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Generalized q-plates and alternative kinds of vector and vortex beams
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We took a generalization of the conventional concept of the q-plate, allowing in its definition nonlinear
functions of the azimuthal coordinate, and simulated the resulting fields of applying this kind of element
to uniformly polarized input beams, both in the near-field (Fresnel diffraction) and the far-field (Fraunhofer
diffraction) approximations. In general terms, when working in the near-field regime, the chosen function defines
the output polarization structure for linearly polarized input beams and the phase of the output field for circularly
polarized input beams. In the far-field regime, it is obtained that when there are nonlinearities in the azimuthal
variable, the central singularity of the polarization field of a vector or vortex beam may divide into several
singularities of lower topological charge, preserving the total charge. Depending on the chosen q-plate function,
different particular behaviors on the output beam are observed, which offers a whole range of possibilities for
creating alternative kinds of vector and vortex beams, as well as polarization critical points and singularity
distributions.
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I. INTRODUCTION

Vector beams are known for showing a nonuniform distri-
bution of the state of polarization (SoP) [1]. The most com-
mon beams of this kind are radially and azimuthally polarized
beams, particular cases of cylindrical vector beams [2], in
which the SoP varies linearly with the azimuthal coordinate
θ . Vector beams have been widely studied because of their
tight-focusing properties [3]. Besides, they have potential ap-
plication to communications [4], optical tweezers and particle
micromanipulation [5–8], material processing [9], quantum
entanglement [10], and more.

There are many methods for creating vector beams, gen-
erally divided into two categories, active and passive. Active
methods consist of modifying the resonant cavity of a laser
for obtaining an output vector beam, while passive ones aim
to modulate the wave front of a conventional laser beam with
suitable optical elements [1]. In the latter case q-plates have
become a convenient choice [11].

A conventional q-plate works as a half-wave plate in which
the director axis rotates as the linear function qθ of the
azimuthal coordinate θ [12–14]. Its matrix representation in
the Jones formalism has the form

Mq(θ ) =
(

cos(2qθ ) sin(2qθ )

sin(2qθ ) − cos(2qθ )

)
. (1)

When a linearly polarized beam passes through such an
element, it becomes a vector beam with a structured polariza-
tion pattern in which the azimuth of the polarization ellipses
varies as the function 2qθ , reaching a total rotation of 4qπ . On
the other hand, when impinging with a circularly polarized
beam, the spin to orbital conversion (STOC) phenomenon
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takes place: the orbital angular momentum (OAM) of the
beam varies according to �l = ±2q, where the plus sign
applies when impinging with left circular polarization and the
minus sign when impinging with right circular polarization.
In other words, if a uniform left circularly polarized beam
(total angular momentum of +1) passes through a q-plate, it
becomes a uniform right circularly polarized vortex beam with
an OAM charge l = 2q [total angular momentum variation of
2(q − 1)]. The value 2q, which gives the times the polariza-
tion vector (or phase) completes a 2π turn along the azimuth
coordinate, is known as the topological charge.

This way q-plates are high versatile elements, with many
potential applications in the field of singular optics, since
they allow alternately the creation of phase singularities (vor-
tex beams with OAM) and polarization singularities (vector
beams). Additionally, the possibility of using spatial light
modulators (SLM), like liquid crystal displays which allow
pixel to pixel phase only modulation [15,16], for the imple-
mentation of these devices gives great flexibility for designing
alternative kinds of vector and vortex beams. It easily allows
extending the concept of the q-plate, including modulations of
the polarization field that are not necessary linear in θ .

Recently there have been advances towards this direction,
creating q-plates with different q values depending on the
region of the element [17], with nonlinear functions of θ for
binary codification [18] or with radial dependence for creating
high-order Laguerre-Gaussian beams [19].

In this paper we simulate an element that arises from
generalizing the concept of the q-plate, allowing arbitrary
(not necessary linear) modulations of the polarization field
of a beam, in such a way that we are able to explore com-
plex beams, with alternative kinds of polarization structures
and singularity distributions, and study their propagation
properties.
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The Jones matrix that describes this generalized q-plate is

M�(θ ) =
(

cos (2�(θ )) sin (2�(θ ))

sin (2�(θ )) − cos (2�(θ ))

)
, (2)

and it represents a half-wave plate in which the director axis
angle is an arbitrary function, �(θ ). The only requirement we
impose is that � is a continuous periodic function in θ , with
the period τ = 2π/n, with n being any integer number.

The infinite possible choices of the function � and the
flexibility in their implementation provided by the use of
SLMs make the generalized q-plate a tool with great potential
in the field of beam tailoring, allowing further research of
new effects and focusing properties of alternative kinds of
vector and vortex beams. Here we demonstrate the creation
of two types of beams using this technique, for the purpose of
illustrating with simple cases the effect of focusing nonlinear
distributions of polarization and phase, with and without net
topological charge.

In Sec. II we simulate generalized q-plates with nonlinear
dependence in the azimuthal coordinate, showing its effect on
the intensity, phase, and polarization distributions of a uni-
form circular section input beam (top hat beam), for different
polarizations. We show the resulting fields in both the near-
field and the far-field approximations and give an explanation
of these results based on Fourier analysis. We outline in
Sec. III a proposal for an experimental implementation using
a reflective liquid crystal display (LCoS) with phase-only
modulation. The main conclusions are given in Sec. IV.

II. NONLINEAR GENERALIZED q-PLATES
IN THE AZIMUTHAL VARIABLE

When the function � grows nonlinearly in the azimuthal
coordinate θ , a variety of interesting effects can be observed
over the resulting field’s amplitude, phase, and polarization
structure; in this section we show some examples of the
different behaviors found.

We chose these simple examples for illustrating the effect
of nonlinearity, one changing the growth power of the az-
imuthal phase without changing the total modulation and the
other setting up a nonlinear modulation that leaves null the net
topological charge.

A. Polynomial growth

We have simulated a plate defined by the nonlinear
function �(θ ) = q(2π )(1−p)θ p. The multiplicative constant
(2π )(1−p) is due to the continuity condition: �(2π ) = q2π ,
meaning that the total azimuthal variation is q times 2π , with-
out discontinuous steps in � after a 2π period in θ . Figure 1
shows some examples of the simulated argument function of
these plates [2�(θ )] for different powers of p and values of
q. The total azimuthal variation of the argument function is
given by 2q times 2π , which defines the topological charge of
the created beams, as will be seen soon. These beams illustrate
in a simple way the effect of breaking linearity in the q-plate
element, in both in near- and far-field propagation.

We studied how these generalized q-plates affect an input
beam with uniform phase and intensity within a circular
profile (top-hat beam), simulating both the obtained field just

FIG. 1. Argument phase function of the generalized q-plates
determined by a polynomial growth in θ . The first, second, and
third columns show the cases for powers p = 1, p = 2, and p = 3,
respectively, while the first, second, and third rows show the cases
for topological charges q = 1, q = 3/2, and q = 2, respectively.

after passing through the plate and that obtained in the far-field
approximation, i.e., the Fraunhofer diffraction of the former.
For a vector field, this is performed simply by computing the
Fourier transform of each of the x̂ and ŷ components of the
field [20],

F{E(x, y)} = Ẽ(u, v) =
(

Ẽs(u, v)

Ẽp(u, v)

)

=
(F{Es(x, y)}
F

{
Ep(x, y)

}). (3)

This is implemented numerically by means of the two-
dimensional discrete Fourier transform of an N × N matrix,
where each element is the corresponding value of the electric
field E(x, y) after passing through the generalized q-plate.

Figure 2 shows the intensity and polarization distribution,
as well as the azimuth of the polarization ellipses, at the output
plane of the generalized q-plate (the last one is represented
with a gray scale from −π/2 to π/2) for powers p = 1 and
p = 2, and different values of q, when the input beam is
linearly polarized in the vertical direction. The azimuth of
the polarization ellipses is obtained by computing the phase
of the complex Stokes field S12(x, y) = S1(x, y) + iS2(x, y),
where Si(x, y) are the Stokes parameters of the electric
field [21].

In the case when p = 1 (linear q-plate) and q = 1/2 an
azimuthally polarized vector beam is obtained, whose topo-
logical charge is determined by the number of times that the
polarization vector gives a complete turn around the beam
axis [16] (in this case 2q = 1). When increasing the power to
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FIG. 2. Polarization ellipses and their azimuths resulting from
input vertical polarization for polynomial generalized q-plates. The
first and third columns show intensity and polarization ellipses for
p = 1 and p = 2, respectively. The second and fourth columns show
polarization azimuths for p = 1 and p = 2, respectively. The first,
second, and third rows show cases with topological charges q =
1/2, q = 1, and q = 3/2, respectively. The output consists of vector
beams in which the azimuth grows accordingly to the power p.

p = 2 the topological charge does not change, while the cylin-
drical symmetry is lost, since the azimuth grows quadratically
with θ . The same behavior is seen for higher topological
charges.

FIG. 3. Polarization ellipses and phase distributions resulting
from input left circular polarization for polynomial generalized q-
plates. The first and third columns show intensity and polarization
ellipses for p = 1 and p = 2, respectively. The second and fourth
columns show the phase for p = 1 and p = 2, respectively. The first,
second, and third rows show cases with topological charges q = 1/2,
q = 1, and q = 3/2, respectively. The output consists of uniformly
right circular polarized beams in which the phase grows accordingly
to the power p.

FIG. 4. Polarization ellipses and their azimuths resulting from
input vertical polarization for polynomial generalized q-plates, in
the far-field regime. The first and third columns show the intensity
distribution and the polarization structure for p = 1 and p = 2,
respectively. The second and fourth columns show the azimuths
of the polarization ellipses for p = 1 and p = 2, respectively. The
first, second, and third rows show the cases for q = 1/2, q = 1, and
q = 3/2, respectively.

In Fig. 3 the behavior of these elements when they are
illuminated with circularly polarized light is analyzed. In
this case the polarization ellipse fields and the beam phase
distributions are shown. We choose (from now on) to represent
these magnitudes because, as a general fact for q-plates,
when input polarization is linear, the modulation occurs in the
polarization field, but when input polarization is circular, it
occurs in the phase of the field, while the polarization remains
uniform, with the opposite sense of rotation due to the STOC
phenomenon.

As it was previously said, for input left circular polarization
the STOC phenomenon, giving place to a output uniform right
circularly polarized beam, carrying OAM with the topological
charge l = 2q was observed. This was seen in the 2π turn
of the beam phase around the propagation axis. The way the
phase grows depends on the power p.

An interesting effect arises when the Fraunhofer diffraction
patterns of these beams are calculated. Figure 4 shows the
result from propagating the output beams obtained when
impinging with linear vertical polarization (Fig. 2). Both, the
polarization ellipses superposed to the intensity distribution
and the azimuths of the ellipses are represented. In order
to plot the polarization ellipses we used a color code based
on the respective form factor f = b/a, the ratio between the
minor b axis and the mayor a axis of the ellipse, whose sign
depends on the vector sense of rotation (negative for right-
handed and positive for left-handed). There is a neighborhood
around f = 0 for which we considered polarization to be
linear (green) and neighborhood around f = ±1 for which we
considered polarization to be circular (blue); in any other case
the polarization is elliptical (red).
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FIG. 5. Zoom of one of the polarization singularities obtained
in the far field for a polynomial generalized q-plate with q = 1/2
and p = 2, when the input polarization is vertical. (a) Intensity
and polarization ellipses. (b) Azimuth of the polarization ellipses.
(c) Form factor of the polarization ellipses.

For linear q-plates (p = 1) the polarization field in the
Fraunhofer regime is the same as that in the q-plate plane, with
a “donut” intensity distribution, due to the central polarization
vortex [11]. Conversely, the beams obtained from nonlinear
generalized q-plates do not preserve their polarization fields;
nonlinearities break the cylindrical symmetry of the SoP and
intensity distributions. It can be seen that, instead of showing
a central singularity with a topological charge of 2q, they
show 4q isolated singularities, each one with a topological
charge of 1/2, adding up to a total charge of 2q. Furthermore,
the nature of these singularities differs from the original dark
singularity. In Fig. 5 this fact is shown in detail for one of
these singularities. It can be seen that the azimuth is not
defined in these points, although the form factor is and is
at maximum (left circular polarization). These singularities
are generally known as C-points: isolated points of circular
polarization around which polarization azimuth rotates in
m2π . The topological charge in these cases is m = 1/2.

Figure 6 shows the Fraunhofer diffraction of the beams
obtained when impinging onto the generalized q-plates with
left circularly polarized light. In this case, for a linear q-plate,
the phase and polarization distributions are identical to those
seen in the q-plate plane, with a central singularity (phase
vortex) with the topological charge 2q, due to the creation
of OAM. In the nonlinear case, 2q isolated vortices with a
topological charge of 1 appear, occupying the same position as
half of the C-points obtained in the case of linearly polarized
light (Fig. 4). If impinging with right circularly polarized
light (not shown), there would be another 2q vortex, located
according to the other half of the C-points. These nonuniform
intensity and phase gradients may give rise to optical force
fields applicable to optical trapping and micromanipulation
[22].

This singularity splitting can be explained in terms of the
far-field (Fraunhofer) diffraction phenomenon. The Fraun-
hofer field coincides with the Fourier transform of the field at
the generalized q-plate plane, which [for the function g(r, θ )
separable in polar coordinates] can be written in terms of an
infinite sum of weighted Hankel transforms [23],

F{g(r, θ )} =
∞∑

k=−∞
ck (−i)keikφHk{gR(r)}, (4)

FIG. 6. Polarization ellipses and phase distribution resulting
from an input beam with left circular polarization for polynomial
generalized q-plates, in the far-field regime. The first and third
columns show the intensity distribution and polarization structure for
p = 1 and p = 2, respectively. Polarization is in every case uniform
right circular. The second and fourth columns show the phase of the
field for p = 1 and p = 2, respectively. The first, second, and third
rows show the cases for q = 1/2, q = 1, and q = 3/2, respectively.

where

ck = 1

2π

∫ 2π

0
g�(θ )e−ikθ dθ (5)

and Hk is the Hankel transform operator of order k,

Hk{gR(r)} = 2π

∫ ∞

0
rgR(r)Jk (2πrρ)dr, (6)

with Jk being the kth-order Bessel function of the first kind,
and g(r, θ ) = gR(r)g�(θ ).

With this in mind we can take as an example the cases
shown in Fig. 2 for q = 1/2 and calculate the weight distribu-
tions in each case. In the linear case (p = 1), when the input
light is vertically polarized, the electric field after the q-plate
is obtained from Eq. (2) as

Eo(r, θ ) = M�(r, θ )Ei(r, θ )

=
(

cos(θ ) sin(θ )

sin(θ ) − cos(θ )

)(
0

Ei

)

= Ei

(
sin(θ )

− cos(θ )

)
=

(
Es(r, θ )

Ep(r, θ )

)
, (7)

while in the nonlinear case with p = 2,

Eo(r, θ ) =
(

Es(r, θ )

Ep(r, θ )

)
= Ei

(
sin

(
1

2π
θ2

)
− cos

(
1

2π
θ2

)
)

. (8)

We computed the Fourier transform of these fields accord-
ing to Eqs. (3) and (4), to obtain the respective weights C2

k =
c2

sk
+ c2

pk
, where cs and cp stand for the weights of the Fourier

transforms of the fields Es(r, θ ) and Ep(r, θ ), respectively.
Results are shown in Fig. 7.
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FIG. 7. Normalized weights C2
k = c2

sk
+ c2

pk
of the terms in the

Fourier transforms of the fields created with polynomial generalized
q-plates with q = 1/2 when the input beam is vertically polarized.
(a) Linear case (p = 1). (b) Nonlinear case (p = 2).

In the case p = 1 the only nonzero terms are k = 1 and
k = −1; both terms and the sum of them are shown in Fig. 8.
This, as expected, is identical to the field shown in Fig. 4.
On the other hand, in the case with p = 2, while terms k = 1
and k = −1 remain the most significant, other terms arise,
in particular that with k = 0. This term contributes with the
Bessel function J0, giving nonzero intensity at the propagation
axis and hence destroying the dark singularity, as shown in
Fig. 9. Since at the beam axis the only nonzero term is
k = 0, the polarization there is linear at −55◦. In the outer
region, the predominant terms k = 1 and k = −1 create a
cylindrically polarized vector beam. The continuous transition
between the SoP at the center and in the outer region, and
the phase difference between these terms due to the factor
(−i)k in Eq. (4), forces the apparition of two C-points. It is
worth mentioning why the field in Fig. 9(b) differs from that
in Fig. 8(c). Even though they are both sums of terms with
k = −1 and k = 1 with equal weighting, in the nonlinear case
the Fourier decomposition of the vertical component Ep(r, θ )
gives higher weight to these terms respect to other k values
than the decomposition for the horizontal component Es(r, θ ).
This results in higher intensity for the vertically polarized light
when terms with k = −1 and k = 1 are added, hence breaking
the cylindrical symmetry.

It is interesting to analyze how these fields evolve from
their pass through the generalized q-plate to the far-field
regime and how is the transition between the central singular-
ity and the multiple isolated singularities. For that purpose we
have simulated the device depicted in Fig. 10. We have added
a quadratic phase to the field, representing the effect of a lens,
and numerically calculated the Fresnel diffraction integral for

FIG. 8. Intensity and polarization patterns of Fourier transform
terms of a field created with a polynomial generalized q-plate with
q = 1/2 and p = 1, for vertically polarized input light. (a) Term with
k = −1. (b) Term with k = 1. (c) Sum of both terms.

FIG. 9. Intensity and polarization patterns of Fourier transform
terms of a field created with a polynomial generalized q-plate with
q = 1/2 and p = 2, for vertically polarized input light. (a) Term with
k = 0. (b) Sum of terms with k = −1 and k = 1. (c) Sum of terms
with k = −1, k = 0, and k = 1.

transverse planes at different distances z, from the lens plane
z = 0 to the focus z = f . The field distribution at the focal
plane is equal to that obtained by directly Fourier transforming
(Fraunhofer diffraction). Intermediate planes show the beam
polarization structure in the near-field regime.

Figure 11 shows some of the propagated fields for the
case q = 1/2 and p = 2, when the input beam is vertically
polarized. A short movie showing the complete evolution is
included in the Supplemental Material [24]. For distances
close to the lens plane, i.e., when z < f − f/2, the intensity
of the beam remains approximately constant, and the polar-
ization structure is the same as that in the generalized q-plate
plane, with a central singularity; this is in agreement with the
results reported in Ref. [16]. For z = f − f/8 the polarization
field begins to distort, showing regions in which polarization
is elliptical. Further on, e.g., when z = f − f/32, two critical
points of the form factor clearly appear, in the center of the
beam, and the central singularity is divided in two, although
most of the polarization structure remains similar to that at
z = 0. Finally at the focal plane the polarization structure
is totally distorted, showing elliptic polarization around two
C-points with a topological charge of 1/2 and no central point
with null intensity. It is remarkable that the SoP, which in
principle does not show any symmetry, in the far-field regime
gains symmetry with respect to the transformation that rotates
the beam π radians around its axis and inverts the rotation
of the polarization vector. When the input polarization is left
(right) circular, the polarization turns right (left) circular and
remains uniform during propagation. The phase distribution

Collimated
Beam

Object
plane Lens

Focal
plane

G
q
-p
la
te

z

FIG. 10. Scheme of the optical device used for computing the
beam evolution as it propagates from the generalized q-plate to the
far-field regime.
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FIG. 11. Fresnel diffraction pattern at different planes resulting
from a polynomial generalized q-plate with q = 1/2 and p = 2,
when the input light is vertically polarized. The intensity distribution
superposed to the polarization ellipses is shown in the first column.
The azimuth and the form factor are depicted in the second and
third columns, respectively. Rows show the evolution in the z coordi-
nate, for z = 0, z = f − f/2, z = f − f/8, z = f − f/32, and z = f ,
respectively.

remains unmodified for distances close to the lens plane and
then distorts into the singularities discussed earlier.

B. Sinusoidal variation

Another possibility is that of designing an element that
modulates the electric field without adding any net topological
charge, e.g., a generalized q-plate defined by an oscillating
function in θ . That is the case for the function �(θ ) =
−(π/2)(cos(qθ ) − 1), where 2� [Eq. (2) matrix argument]
oscillates between 0 and 2π , q being the number of periods for
θ ∈ [0, 2π ]. Figure 12 shows some examples of this function
for different values of q.

FIG. 12. Argument function [2�(r, θ )] for sinusoidal general-
ized q-plates with q = 1, q = 2, and q = 3, respectively.

Figure 13 shows the results obtained from some of these
generalized q-plates when vertically and left circularly po-
larized beams are used to illuminate the element. For a
vertically polarized input, an output with uniform phase
distribution and oscillating polarization azimuth is obtained,
while for a circularly polarized input an oscillating phase
distribution with uniform polarization is obtained. Again, as
discussed in the previous section, at the exit of the generalized
q-plate the function � defines the polarization structure when
impinging with linear polarization and the phase structure
when impinging with circular polarization. Interesting effects
occur in the far field beyond the generalized q-plate, as shown
in Fig. 14. Figure 14 shows the Fraunhofer diffraction fields
obtained after impinging onto this kind of generalized q-plate
with vertically polarized light. Yellow contours delimit the
minimum intensity areas, defined as the regions with less than
0.5% of maximum intensity.

An interesting behavior that depends on the parity of q can
be observed. For odd q values, the diffraction pattern shows
several intensity minima, which match with corresponding
saddle points in the form factor, keeping the azimuth of
the polarization ellipses according to the input beam (except
for 90◦ rotations). On the other hand, for even q values,
the form factor remains uniformly zero (linear polarization),
while 2q dark azimuth singularities arise, which match with
corresponding 2q intensity minima, distributed geometrically

FIG. 13. Results provided by sinusoidal generalized q-plates
with q = 1 (first row) and q = 2 (second row). The first column
shows the intensity and polarization distribution for the vertical input
polarization and the second column shows its respective azimuth.
The third column shows the intensity and polarization distribution
for the left circular input polarization and the fourth column shows
its respective phase.
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FIG. 14. Results for sinusoidal generalized q-plates in the far-
field regime when the input polarization is vertical. The first column
shows the polarization and intensity distribution, the second column
shows the azimuth, and the third column shows the form factor. Rows
show the cases for q = 1, q = 2, q = 3, and q = 4, respectively.
Yellow lines demarcate minimum intensity areas.

around the beam axis. These singularities have alternate ±1
topological charges, adding up to 0. The topological charge
is measured as the times that the azimuth completes a 2π

rotation along a closed path around the singularity, and the
sing is provided by the sense of rotation; positive charge
singularities are known as flowers, while negative charge
singularities are known as webs [21].

This can be explained as well in terms of the Fourier trans-
form decomposition of Eq. (4) discussed earlier. For instance,
when the input light is vertically polarized, the electric field at
the exit of the generalized q-plate is

Eo(r, θ ) =
(

Es(r, θ )

Ep(r, θ )

)
= Ei

(
sin{−π [cos(qθ ) − 1]}

− cos{−π [cos(qθ ) − 1]}
)

.

(9)

If we look at the ck values of the Fourier transform of this field,
it is found that for odd q values, Es shows in its expansion
only terms with odd k value, while Ep shows only even valued
terms. Since all ck values are real in this case, it means that
the horizontal component of the electric field has the phase
factor (−i)k = ±i, while the vertical component has the phase

FIG. 15. Results for sinusoidal generalized q-plates in the far-
field regime when the input polarization is left circular. The first
column shows the intensity and polarization distribution, while the
second column shows the phase distribution. Rows show the cases for
q = 1, q = 2, q = 3, and q = 4, respectively. Yellow lines demarcate
minimum intensity areas.

factor (−i)k = ±1. Then, the phase difference between these
components has to be ±π/2, giving polarization ellipses that
are vertically or horizontally oriented, with a form factor
depending on the amplitude ratio. On the other hand, for
even q values, Fourier expansion of both components of the
electric field shows only terms with even k values, so the phase
difference between them must be 0 or ±π , now giving linear
polarization with the azimuth depending on the amplitude
ratio.

A similar distinction occurs when the polarization of the in-
put beam is left circular, as shown in Fig. 15. For odd q values,
there are no isolated singularities, but there are minima valleys
which set a π step in the beam phase. Regarding Fig. 14 it

053812-7



MARTIN VERGARA AND CLAUDIO IEMMI PHYSICAL REVIEW A 100, 053812 (2019)

can be seen that these minima valleys match left circularly
polarized regions resulting from a vertically polarized input.
A vertically polarized beam can be described as the balanced
superposition of left and right circularly polarized beams, and
after passing through the generalized q-plate, the left circular
polarization turns right, and vice versa. Then, it is reasonable
that when the input light is left circularly polarized, regions of
the output beam corresponding to left circular maxima show
no intensity. On the other hand, for even q values there are 2q
phase vortices carrying alternate topological charges (OAM)
of ±1, matching respective intensity isolated minima. Again,
the total topological charge adds up to 0. Comparing with the
case with a linearly polarized input, intensity distributions are
the same, changing polarization vortices into phase vortices
now. This is consistent, since sinusoidal generalized q-plates
with even q values seem to modulate left and right circularly
polarized light in the same way. This kind of distribution
of optical vortices with alternate charges around the beam
axis may have potential application in optical trapping and
micromanipulation [25].

III. PROPOSED DEVICE TO MIMIC
A GENERALIZED q-PLATE

Beyond studying the effects achieved by these alternative
kinds of devices it is essential to provide an effective and
efficient method for experimental implementation, which is
vital for exploring new applications.

q-plates are typically inhomogeneous and anisotropic
devices where effects like STOC are related to the
Pancharatnam-Berry phase [26]. Here instead we propose
a compact device that makes use of the propagation phase
modulation provided by a phase-only SLM for emulating the
effect of the generalized q-plates described above. The device
is designed for modulating independently the phase of the
orthogonal components of an input electric field, using a com-
mercially available parallel-aligned reflective liquid crystal on
silicon (PA-LCoS) display. This kind of display introduces a
programmable phase modulation to one linear component of
the field (let us suppose that the director of the LC molecules
is horizontally oriented). The proposed setup is sketched in
Fig. 16 and is based on a similar architecture used to encode
q-plates by Moreno et al. [16]. There, the authors employ
a parallel-aligned transmission display, which is an unusual
device.

Let us describe how to get the desired modulation with
this setup. The incident collimated beam passes through a first
quarter-wave plate (QWP1) oriented at 45◦ and is reflected by
means of a first beam-splitter (BS) onto one half of the LCoS,
where a phase of ψ = 2�(r, θ ) is added to the horizontal com-
ponent of the electric field. Then the beam propagates along
a 4f system, where a quarter-wave plate (QWP2) oriented at
45◦ respect to the LC director, rotates the polarization vector
in −π/2, due to the double passage caused by reflecting the
beam with a mirror (M) located at the focus of L1. On the
other half of the LCoS, the phase −ψ = −2�(r, θ ) is added
to the remaining orthogonal component, and by means of
a second beam-splitter, the reflected modulated beam goes
through a third quarter-wave plate (QWP3) oriented at −45◦
and towards a CCD. Lens L2 is useful for measuring the

f

f

QWP1

LCoS

QWP2

L1

M

QWP3 L2
CCD

BS

FIG. 16. Experimental compact device proposed for emulating
generalized q-plates using a reflective PA-LCoS.

output beam at different propagation distances, between near-
and far-field regimes, it can be removed for observing directly
the intensity obtained at the exit of the device.

Although this device is not related directly to the
Pancharatnam-Berry phase, its matrix representation coin-
cides with that of the generalized q-plate [Eq. (2)], up to a
global phase factor, then emulating all the expected behaviors.
On the other hand, since it is possible to program it pixel
by pixel, it allows one to make modifications at video rates,
adding flexibility in the design of the mimicked plates and
allowing an efficient and dynamic testing of these devices
without requiring its fabrication.

IV. CONCLUSIONS

We simulated generalized q-plates which modulate the
incident beam with nonlinear functions of the azimuthal
variable and studied their effects on uniform linearly and
circularly polarized beams. Furthermore, we proposed an ex-
perimental device capable of implementing these alternative
kinds of devices in a dynamic and efficient way.

In the near-field approximation it is found that for a linearly
polarized input, the output polarization structure is given by
the argument function of the generalized q-plate, showing
a central singularity, characteristic of conventional vector
beams, while for a circularly polarized input the output phase
structure is the one modulated, giving rise to the generation
of OAM and the inversion of the polarization sense (STOC
phenomenon).

In the far-field regime, it is found that when losing linearity
in the azimuthal variable, the conventional central singularity
divides into several singularities of minimum topological
charge. In the cases where the input light is linearly polarized,
the output beam can exhibit, either C-points with topological
charges of ±1/2, as well as other types of critical points
of the form factor, or dark polarization singularities (flowers
and webs). Circularly polarized input beams result in the
appearance of phase vortices, carrying OAM with a topo-
logical charge of ±1. The intensity profiles and singularity
distributions in each case depend on the particular chosen
function �, giving the chance to model distributions of any
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optical singularity known. These results were analyzed and
discussed in terms of Fourier decomposition for separable
functions in cylindrical coordinates.

Since the list of q-plate-based applications is extensive and
still in growth [26], we think generalized q-plates based on
arbitrary functions, together with the capability of represent-
ing these functions by means of an experimental device based
on a PA-LCoS, which gives flexibility to the creation and
manipulation of alternative kinds of vector and vortex beams,
open a wide range of possibilities for experimental research

of distributions of intensity, phase, and polarization, as well
as singularities or critical points of different kinds, which are
expected to have potential applications, e.g., in the field of
singular optics and optical tweezers.
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