is the realistic value
calculated in [16]. The accumulated FC density over the first
round trip is calculated as φc = 0.18. The CS is found to be
formed for this value of FC density. But the stable structure of
the CS is disrupted in the second round trip when FC density
reaches φc = 0.36. The accumulation of the FC density over
successive round trips is calculated through the boundary
condition φc(t,−TR/2) = φc(t + �t,+TR/2) [16]. In the
following sections, using steady-state CW bistability analysis
we derive threshold values of the system parameters that are
necessary to excite the CS.

A. Homogeneous steady-state solutions

The circulating electric field inside the Si microresonator
accumulates free carriers. Under FC generation (φc �= 0) the
intracavity power Y = |us|2 relates the driving field X as [the

steady-state CW solution of Eq. (1)]

X = Y 3 − 2(� + μφc)Y 2

+ {(� + μφc)2 + (1 + φc/2)2}Y. (21)

This steady-state CW solution is a cubic equation of Y which
is generally a function of � and X , and in case of perturbation
due to free carriers it depends on μ and φc. In Figs. 4(a) and
4(b) we plot Eq. (21) for Y as a function of � (for fixed X ),
and as a function of X (for fixed �). From these figures, it
is evident that depending on the values of system parameters
the intracavity power becomes multivalued and we get three
solutions in total. Using CW bistability analysis and MI
analysis we calculate the expressions of critical parameters,
turning points, and also the stable and unstable branches of
bistability curves.

B. CW bistability analysis

Similar to the TPA perturbation, here the impact of free
carriers on the steady-state CW solutions of the LLE is
analyzed, which is essential for the existence of the CS.
Exploiting the cubic equation [Eq. (21)] we can calculate the
analytical expression of the threshold detuning �FC

c which
initiates the optical bistability. �FC

c can be calculated from the
expression of the steady-state intracavity power Y± (by setting
dX/dY = 0):

Y FC
± = 2(� + μφc) ±

√
(� + μφc)2 − 3(1 + φc/2)2

3
. (22)

Here we find that the threshold detuning depends on the FCD
coefficient (μ) and density of the generated free carriers (φc)
as

�FC
± > ±

√
3(1 + φc/2) − μφc . (23)

For a fixed FCD coefficient μ ≈ 3.774, bistability occurs for
�FC

+ with φc < φc max[= √
3/(μ − √

3/2)]. The expression of
turning points can be calculated in the presence of free carriers
as

X FC
± = 2

27 [(� + μφc){(� + μφc)2 + 9(1 + φc/2)2}
±

√
(� + μφc)2 − 3(1 + φc/2)2

3
]. (24)

It is also possible to represent Eq. (21) in terms of �, which
takes the following form:

� = (Y − μφc) ±
√

X/Y − (1 + φc/2)2. (25)

C. Modulation-instability analysis

Under FC generation, the intracavity MI gain (�FC)
is given by the eigenvalues of the matrix M as (see
Appendix B)

�FC = − (1 + φc/2) ±
√

Y 2 − δ̃2
FC, (26)

where δ̃FC = (2Y − � − μφc + δ2�
2). Depending on the sys-

tem parameters, instability arises for real positive values of
�FC [21]. For homogeneous perturbations (� = 0), the insta-
bility arises when√

Y 2 − (2Y − � − μφc)2 � 1 + φc/2. (27)
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FIG. 4. Kerr bistability in (a) (�,Y ) parameter space for two values of φc and in (b) (X,Y ) parameter space. (c) The region of the
intracavity MI for anomalous dispersion. The modulationally unstable region is indicated by the shaded area. (d) Temporal evolution of the
CS profile for realistic θ = 0.0011 and μ = 3.7741 with the parameters � = 3 and X = 3.5 for a single round trip. The inset gives the same
evolution for multiple round trips. The unperturbed (dotted line) and perturbed (solid line) temporal CSs are also shown on the overhead; also
the normalized φc is shown at t = 100 for τc = 10−3 by the light-green-shaded area on the top. (e) The CW response (black curve) and the
peak intensity of CSs (solid green curve) as a function of �. (f) The variation of temporal delay of the CS as a function of t is shown for a
single round trip. The red circles give numerical data, whereas the solid blue line gives variational prediction. The closed form of the temporal
delay [Eq. (28)] is also plotted by a green dot-dashed line. (g) Comparison between the numerical (red circles) and variational (solid blue
line) results of the temporal delay of the CS as a function of θ . (h) Different dynamical regimes of operation in the LLE for μ = 7.7741 and
θ = 0.0011.

This expression provides the unstable solutions of the interme-
diate branch of the CW bistability curve in the presence of free
carriers. Now, for the periodic perturbation to the intracavity
field (� �= 0), with δ2 = −1, the MI arises (by setting �FC =
0) when Y satisfies the conditions Y � (1 + φc/2) and (� +
μφc)/2. The minimum value of detuning where MI starts is
also calculated from Eq. (25) as �FC

MI = (1 + φc/2 − μφc) −√
X/(1 + φc/2) − (1 + φc/2)2.
In Figs. 4(a) and 4(b), the unstable intermediate and upper

branches are illustrated by the dashed portion of the bistability
curves. From these plots, it is evident that the accumulation of
free carriers (φc) due to multiple round trips shifts the bista-
bility curve and modifies the threshold value of the param-
eters. For φc = 0.18, which is less than φc max (≈ 0.596), the
bistability can occur for relatively small detuning � > �FC

+ (=
1.2086). The turning points are also depicted in Fig. 4(b) as
X FC

± . In Fig. 4(c) we show the modulationally unstable region
(shaded region), and draw a correlation with Fig. 4(b). The
accumulation of free carriers (φc) due to multiple round trips
shifts the bistability curve that limits the generation of CS.
We illustrate this phenomenon in Fig. 4(d) by plotting the
evolution of the CS, which we obtain by solving Eq. (1) for
φc �= 0. In the inset, we demonstrate how the stable CS ceases
to exist after a few round trips with larger FC density. In

Fig. 4(e) we plot the bistability curve (black curve) � vs Y
for X = 3.5 with φc = 0.18, where the dashed portion gives
the unstable region. In the same plot, we depict the variation
of the peak intensity of the stable CS as a function of � (solid
blue curve). We also indicate the onset detuning �TPA

↑ = 1.86,
and the maximum detuning �TPA

max = 3.8 up to which the CS
can exist in the presence of free carriers.

D. Perturbative analysis

The influence of free carriers on the dynamics of the
CS can be understood if we solve the variational equations
Eq. (4)–(8) containing only the FC term (θ �= 0). FCA reduces
the steady amplitude of the CS and the pulse energy E
saturates to Esat ≈ √

2 πS/(1 + πμθS/2
√

2) [see Eq. (A14)].
The CS accelerates due to the FC induced index change and
experiences frequency blueshifting. The frequency blueshift-
ing due to the FCD is approximately calculated as �sat

p FC
≈√

2 μθ (Esat ηsat )5/2/15πS [see Eq. (A15)]. Note that it is diffi-
cult to obtain a clear spectral shift �p of the CS in the presence
of the FC through numerical simulation as the sidewing of the
spectrum is destroyed. However, the temporal acceleration of
the CS, as a consequence of spectral blueshift, is efficiently
calculated by exploiting the variational results. The expression
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FIG. 5. (a) Peak intensity of the intracavity field as a function of cavity detuning � for X = 3.5. The black curve represents the CW
solution, while red c-d and blue a-b curves show CS solutions with and without IRS (τR = 0.04), respectively. The dashed curves correspond
to unstable solutions. The vertical dashed line represents the point where � = 3. (b) Temporal (τ ) and (c) spectral [� = (ω − ω0)τs] evolution
of CS profiles for τR = 0.04 with parameters � = 3 and X = 3.5. The unperturbed (dotted trace) and perturbed (solid line) CSs in temporal
and spectral domains are also shown on the top of each panel. The inset of (b) gives the spectrogram plot at t = 30. The variation of (d)
frequency shift and (e) temporal delay of the CS over the round-trip time t . The saturated frequency (f) and corresponding temporal delay at
t = 20 (g) as a function of τR.

of the temporal shift is approximated as [see Eq. (A16)]

τp(t ) ≈ ( − 2 �sat
p FC

− 7
72θE2

sat

)
t . (28)

The group delay of the CS (τp) over slow time t is plotted
in Fig. 4(f), where the numerical data (solid dot) are in good
agreement with the variational result (solid blue line) that we
obtain by solving the set of ODEs Eq. (4)–(8). The analytical
expression of temporal shift [Eq. (28)] is also depicted in the
same plot with the dotted green line. Note, the closed form
we derive in Eq. (28) is based on a certain approximation
(see Appendix A) and this approximation might lead to slight
deviation. In Fig. 4(g) we plot the τp (the group delay of
the CS) as a function of θ (FC generation term) at t = 100,
where the variational predictions (solid blue line) match well
with the numerical data (solid dots). Exploiting the results
obtained from the variational analysis [Eqs. (4), (7), and (8)]
we try to determine the theoretical limit of �FC

max, that takes
the following form:

�FC
max ≈ �max−θηsatE2

sat

24

(
5μ + ηsatEsat + θη2

satE
3
sat/24

)
.

(29)

From our approximated closed-form expression [Eq. (29)] we
get �FC

max ≈ 4.0, which is close to the value that we obtained
by full numerical simulation. In Fig. 4(h) we illustrate an
attractor chart of the LLE [41,42] in the parameter space
(X, �) for nonvanishing φc. In this plot, we also depict the
main bifurcation lines X FC

± and different dynamical regimes

that are separated by transition lines. It is evident from this
figure that the impact of FCA on the CS is significant and the
stable CS is generated within a very limited region (region A).

VI. IMPACT OF INTRAPULSE RAMAN SCATTERING
ON THE CAVITY SOLITON

A. Homogeneous steady-state solutions, stability
and existence of CSs

The stability of the steady-state solution of the unperturbed
LLE is governed by the parameters � and S [3]. IRS intro-
duces an additional parameter τR which influences the stability
and limits the duration and bandwidth of the temporal CS
[9]. The CW bistability condition does not change due to the
IRS and gives the identical Eq. (9) with K = 0. Note that we
perform the MI analysis in the presence of IRS, and notice
that the MI gain (positive real value) does not contain any
term related to τR. Hence MI calculation for IRS does not
provide any new information regarding the stability of the
steady-state solution of the LLE. In Fig. 5(a) we plot the CW
bistability curve in (Y,�) parameter space which has the MI
unstable region (dashed portion). To illustrate how IRS affects
the stability and existence of CSs, in Fig. 5(a) we plot |u0|2 as
a function of � at fixed X = |S|2 = 3.5. In order to get |u0|2,
we numerically solve Eq. (1) (for IRS perturbation alone) in
presence and absence of τR and obtain two lines as depicted
by a-b (τR = 0) and c-d (τR = 0.04). CSs exist for both the
cases τR = 0 and τR �= 0, when � > �↑, the up-switching
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point. The unstable CS under IRS is stabilized through an
inverse Hopf bifurcation at �H1 and sustained up to �H2 and
again becomes unstable [9]. With increasing � the output
intensity of the perturbed CS reduces, which compliments the
variational results. The CS solutions under IRS cease to exist
at a detuning �max which is less than the theoretical limit of
unperturbed detuning of π2X/8. The temporal and spectral
evolutions of a perturbed CS are shown in Figs. 5(b) and 5(c),
respectively, for � = 3 and X = 3.5. The spectrogram is also
shown in the inset of Fig. 5(b). IRS induces a temporal de-
celeration and spectral redshift to the CS. The frequency shift
eventually saturates to a steady value [7,8] over the round-trip
time.

B. Perturbative analysis

In this section we solve the coupled differential equations
obtained by the variational approach [Eqs. (4)–(8)] consid-
ering IRS as the only perturbation (τR �= 0) and compare
the analytical predictions with the results obtained from full
numerical simulations of Eq. (1). In Figs. 5(d) and 5(e) we plot
the evolutions of the frequency shift and temporal position
of a CS perturbed under IRS. As shown in Fig. 5(d) the
frequency shift is stabilized followed by an initial oscillation.
Interestingly the variational treatment (solid blue line) also
captures this initial oscillation with good agreement (red
dotted line). The linear temporal shift τp is also well predicted
by the variation analysis as demonstrated in Fig. 5(e). The
analytical and numerical studies reveal that the parameters
|u0|2, η, and E are stabilized to some fixed values |u0|2sat,
ηsat, and Esat = 2|u0|2sat/ηsat within a few round trips. Con-
sidering the steady frequency down-shifting d�sat

p /dt = 0
and assuming sech(π�sat

p /2ηsat ) cos φ ≈ 1 in Eq. (6), we
can write the expression of the frequency that saturates
as

�sat
p ≈ −2

√
2

15

τR

πS
E

3
2

sat η
7
2
sat. (30)

The saturated frequency down-shifting leads to a monotonous
temporal shift of the CS:

τp(t ) ≈ −2 �sat
p t . (31)

This equation shows that τp varies linearly with slow time
t , which is evident in Fig. 5(e). In the plot the red-dotted
line represents the group delay (τp) of the CS as a function
of t , which we obtain by solving Eq. (1) numerically. The
variational analysis which is the solution of Eqs. (4)–(8)
results in a closed match (solid blue line) with numerical data.
Further, we try to evaluate τp exploiting Eq. (31) and depict
the result (green dotted line) in the same plot. In Figs. 5(f) and
5(g) we plot �sat

p and τp at t = 20 as a function of τR. The full
variational and approximated analytical results agree with the
numerical data.

VII. IMPACT OF THE LOSSY PHASE-MODULATED
DRIVING FIELD ON THE CAVITY SOLITON

Controlled excitation of the CS that persists in driven
passive cavity systems is found to be interesting in different

FIG. 6. (a) The evolution of the CS over round-trip time in three
dimensions for ρ = 0.005. (b) Kerr bistability in (�,Y ) parameter
space. The variation of peak intensity (|u0|2 = Eη/2) over the round-
trip time t for (c) different values of ρ and for (d) different values of
σ . (e) The variation of output peak intensity of the CS with respect to
σ for three different sets of � and |S0|2. For each of these three cases
we find three critical values of σ [(σc )1 ≈ 0.378, (σc )2 ≈ 0.679,
and (σc )3 ≈ 0.879] indicated by solid circles. (f) The variation of
numerically simulated peak intensity over the round-trip time t for
different values of σ at a fixed ρ.

applications [17]. The CS can be controlled by a phase-
modulated driving field. The selective writing and erasing of
the CS can be possible for such an arrangement. Considering
a complex phase of the driving field, the intracavity field
amplitude u(t, τ ) is modeled [3,6] as

∂u

∂t
=

[
−1 + i(|u|2 − �) − i sgn(β2)

∂2

∂τ 2

]
u + S(t ), (32)

where S(t ) = S0 exp[(−ρ + iσ )t], where ρ and σ are the
pump depletion coefficient and the phase of the pump, respec-
tively. Equation (32) is solved numerically for sgn(β2) = −1
and the solutions are plotted in Fig. 6(a) for ρ = 0.005. It is
obvious that the loss due to the pump depletion affects the
existence of CSs.
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A. Homogeneous steady-state solutions

It is easy to obtain the modified steady-state CW solution
of Eq. (32) as

X exp[−2ρt] = Y 3 − 2�Y 2 + (1 + �2)Y. (33)

Equation (33) illustrates that the steady-state CW solution of
the intracavity field depends on slow time t . In Fig. 6(b),
we plot Eq. (33) for ρ = 0.005 in (�,Y ) parameter space
for a fixed X = |S0|2 = 3.5, where the dashed portion of
the bistability curves gives the unstable region. The slow-time
dependence of Eq. (33) modifies the threshold values of the
system parameters over t , and as a result it also modifies
the existence of CSs. It is evident from Fig. 6(a) that the CS
ceases to exist beyond t > 35 for a nonvanishing depletion
coefficient (ρ = 0.005). The impact of σ on the dynamics of
the CS is not trivial and requires a detailed study. Note that
the CW bistability analysis and the MI analysis provide the
same results as those of the unperturbed case. We perform the
MI analysis by considering a lossy (ρ �= 0) phase-modulated
(σ �= 0) driving field as perturbations, but the direct conse-
quence of these terms is not present in the expression of the
MI gain. Only the X that changes with slow time t as X =
|S0|2e−2ρt changes the stability condition of the homogeneous
steady-state solutions of the LLE.

B. Perturbative analysis

To grasp the effects of the phase-modulated external pump
on the formation and stability of the CS, we adopt the
standard variational analysis (see Appendix A), where the
perturbation term contains the driving field S(t ) and linear
loss as ε(u) = S(t ) − u. Using the Ansatz function u(t, τ ) =√

E (t )η(t )
2 [sech{η(t )τ }] exp [iφ(t )], we obtain a set of two cou-

pled ordinary differential equations and one self-consistent
equation describing the dynamics of a perturbed CS under
pump phase modulation as

dE

dt
= − 2E + 2S0 exp(−ρ t )

(
E

2η

)1/2

π cos(φ − σ t ),

(34)
dφp

dt
= 1

3
η(E − η) − � − S0 exp(−ρ t )

×
(

1

2Eη

)1/2

π sin(φ − σ t ), (35)

η = E

4
+ 3S0

2η
exp(−ρ t )

(
1

2Eη

)1/2

π sin(φ − σ t ). (36)

In Fig. 6(c), we plot the evolution of peak intensity obtained
from the full numerical simulation for several values of ρ

and compare the results with variational data by solving the
set of Eqs. (34)–(36). The CS ceases to exist for a critical ρ

which is appreciated by the sudden fall of the peak power.
Note that, the maximum detuning up to which the perturbed
CS can sustain is now time dependent and can be expressed as
�max(t ) = π2S2

0 exp(−2ρt )/8. The evolution of peak inten-
sity for different values of σ (with ρ = 0) and the variation of
peak output intensity (|u0|2out) as a function of σ are also shown
in Figs. 6(d) and 6(e), respectively. It is found that the steady
amplitude of the CS remains almost unaffected by σ up to a

critical limit (σc). The CS does not evolve for σ > σc. This σc

is not unique but depends on the set (�, |S0|2). We illustrate
this result in Fig. 6(e), where variational analysis accurately
predicts σc for three different sets of (�, |S0|2) values. We
further examine that, for nonzero ρ, σ can limit the lifetime
of the CS as shown in Fig. 6(f). The power decays faster over
a round trip for higher values of σ . The decay dynamics of
peak power is again well predicted by variational analysis as
shown by the solid lines. The variational results sustain up
to the knee region of the curves because the Ansatz collapses
after that region.

VIII. CONCLUSIONS

By exploiting the standard variational technique, we study
the dynamics of a perturbed CS excited inside a silicon-based
microresonator where free carriers are generated owing to
TPA. The pulse evolution in such a system is governed by
the coupled mean-field LLE containing additional terms like
TPA, IRS, and FC generation. We treat these additional terms
as small perturbations and execute the variational treatment
by choosing a standard sech pulse as an Ansatz. The varia-
tional treatment provides a set of coupled equations describ-
ing the evolution of individual pulse parameters of the CS
under perturbation. We suitably approximate those equations
to obtain the closed-form expressions for steady amplitude,
temporal and frequency shifts, etc. These closed-form analyt-
ical expressions are useful in understanding the underlying
physics of complex CS dynamics under perturbations. For
each perturbation, we reformulate the stability condition of
the homogeneous steady-state solution of the LLE and derive
explicit expressions of the threshold values of the parameters
for which the bistability initiates. We perform the MI analy-
sis to obtain the stability condition of steady-state solutions
of the LLE against perturbations. Exploiting the variational
treatment, mathematical expressions of maximum detuning,
width, and amplitude of the stable CS are derived. We solve
the LLE numerically using the split-step Fourier method and
demonstrate that the variational results agree well with full
simulations. Finally, we consider the phase-modulated pump
field and investigate its effect on CS dynamics. We find that,
for a given set of detuning and peak pump power, we may
have a critical value of the phase of the pump beyond which
no CS exists. In summary, our semianalytical treatment based
on the variational method provides significant insights in
understanding the complex dynamics of dissipative CSs under
various perturbations.
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APPENDIX A: VARIATIONAL METHOD

In this Appendix, the set of equations Eqs. (4)–(8) is
derived using the variational method. For this we write Eq. (1)
in the form of a perturbed nonlinear Schrödinger equation
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[7,26,32]:

i
∂u

∂t
− a

∂2u

∂τ 2
+ |u|2u − � u = iε(u), (A1)

where a = sgn(β2) and ε(u) contains all the perturbation
terms including the external gain and the loss of the system:

ε(u) = S − u − K|u|2u − iτRu
∂|u|2
∂τ

− τsh
∂ (|u|2u)

∂τ
−

(
1

2
+ iμ

)
φcu. (A2)

Next, we follow a standard procedure [32] and introduce the
appropriate Lagrangian density (LD) for Eq. (A1) as

LD = i

2

(
u∗ ∂u

∂t
− u

∂u∗

∂t

)
+a

∣∣∣∣ ∂u

∂τ

∣∣∣∣2

+ 1

2
|u|4 − � |u|2

+ i
(
ε∗ u − ε u∗) (A3)

and integrate over τ using the Ansatz in Eq. (3) to obtain the
reduced Lagrangian (L = ∫ ∞

−∞ LD dτ ) as

L = − E

(
∂φ

∂t
+ �p

∂τp

∂t

)
+ ηE2

6
+ a

(
1

3
Eη2 + E�2

p

)
− � E + i

∫ ∞

−∞

(
ε∗ u − ε u∗) dτ. (A4)

We use the Euler-Lagrange equation for each pulse parameter
to obtain a set of coupled ODEs for the five parameters that
describe the overall soliton dynamics [32,43]. These equations
govern the evolution of pulse energy E , temporal position τp,
frequency shift �p, phase φ, and inverse of pulse width η as

dE

dt
= 2Re

∫ ∞

−∞
εu∗ dτ, (A5)

dτp

dt
= 2a�p + 2

E
Re

∫ ∞

−∞
(τ − τp)(εu∗) dτ , (A6)

d�p

dt
= −2η

E
Im

∫ ∞

−∞
tanh[η(τ − τp)](εu∗) dτ , (A7)

dφ

dt
= 1

3
Eη − �p

dτp

dt
− � + a

(
1

3
η2 + �2

p

)
+ 1

E
Im

∫ ∞

−∞
εu∗ dτ, (A8)

η = − a
E

4
− a

3

E
Im

×
∫ ∞

−∞

{
1

2η
− (τ − τp) tanh[η(τ − τp)]

}
(εu∗) dτ , (A9)

where Re and Im indicate the real and imaginary parts,
respectively. The ODEs Eqs. (A5)–(A8) and self-consistent
Eq. (A9) are coupled with each other. The final step is to
evaluate all the integrals using ε(u) given in Eq. (A2). This
results in the following set of five coupled (four ODEs and
one self-consistent equation) equations [Eqs. (4)–(8)].

Stationary values of CS parameters

a. Unperturbed case

The reduced variational equations [Eqs. (4)–(8)] may lead
to the closed-form expression of the CS parameters that
describe the steady state. From Eq. (4), the steady-state energy
(dE/dt = 0) of the unperturbed CS is obtained by assuming
φ to be small and cos φ ≈ 1 as

Esat ≈ π2S2

2ηsat
, |u0|2sat = Esatηsat

2
≈ π2S2

4
. (A10)

Similarly, from Eq. (8) we get the steady value of η or the
temporal pulse width τw by considering sin φ ≈ 0 as

ηsat

(
≈ Esat

4

)
=

√
|u0|2sat

2
,

τw sat
(= 2η−1

sat

) = 2
√

2/|u0|sat. (A11)

In the unperturbed case, from Eqs. (5) and (6) we can show
τp sat = 0 and �p sat = 0, which means the CS will move
without any group delay, keeping its initial frequency intact.
Considering dφ/dt = 0 and sin φ ≈ 0 in Eq. (7) and substi-
tuting the values of Esat and ηsat we can obtain the well-known
expression of maximum detuning �max as

�max = π2S2

8
. (A12)

b. Under perturbation

i. TPA. In the case of TPA, |u0|2sat can be calculated from
Eqs. (4) and (8) with the same assumptions that are considered
in the unperturbed case. We derive Eq. (18) from Eqs. (4),
(7), and (8). Eliminating the sin φ term from Eq. (7) by
substituting Eq. (8) and considering the steady state (dφ/dt =
0 and dE/dt = 0), we get

η2 + � − Eη/2 = 0, cos φ = E (1 + KηE/3)

πS(E/2η)1/2
. (A13)

Combining the expressions in Eq. (A13) for maximum critical
parameter cos φ = 1 and using the relation Esat = 4ηsat, we
finally achieve Eq. (18).

ii. FC. The closed-form expression of saturated energy
Esat can be approximately calculated from Eqs. (4) and (8).
ηsat can be approximately written from Eq. (8) as ηsat ≈
(2 + μθEsat )Esat/8. Setting dEsat/dt = 0 we substitute ηsat in
Eq. (4). Assuming the arguments of sech and cos to be small,
we may have sech(π�sat

p /2ηsat ) cos φ ≈ 1. Further neglecting
the higher-order terms of Esat associated with θ (which is
small), we finally arrive at

Esat ≈
√

2 πS/(1 + πμθS/2
√

2). (A14)

From Eq. (6) we can obtain the the closed-form expression of
the saturated frequency blueshift �sat

p FC by setting d�sat
p /dt =

0. Now considering the above assumptions, we can express
the saturated frequency as

�sat
p FC

≈
√

2 μθ (Esat ηsat )
5/2/15πS. (A15)
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The analytical expression of temporal shift can be obtained by
substituting Eq. (A15) into Eq. (5) as

τp(t ) ≈ ( − 2 �sat
p FC

− 7
72θE2

sat

)
t . (A16)

Like TPA, we derive �FC
max [see Eq. (29)] assuming the

frequency shift �sat
p FC

to be small, which we verified using
the variational expression. For the given parameters (X = 3.5,
� = 3) the value turns out to be �sat

p FC
= 0.08, which supports

our assumption.

APPENDIX B: INTRACAVITY MODULATION
INSTABILITY

In this Appendix, we study the intracavity MI, where time-
stationary periodic structures are generated from the breaking
of a homogeneous wave [1]. This linear stability analysis of
the steady-state CW solutions includes the perturbations TPA,
FC, IRS, and the lossy phase-modulated driving field. The
analysis is performed by introducing the following Ansatz to
Eq. (1) [19,21]:

u(t, τ ) = us + a+(t )ei� τ + a−(t )e−i� τ , (B1)

where us is the steady-state CW solution of Eq. (1), a+ and
a− are small sideband amplitudes, and � is the normalized

sideband frequency. The substitution of Eq. (B1) into Eq. (1)
results in two coupled differential equations of the sideband
amplitudes. Linearizing the coupled differential equation with
respect to a+ and a− we get

∂

∂t

[
a+
a∗

−

]
=

[
a1 + a2 + ia3 (−K + a4)u2

s
(−K − a4)u∗2

s a1 − a2 − ia3

][
a+
a∗

−

]
= M

[
a+
a∗

−

]
, (B2)

where M represents a 2 × 2 matrix with a1 = (−1 − 2KY −
φc/2), a2 = τRY �, a3 = (2Y − � + δ2�

2 − μφc), and a4 =
(τR� + i). In this analysis, we assume that the average carrier
density cannot vary with fast time τ and can be considered
as a constant that varies with slow time only [14,22,23]. This
is justified because the spatially accumulated free carriers are
governed by the carrier rate equation that follows a round-trip
boundary condition [16]. Equation (B2) is a system of ordi-
nary differential equations containing the perturbation terms.
The eigenvalues of the matrix M represent the intracavity MI
gain that we use in the main text.
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