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Effect of an incoherent pump on two-mode entanglement in optical parametric generation
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Pumping a nonlinear crystal by an intense radiation results in the optical parametric generation of photons
in two modes (the signal and the idler). The quantized electromagnetic field in these modes is described by a
continuous-variable quantum state, which is entangled if the pump is a coherent state produced by a laser. The
signal and the idler modes remain populated by photons even if the pump becomes incoherent (dephased by a
medium, superposed with a thermal state, or produced by an alternative source such as the superluminescent
diode). However, the incoherent pump does effect the entanglement and purity of the signal and the idler modes,
which is of vital importance for quantum information applications and interferometry. Here we develop an
approach to infer the signal-idler entanglement and purity for a general quantum incoherent pump with the given
Glauber-Sudarshan function. We show that the signal-idler entanglement is extremely sensitive to the phase
distribution of the pump and illustrate our findings by physically relevant examples of the incoherent pump:
the noisy coherent state, slightly dephased and phase-averaged coherent states, the thermal state, and states
modulated by the Kerr medium. The effect of an incoherent pump on the combined quadratures is discussed as
well.
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I. INTRODUCTION

Optical parametric generation (OPG) is the basis of mod-
ern quantum optics with numerous applications in quantum
information and fundamental tests of quantum mechanics
(see the reviews in [1–6] and references therein). In the
process of OPG, a pump light beam propagates through
a nonlinear medium and an interaction between the pump
mode and vacuum fluctuations of the electromagnetic field
occurs. A quantum description of such a process was sug-
gested in Refs. [7,8]. Zel’dovich and Klyshko noticed that
pump photons with frequency ωp break up into pairs of
scattered quanta with lower frequencies ωi and ωs in accor-
dance with the energy conservation law ωp = ωi + ωs [9].
Down-converted photons are usually called idler (i) photons
and signal (s) photons, also referred to as biphotons in the
spontaneous parametric down-conversion process [10]. Burn-
ham and Weinberg experimentally confirmed simultaneity
in the production of photon pairs [11]. The pump wave
vector �kp in the crystal satisfies the phase-matching con-
dition, which is a momentum conservation law for down-
converted photons, �kp ≈ �ki + �ks. The approximate equality is
due to the finite size of a real crystal and the finite spectral
width of a pump beam. The combination of the momen-
tum and energy conservation laws determines the angular
and frequency distribution of the down-converted photons,
the entanglement properties, and the quantum interference
characteristics [6,12–15].

The use of avalanche photodiodes as detectors enables one
to effectively probe the single-photon subspace of the idler

and signal modes described by the state

|ψ〉 =
∑

α,β=H,V

∫
d�kid�ksF (�ki, α; �ks, β )a†

�ki,α
a†

�ks,β
|vac〉, (1)

where H and V denote the horizontal and vertical polar-
izations, respectively, (�k, α) is the mode of electromagnetic
radiation, a†

�k,α
is a creation operator for photons in the

mode (�k, α), and the function F (�ki, α; �ks, β ) is a biphoton’s
wave function. Experiments with polarization degrees of free-
dom [16] operate with the polarization density operator

�αβ,α′β ′ =
∫

�

d�kid�ksF (�ki, α; �ks, β )F ∗(�ki, α
′; �ks, β

′)

× |α, β〉〈α′, β ′| , (2)

where � is a region of vectors pointing to the polarization
detectors. Equation (2) is a typical example of the discrete-
variable quantum state of two qubits.

The important feature of Eq. (1) is that it omits the vac-
uum contribution because the avalanche photodiodes are only
sensitive to the presence of photons. Hence, the states (1) are
conditional and cannot be created on demand. Equation (1)
also neglects the contribution from a higher number of pho-
tons in the idler and signal modes because the probabil-
ity to observe multiple photons in the signal and the idler
is less than that for single photons. However, the use of
homodyne detectors [5,17,18] and photon-number resolving
measurements [19–21] allows one to probe the contribution
of vacuum and multiple photons in the signal and the idler.
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FIG. 1. Schematic of the experiment with mode filtering to
study the effect of an incoherent pump �p on the entanglement
of continuous-variable two-mode states (signal mode s and idler
mode i). States can be probed by the optical homodyne tomography
(top right) and the photon-number resolving detectors (bottom right).

The corresponding quantum state belongs to the Fock space
and reads

|ψ〉 =
∞∑

n=0

∑
α,β=H,V

∫
d�kid�ksFn(�ki, α; �ks, β )

×(
a†

�ki,α

)n(
a†

�ks,β

)n|vac〉. (3)

Narrow spatial filtering and polarization filtering allow
one to fix the idler and the signal modes experimentally
(see Fig. 1). Defining the Fock states 1

n! (a†
�ki,α

)n(a†
�ks,β

)n|vac〉 =
|nins〉 and the coefficients cn = n!Fn(�ki, α; �ks, β ), we get the
two-mode state

|ψ〉 =
∞∑

n=0

cn|nins〉 . (4)

Equation (4) defines a two-mode continuous-variable
quantum state because the electromagnetic-field amplitude in
each mode [eigenvalue x of the operator X = (a + a†)/

√
2]

belongs to the continuous interval (−∞,+∞). In other
words, the state (4) can be described by a continuous
wave function ψ (x, y) = 〈x, y|ψ〉 = ∑∞

n=0 cnψn(x)ψn(y),
where X |x〉 = x|x〉, X |y〉 = y|y〉, and 〈x|n〉 = ψn(x) =
π−1/4(2nn!)−1/2Hn(x) exp(−x2/2), with Hn(x) the Hermite
polynomial of degree n. In this paper we study pure and
mixed continuous-variable states of the signal and the idler.

A paradigmatic example of a pure continuous-variable
state is the two-mode squeezed vacuum (twin-beam) state
with cn = (cosh r)−1(tanh r)n, where r is the squeezing pa-
rameter. Such a state is created in ideal parametric down-
conversion [22,23]. The experimental implementation of
twin-beam states with 10 log10 e2r = 6.2–8.4 and 〈ni〉 =
〈ns〉 = sinh2 r = 0.6–1.3 via a nondegenerate optical para-
metric amplifier is reviewed in Refs. [24–27]. The two-mode
squeezed vacuum is entangled for all r > 0, i.e., ψ (x, y) 
=
ϕ(x)χ (y). The greater the squeezing parameter, the more
entangled the two-mode squeezed vacuum. Entanglement of
this type is useful for many quantum information proto-
cols [1,28–30] and interferometry [31]. In particular, two-
mode entanglement is necessary for quantum teleportation of
continuous-variable quantum states [32–35] and entanglement
distillation [36].

The usefulness of entangled continuous-variable states
in real experiments is limited for various reasons: (i)

losses and additional classical noise, e.g., in atmospheric
turbulence [37–44], (ii) the unavoidable noise in deterministic
linear amplifiers [45] and general quantum channels [46,47],
and (iii) noise in the preparation of entangled states [48–51].
General noise results in purity degradation (the state be-
comes mixed) and entanglement degradation (the state be-
comes separable if the noise is strong enough [41,52]). To
counter reasons (i) and (ii), one resorts to the most robust
entangled states [41,53] or interventions in the noisy dynam-
ics [54]. Reason (iii) significantly affects the performance of
entanglement-enabled protocols because any such protocol
relies on a properly prepared (pure) entangled state [1,28–30].
It is the goal of this paper to study the quality of entangled
two-mode continuous-variable states prepared by OPG with
an imperfect pump.

A real pump beam has two types of imperfections: (i) The
pump beam is not an infinite plane wave but rather has a
specific shape with temporal and spatial coherence properties;
(ii) even if a particular plane-wave mode is filtered from the
pump beam, the quantum state of that mode is not a perfect
coherent state|α〉 in the phase space. The influence of effect (i)
on the biphoton density matrix is studied in Refs. [16,55–64].
Instead, we study the influence of effect (ii) on the quality of
two-mode continuous-variable quantum states as it imposes
fundamental limitations on the use of mixed pump states. We
focus on a single-mode pump state and its quantum properties
in the phase space. The idea to consider the pump as a general
mixed state is motivated by the recent research of the OPG
pumped by a light-emitting diode [62–64]. As we show in
this paper, the use of the bright thermal light as a pump
produces correlated photons in the signal and idler modes,
� = ∑

n pn|nins〉〈nins|; however, this form of correlation is
classical and there is no entanglement between the modes.

The effect of the squeezed pump on the properties of the
signal and idler modes is studied in Refs. [65–68] and the
effect of the pump depletion is analyzed in the degenerate
OPG in Refs. [67,69]. In this paper we go beyond the coherent
and squeezed pump models and consider a general pump
state �p = ∫

P(α)|α〉〈α| d2α, where P(α) is the Glauber-
Sudarshan function [70–72]. We show that the structure of the
pump state in the phase space significantly affects the purity
and entanglement of the signal and idler modes. We illustrate
our findings by practically relevant examples of a phase-
smeared coherent state, a convolution of thermal and coherent
states, and a coherent state affected by the Kerr medium. Our
analysis is relevant to all situations where the coherence of the
pump matters, e.g., in nonlinear interferometers [61,73].

The paper is organized as follows. In Sec. II we derive the
two-mode density operator �is of the signal and idler for a
general mixed pump with two approaches: the perturbation
theory and the general parametric approximation. In Sec. III
we discuss the purity of �is and the entanglement quantifier
(negativity) for �is. In Sec. IV we analyze the purity dynamics
and the entanglement dynamics for the two-mode states in
the OPG pumped by the intense thermal state. In Sec. V we
study the effect of a noisy coherent pump on the quality of
the idler-signal entanglement. In Sec. VI the phase-smeared
coherent pump is considered. In Sec. VI C we propose an
approach to deal with a general mixed pump by applying the
Schmidt decomposition to the Glauber-Sudarshan function
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P(|α|eiθ ) of the pump state with respect to α and θ . We pay
special attention to the distribution of phase θ and reveal
an interferencelike pattern for the entanglement and purity
quantifiers. In Sec. VII we further apply the developed theory
to a pump beam modulated by the Kerr nonlinear crystal.
In Sec. VIII we study the effect of an incoherent pump
on the experimentally measurable variance of the combined
quadratures. Section IX provides a summary and conclusions.

II. DENSITY OPERATOR FOR IDLER
AND SIGNAL MODES

The interaction between the pump mode p and the down-
converted modes in the nondegenerate OPG is described by
the Hamiltonian (in units such that the Planck constant h̄ = 1)

Hint = g(apa†
i a†

s + a†
paias), (5)

where g is the interaction constant related to the second-order
electric susceptibility χ (2), χ (2) � χ (1). The interaction time
t between the pump mode and the down-converted modes
is defined by the length of the nonlinear crystal. In realistic
conditions, the product gt � 1 is a small parameter. This
implies that the average number of photons in the pump beam
N is much greater than the average number of photons in the
down-converted modes (∼g2t2N), so there is no depletion of
the pump.

A. Coherent pump

Suppose the pump is initially in the coherent state |α〉,
i.e., ap|α〉 = α|α〉, and the idler and signal modes are in
the vacuum state |0i0s〉. The time-evolution operator Ut =
exp(−iHintt ), with the Hamiltonian (5), transforms the initial
state into |ψα (t )〉 = Ut |α〉|0i0s〉. The density operator of the
idler and signal modes �is(t ) is obtained from |ψα (t )〉 by tak-
ing the partial trace over the pump mode [74], �is(t ) = trp�(t ).
The density operator �is(t ) is always a linear combination
of operators |mims〉〈nins|. The explicit form of |ψα (t )〉 and
�is(t ) is rather involved, so we consider two approaches: (i)
perturbation theory with respect to the parameter gt |α| � 1
and (ii) parametric approximation that effectively replaces the
operators ap and a†

p by c-numbers α and α∗, respectively
(see, e.g., the review in [68]).

1. Perturbation theory

As the experimentally achievable values gt |α| =
0.71–0.97 [24–27], the main physical effects can be roughly
illustrated by the perturbative approach, within which we
derive formulas up to the second order of the parameter gt .
We have

|ψα (t )〉 =
(

I − itHint − t2

2
H2

int + · · ·
)

|α〉|0i0s〉

= |α〉|0i0s〉 − igtα|α〉|1i1s〉

−αg2t2

2
(2α|α〉|2i2s〉 + |φα〉|0i0s〉) + o(g2t2), (6)

where |φα〉 = a†
p|α〉. The subscript α in |ψα (t )〉 indicates that

initial state of the pump is a pure coherent state|α〉. The three-
mode density operator of the pump, the idler, and the signal

reads

|ψα (t )〉〈ψα (t )|
= |α〉〈α| ⊗ [|0i0s〉〈0i0s| + igtα∗|0i0s〉〈1i1s|

− g2t2(α∗)2 |0i0s〉〈2i2s| − igtα|1i1s〉〈0i0s|
+ g2t2|α|2 |1i1s〉〈1i1s| − g2t2α2|2i2s〉〈0i0s|]

− g2t2

2
(α|φα〉〈α| + α∗|α〉〈φα|) ⊗|0i0s〉〈0i0s| + o(g2t2).

(7)

The partial trace over the pump yields the following density
matrix �α

is in the subspace of vectors {|0i0s〉, |1i1s〉, |2i2s〉}:

�α
is =

⎛
⎝1 − g2t2|α|2 igtα∗ −g2t2(α∗)2

−igtα g2t2|α|2 o(g2t2)
−g2t2α2 o(g2t2) o(g2t2)

⎞
⎠. (8)

2. Parametric approximation

In the conventional parametric approximation with the
pump state initially in a coherent state |α〉, α = |α|eiθ , the
initial state|α〉|0i0s〉 evolves into|α〉|ψis〉, where

|ψis〉 =
√

1 − |λ(α)|2
∞∑

n=0

λn(α)|nins〉 (9)

is a two-mode squeezed vacuum state (see, e.g., [29]) with

λ(α) = −ieiθ tanh gt |α| = −i
α

|α| tanh gt |α|. (10)

This approximation is valid for an intense pump with |α| � 1,
gt � 1, the average number of photons in the idler and signal
modes 〈ψis|(a†

i ai + a†
s as)|ψis〉 = 2 sinh2(gt |α|) � |α|2, and

gt exp(4gt |α|) � 1 [65,75]. Clearly, the range of applicability
of the parametric approximation is much wider than that of
the perturbation theory. The density matrix �is reads

�α
is = [1 − |λ(α)|2]

∞∑
n,m=0

λn(α)[λm(α)]∗|nins〉〈mims|

=
∞∑

n,m=0

(−ieiθ )n−m tanhn+m gt |α|
cosh2 gt |α| |nins〉〈mims| . (11)

B. Incoherent pump

For a general initial pump state �p we use the diagonal
sum representation �p = ∫

P(α)|α〉〈α| d2α, where P(α) is the
Glauber-Sudarshan function [70,71]. Exploiting the linearity
of the quantum evolution, we get the three-mode density
operator of the pump, idler, and signal at time t ,

�(t ) = Ut�p ⊗ |0i0s〉〈0i0s|U †
t

=
∫

P(α)|ψα (t )〉〈ψα (t )| d2α. (12)

Taking the partial trace over the pump, we get

�is =
∫

P(α)�α
isd

2α. (13)

053811-3



VINTSKEVICH, GRIGORIEV, AND FILIPPOV PHYSICAL REVIEW A 100, 053811 (2019)

1. Perturbation theory

Substituting (8) for �α
is in Eq. (13), we get the matrix

representation of �is in the subspace of vectors {|0i0s〉, |1i1s〉,
|2i2s〉},

�is =
⎛
⎝1 − g2t2c11 igtc01 −g2t2c02

−igtc∗
01 g2t2c11 o(g2t2)

−g2t2c∗
02 o(g2t2) o(g2t2)

⎞
⎠, (14)

where the coefficients cmn read

cmn =
∫

P(α)αm(α∗)nd2α

=
∫ ∞

0
d|α|

∫ 2π

0
dθP(|α|eiθ )|α|m+n+1eiθ (m−n). (15)

Note that c00 = 1 because
∫

P(α)d2α = tr[�p] = 1.

2. Generalized parametric approximation

Reference [66] generalizes the parametric approxima-
tion to the case of pure initial pump states |ψp〉 =
1
π

∫ 〈α|ψp〉|α〉d2α. Each coherent constituent |α〉 in the pump
results in the signal-idler field given by Eq. (9), so the in-
tegration of Eq. (9) with the kernel 1

π
〈α|ψp〉 provides the

signal-idler output state for any pure pump|ψp〉.
We follow the same idea for a general (mixed) pump

density operator �p = ∫
P(α)|α〉〈α|d2α, where P(α) is the

Glauber-Sudarshan function of the pump field. Substitut-
ing (11) for �α

is in Eq. (13), we get the resulting density
operator �is of the idler and signal modes. Here �is is a
mixture of states (11) with weights P(α) that can be negative
in general, namely,

�is =
∞∑

n,m=0

�nm
is |nins〉〈mims| , (16)

�nm
is =

∫
P(α)[1 − |λ(α)|2]λn(α)[λm(α)]∗d2α

=
∫ ∞

0
|α|d|α|

∫ 2π

0
dθP(|α|eiθ )

(−ieiθ )n−m tanhn+m gt |α|
cosh2 gt |α| .

(17)

Equation (16) provides a solution to the problem in the gen-
eralized parametric approximation with no truncation in the
Fock space. This is in contrast to the perturbative solution (14)
that involves the truncation of the Fock space up to two
photons in the signal-idler field.

The validity of the generalized parametric approximation
is considered by using a path-integral representation of the
coherent-state propagator in Ref. [75]. The conditions under
which this approximation is justified are specified in Ref. [75]
for the degenerate parametric amplifier with the signal mode
initially in the vacuum state. Reference [66] extends the ideas
of Ref. [75] to the case of the nondegenerate parametric
amplifier. Following [66,75], we expect the generalized para-
metric approximation to be valid if the average number of
photons in the pump beam tr[�pa†

pap] � 1 (high pump inten-

sity), tr[�is(a
†
i ai + a†

s as)] � tr[�pa†
pap] (no pump depletion),

gt � 1, and gt exp(4gt
√

tr[�pa†
pap]) � 1 (the propagator is a

slowly varying function of the outcome pump amplitude). In
terms of the P function these conditions read∫

P(α)|α|2d2α � 1, (18)

gt � 1, (19)

2
∫

P(α) sinh2(gt |α|)d2α �
∫

P(α)|α|2d2α, (20)

gt exp

(
4gt

√∫
P(α)|α|2d2α

)
� 1. (21)

Note that the coefficients (17) contain all orders of the
small parameter gt in contrast to the perturbation theory
restricted by the second order of gt . In fact, the condi-
tions (18)–(21) are much less restrictive than the condition
gt

√
tr[�pa†

pap] � 1 for the validity of the perturbative ap-
proach. Therefore, the generalized parametric approximation
represents a definite improvement over the perturbative result
and enables us to study the effect of an incoherent pump at a
longer timescale.

III. PURITY AND ENTANGLEMENT
OF THE IDLER-SIGNAL FIELD

The purity parameter tr[�2
is] quantifies how close the given

state �is is to a pure one. The purity of a continuous-variable
quantum state can be operationally calculated via homodyne
measurements [76]. Note that tr[�2

is] = 1 if and only if �is is
pure. The related quantifier is the linear entropy

SL = 1 − tr
[
�2

is

]
. (22)

The greater the linear entropy, the more mixed the state.
Within the perturbation theory, the linear entropy of the
state (14) equals

SL = 2g2t2(c11 − |c01|2) + o(g2t2) (23)

and grows quadratically with time t while g2t2tr[�pa†
pap] � 1

(short timescale). Within the generalized parametric approxi-
mation we get the linear entropy for a longer timescale,

SL = 1 −
∞∑

n,m=0

∣∣�nm
is

∣∣2
, (24)

which strongly depends on P(α).
Since �is is a linear combination of operators |nins〉〈mims|,

its entanglement can be effectively quantified via the negativ-
ity measure [77]

N =
∥∥�

Ts
is

∥∥
1 − 1

2
, (25)

where ‖A‖1 = ∑
k |λk| for a Hermitian operator A with the

spectrum {λk} and Ts is a partial transposition in the sig-
nal mode, i.e., (|nins〉〈mims|)Ts = |nims〉〈mins|. The physical
meaning of the partial transposition is twofold: It can be seen
as a mirror reflection in the phase space of the corresponding
mode [78] and as a local time reversal for that mode [79]. Neg-
ativity N has an operational meaning too: The entanglement
cost for the exact preparation of the quantum state � using
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quantum operations preserving the positivity of the partial
transpose is bounded from below by log2(2N + 1) [80].

Provided the two-mode state is separable, the partial trans-
position would not affect the positivity of the density matrix;
otherwise it may transform the density operator into a nonpos-
itive operator, which is an indication of entanglement. Thus,
the negativity vanishes for separable states �is = ∑

k pk�
(k)
i ⊗

�(k)
s , whereas N > 0 indicates that the state �is is entangled.

In the following equation, nonzero elements of �is in the basis
|mins〉 are marked by closed squares, the transposition with
respect to subsystem s moves the elements of �is to positions
marked by open squares, and dotted lines denote 2×2 minors
( 0 �
� 0 ) with negative eigenvalue −|�|:

(26)

Analytically, �
Ts
is = ∑∞

n,m=0 �nm
is |nims〉〈mins|. Choose n′ 
= m′

and consider a 2×2 submatrix of �
Ts
is obtained by deleting all

rows and columns except those with multiple indices n′m′ and
m′n′. Examples of such submatrices are shown in Eq. (26) by
dotted lines. As n′ 
= m′, the diagonal elements of such sub-
matrices vanish, i.e., 〈n′

in
′
s|�Ts

is |n′
in

′
s〉 = 〈m′

im
′
s|�Ts

is |m′
im

′
s〉 = 0.

The determinant of such a submatrix equals −|�n′m′
is |2 � 0 and

represents a principal minor of �
Ts
is . By Sylvester’s criterion,

a Hermitian matrix is positive semidefinite if and only if all
its principal minors are non-negative. Therefore, �

Ts
is is not

positive semidefinite unless �n′m′
is = 0 for all n′ 
= m′. Hence,

by the Peres-Horodecki criterion [81,82] �is is entangled if∑
m′<n′ |�n′m′

is | > 0. On the other hand, if
∑

m′<n′ |�n′m′
is | = 0,

then �is is diagonal and separable. Finally, �is is entangled if
and only if

∑
m′<n′ |�n′m′

is | > 0. The latter quantity is nothing
but the negativity. In fact, negative eigenvalues of the partially
transformed state �

Ts
is are negative eigenvalues of 2×2 subma-

trices described above. Summing them, we get the negativity

N =
∑
m<n

∣∣�nm
is

∣∣. (27)

The negativity of the studied state �is vanishes if and only
if all nondiagonal elements of �is are equal to zero. In other

words, the feature of �is is that it is entangled if and only
if N > 0. The formula (27) enables one to calculate the
negativity by learning the elements of the density matrix, e.g.,
via homodyne tomography [36,83].

In perturbation theory, for the state (14) we get

N = gt |c01| + g2t2|c02| + o(g2t2). (28)

The negativity N grows linearly with time t while
g2t2tr[�pa†

pap] � 1 (short timescale). For a longer timescale
one should use Eq. (17) for coefficients �nm

is , which in turn
are expressed through the Glauber-Sudarshan function P(α)
of the pump state.

At the end of this section, we discuss the entanglement
and purity of the state �is produced with the help of the
pure coherent pump. In the following sections we discuss
particular models of the incoherent pump and its effect on the
idler-signal entanglement.

Coherent pump

Let �p = |α0〉〈α0|. Then P(α) = δ(α − α0). In the pertur-
bation theory up to the second order of gt , we get

SL = 0 + o(g2t2), N = gt |α0| + (gt |α0|)2 + o(g2t2). (29)

In the parametric approximation, the output state of the
signal and idler is the pure state ψis with α = α0 (SL = 0).
In the generalized parametric approximation, we get the fol-
lowing expression for the negativity:

N = [1 − |λ(α0)|2]
∞∑

n<m

|λ(α0)|n+m = |λ(α0)|
1 − |λ(α0)|

= tanh gt |α0|
1 − tanh gt |α0| = 1

2
(e2gt |α0| − 1)

= gt |α0| + g2t2|α0|2 + 2

3
g3t3|α0|3 + o(g3t3|α0|3). (30)

In contrast, extending the exact formula (6) to the third order
with respect to gt and calculating the negativity of the exact
�is, we get

N = gt |α0| + g2t2|α0|2+g3t3

(
2

3
|α0|3−|α0|

6

)
+ o(g3t3|α0|3),

(31)

which differs negligibly from Eq. (30) if g3t3|α0| � 1. The
latter inequality is an immediate implication of the additional
inequality gt exp(4gt |α0|) � 1 and the inequality gt � 1,
which are necessary for justification of the parametric ap-
proximation [75]. Based on this example, we conclude that
the quantity g2t2{exp(4gt

√
tr[�pa†

pap]) − 1} is an estimate for
the trace distance between the exact solution for �is and the
approximate solution (16) and (17).

IV. THERMAL PUMP

A rather intense radiation for the pump is produced not
only by a laser but also by alternative optical sources such
as amplified spontaneous emission (ASE) and light-emitting
diodes (LEDs). In contrast to the laser radiation, the ASE
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and LEDs produce a light of low spatial and temporal co-
herence [84–87]. In particular, Ref. [86] reports a doped
fiber ASE radiation with the degree of second-order co-
herence g(2)(0) = 1.97 ± 0.1, which is higher than that for
a halogen lamp [g(2)(0) = 1.8 ± 0.1] exhibiting blackbody
characteristics at 3000 K. Similarly, the superluminescent
diode emits a completely incoherent light which has the same
characteristics as the thermal radiation [87–90]. A pseudother-
mal light of high intensity is also generated by inserting a
spinning glass diffuser (Arecchi’s wheel) in the path of the
laser light [91–95]. We describe the completely incoherent
(thermal) radiation in the selected pump mode by the density
operator �p = ∫

P(α)|α〉〈α| d2α with the Glauber-Sudarshan
function

P(α) = 1

πn
exp

(
−|α|2

n

)
, (32)

where n is the average number of photons in the pump mode.
As P(α) does not depend on θ = argα, the expressions (15)

and (17) vanish if n 
= m. Consequently, in both perturbation
theory and the generalized parametric approximation, the
negativity of �is vanishes too, i.e.,

N = 0. (33)

This means that there is no entanglement between the idler
mode and the signal mode. Instead, only classical correlations
are present as �is = ∑∞

n=0 pn|nins〉〈nins|, where pn is the prob-
ability to observe n photons in either idler or signal modes.
Although the photon pairs are still created simultaneously in
such an OPG, this form of correlation can be created via local
operations and classical communications [96].

To evaluate the purity of �is, we calculate the coefficients

c01 = 0, c11 = n, c02 = 0 (34)

in perturbation theory, which results in

SL = 2n(gt )2 + o(g2t2). (35)

The generalized parametric approximation is valid if n � 1,
gt � 1, and gt exp (4gt

√
n) � 1. We find the lower bound on

coefficients �mm
is by using the inequalities 1/cosh2 x � e−x2

and tanh x � xe−x2
in Eq. (17). The result is

�mm
is � m!

g2t2n
(
2m + 1 + 1

g2t2n

)m+1 , (36)

SL � 1 −
∞∑

m=0

(m!)2

g4t4n2
(
2m + 1 + 1

g2t2n

)2m+2 . (37)

Let us summarize the results of this section. A thermal
pump of arbitrarily high intensity is not able to produce
entanglement between the signal and the idler. This is due
to the fact that the phase distribution for such a radiation is
uniform. Only classical correlations are present in the signal-
idler field in this case. The signal-idler field is mixed and its
linear entropy is bounded from below by Eq. (35) and from
above by Eq. (37).

FIG. 2. Properties of the thermal pump (a) and the displaced
thermal pump (b). Shown on top is the P function in the phase
space; on the bottom left is the linear entropy of the idler and signal
modes and the bottom right the negativity measure of entanglement
for the idler and signal modes. Negativity vanishes for the thermal
pump (33).

V. NOISY COHERENT PUMP

A. Phase-insensitive Gaussian noise

The situation is different for such pump states that still
exhibit coherent properties. For instance, the superlumines-
cent diode with a balance between spontaneous and stimulated
emission [97] and the superluminescent diode with controlled
optical feedback [98] produce partially coherent light with
1 < g(2)(0) < 2. Such a radiation represents a superposition
of the thermal radiation and the coherent radiation in the sense
of Ref. [70], formula (7.19). In other words, such a radiation
describes the action of the phase-insensitive Gaussian noise
on the pure coherent state and is known as a displaced
thermal state or a noisy coherent state [99]. This state is also
experimentally simulated by superimposing the thermal light
and the coherent light on a beam splitter [100]. The P function
of a displaced thermal state reads

P(α) = 1

πn
exp

(
−|α − α0|2

n

)
. (38)

Geometrically, the state (38) is obtained from the thermal
state (32) by a shift in the phase space (Reα, Imα); the
displacement equals |α0| and its direction is determined by
the angle θ0 = argα0 (see Fig. 2).

The use of the displaced thermal light (38) as a pump
results in the state of idler and signal modes (14) with the
following parameters in perturbation theory:

c01 = |α0|e−iθ0 , c11 = |α0|2 + n, c02 = |α0|2e−i2θ0 . (39)
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The linear entropy and negativity of the idler-signal state in
the perturbation theory read, respectively,

SL = 2n(gt )2 + o(g2t2), N = gt |α0| + (gt |α0|)2 + o(g2t2).

(40)

The idler and signal modes are entangled and the degree
of entanglement is proportional to the displacement |α0| if
gt |α0| � 1. The greater n is, the more mixed the state �is

is. Therefore, the thermal contribution in the noisy coherent
pump leads to a decrease of the purity of �is, whereas the
coherent contribution in the noisy coherent pump determines
the entanglement of �is.

A comparison of the idler-signal properties for the ther-
mal pump and the displaced thermal pump is presented in
Fig. 2 for a short timescale (gt |α0| � 1). The linear entropy
is the same for both cases, whereas the negativity is different.
These results are applicable to the experimental study of the
OPG with the incoherent pump produced by a light-emitting
diode [62–64].

To study the behavior at a longer timescale (gt |α0| > 1)
we use the generalized parametric approximation. Substitut-
ing (38) and (10) into (16), we get

�nm
is = (−i)n−m

πn

∫
αn(αm)∗ tanhn+m gt |α|

|α|n+m cosh2 gt |α|

× exp

(
−|α − α0|2

n

)
d2α. (41)

The obtained expression is simplified if n � |α0|2, when
one can use a two-dimensional analog of the formula∫

f (x)e(x−y)2/ndx = √
πn f (y) + 1

4

√
πn3 f ′′(y) + o(n3/2). We

get

�nm
is = (−i)n−mαn

0 (αm
0 )∗ tanhn+m gt |α0|

|α0|n+m cosh2 gt |α0|

+ n

4
(−i)n−m

(
∂2

∂ (Reα)2
+ ∂2

∂ (Imα)2

)

× αn(αm)∗ tanhn+m gt |α|
|α|n+m cosh2 gt |α|

∣∣∣∣
α=α0

+ o

(
n

|α0|2
)

. (42)

The first term in Eq. (42) corresponds to a pure coherent
pump and the second term is a deviation caused by the pump
incoherence. If additionally gt |α0| � 1, then we calculate the
negativity and the linear entropy of �is up to the third order
of gt |α0|. The linear entropy coincides with that in Eq. (40),
whereas the negativity reads

N = gt |α0| + g2t2|α0|2 + 2

3
g3t3|α0|3

(
1 − n

|α0|2
)

+ o(g3t3|α0|3). (43)

The negativity (43) is less than that in Eq. (30), which means
that the thermal noise in the pump decreases the degree of
entanglement.

Let us summarize the results of this section. The admixture
of the phase-insensitive Gaussian noise with a coherent pump
results in the decrease of entanglement between the signal and
the idler. This effect is revealed in the generalized parametric
approximation (43), whereas it is concealed in the perturbative

FIG. 3. (a) Phase-space schematic for an admixture of a phase-
sensitive Gaussian noise with the parameters n1, n2, and ϕ with a co-
herent pump |α0〉, α0 = |α0|eiθ0 . (b) Configuration of the parameter ϕ

for the maximal increment in the signal-idler entanglement (solid line
ellipse) and the maximal decrement in the signal-idler entanglement
(dashed line ellipse).

approach up to the second order of gt [Eq. (40)]. The greater
the noise intensity, the lower the purity of the signal-idler field.

B. Phase-sensitive Gaussian noise

Phase-sensitive noise is typical for phase-sensitive linear
amplifiers [45]. The P function for a coherent pump subjected
to phase-sensitive Gaussian noise reads

P(α) = 1

π
√

n1n2
exp

(
−{Re[(α − α0)e−iϕ]}2

n1

− {Im[(α − α0)e−iϕ]}2

n2

)
. (44)

Geometrically, the state (44) is obtained from the thermal
state (32) by squeezing the horizontal and vertical axes in
the phase space (Reα, Imα) by factors n1/n and n2/n, re-
spectively, then rotating by the angle ϕ around the origin of
the phase space, and finally shifting by a vector (Reα0, Imα0)
[see Fig. 3(a)].

The noisy pump (44) results in the state of idler and signal
modes (14) with the following parameters in perturbation
theory:

c01 = |α0|e−iθ0 , c11 = |α0|2 + n1 + n2

2
, (45)

c02 = |α0|2e−i2θ0 + n1 − n2

2
e−i2ϕ. (46)

The linear entropy and negativity of the idler-signal state in
the perturbation theory read, respectively,

SL = (n1 + n2)(gt )2 + o(g2t2), (47)

N = gt |α0|

+ (gt |α0|)2

√
1 + n1 − n2

|α0|2 cos 2(θ0 − ϕ) +
(

n1 − n2

2|α0|2
)2

+ o(g2t2). (48)

If the noise n1, n2 � |α0|2, then N ≈ gt |α0| + (gt |α0|)2 +
g2t2 n1−n2

2 cos 2(θ0 − ϕ). Comparing this result with Eq. (40),
we conclude that the phase-sensitive noise affects the negativ-
ity more strongly than the phase-insensitive noise. Depending
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on the sign of the quantity (n1 − n2) cos 2(θ0 − ϕ), the entan-
glement between the signal and idler can either decrease or
increase as compared to the phase-insensitive case. Suppose
n1 > n2. Then the maximum increment for entanglement is
achieved if ϕ = θ0, which corresponds to the narrowest pos-
sible phase distribution. In contrast, the maximum decrement
for entanglement takes place if ϕ = θ0 + π/2, which corre-
sponds to the widest possible phase distribution of the pump
field [see Fig. 3(b)].

The behavior of entanglement at a longer timescale
(gt |α0| > 1) can be obtained within the generalized para-
metric approximation. In the case n1, n2 � |α0|2, we get the
following formula for coefficients (17) in the density opera-
tor (16):

�nm
is = (−i)n−mαn

0 (αm
0 )∗ tanhn+m gt |α0|

|α0|n+m cosh2 gt |α0|

+ 1

4
(−i)n−m

(
n1

∂2

∂[Re(αe−iϕ)]2
+ n2

∂2

∂[Im(αe−iϕ)]2

)

× αn(αm)∗ tanhn+m gt |α|
|α|n+m cosh2 gt |α|

∣∣∣∣
α=α0

+ o

(
n1 + n2

|α0|2
)

. (49)

Let us summarize the results of this section. The admixture
of the phase-sensitive noise with a coherent pump can either
decrease or increase the entanglement between the signal and
the idler depending on the relation between the phases of
the coherent signal (θ0) and the noise (ϕ) [Eq. (48)]. If the
dominant noise component is aligned with the direction of the
coherent state |α0〉 in the phase space, then the entanglement
reaches its maximum value. In contrast, if the dominant noise
component is perpendicular to the direction of the coherent
state|α0〉 in the phase space, then the entanglement is minimal.
This illustrates that the signal-idler entanglement is much
more sensitive to a phase distribution of the pump than to its
amplitude distribution in the phase space.

VI. EFFECT OF DEPHASING IN A PUMP

Dephasing in the fixed pump mode is a stochastic process,
which has several causes: phase diffusion in a laser [101],
temporal variation of the refractive index in the propagating
medium, e.g., the atmosphere, and fluctuations of the optical
path length [39]. Dephasing of a coherent state |α0〉 results
in a mixed pump state �p = ∫

f (ϕ)|α0eiϕ〉〈α0eiϕ | dϕ, where
f (ϕ) is a phase distribution function. In this section we con-
sider three kinds of phase distributions: a narrow distribution
with the characteristic width �θ � 1, a uniform distribution
f (ϕ) = 1

2π
, ϕ ∈ [0, 2π ), and a general phase distribution.

A. Small dephasing

We model the effect of small dephasing on a coherent state
|α0〉, α0 = |α0|eiθ0 , by a Gaussian phase distribution with the
standard deviation �θ � 1, which leads to the P function

P(|α|eiθ ) = δ(|α| − |α0|)
|α0|

√
2π (�θ )2

exp

(
− (θ − θ0)2

2(�θ )2

)
, (50)

where δ is the Dirac delta function. Similar phase smearing
is studied in the context of a squeezed coherent pump in
Ref. [65].

FIG. 4. Shown on top is the P function of the thermal state (1)
and the dephased coherent state (2). On the bottom left is the linear
entropy and bottom right the negativity of the signal-idler field for
various dephasing parameters �θ : curve (a), �θ = 0; curve (b),
�θ = 0.3; and curve (c), �θ = 0.6. Linear entropy vanishes in
case (a).

In the perturbation theory, we substitute Eq. (50) into
Eq. (15) and get

c01 = |α0|e−(�θ )2/2−iθ0 , (51)

c11 = |α0|2, (52)

c02 = |α0|2e−2(�θ )2−i2θ0 . (53)

The linear entropy and negativity of the idler-signal state in
perturbation theory read, respectively,

SL = 2|α0|2(gt )2(1 − e−(�θ )2
) + o(g2t2), (54)

N = gt |α0|e−(�θ )2/2 + (gt |α0|)2e−2(�θ )2 + o(g2t2). (55)

Note that the negativity (40) for the displaced thermal
state (38) is greater than the negativity of the dephased coher-
ent state (50) for all �θ > 0. This behavior can be ascribed
to the fact that the displaced thermal state is symmetric with
respect to α0, i.e., the states|α0 + β〉 and|α0 − β〉 equally con-
tribute to the output, whereas the dephased coherent state (50)
is not symmetric with respect to α0 in the phase space
(see Fig. 4). This observation also implies that the phase
distribution of the pump plays a much more important role in
the entanglement of idler and signal modes than the amplitude
distribution of the pump.

In the generalized parametric approximation, we substitute
(50) in (17) and get

�nm
is = [1 − |λ(α0)|2]|λ(α0)|n+m

× exp

[
i

(
θ0− π

2

)
(n − m) − (n − m)2(�θ )2

2

]
. (56)
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The linear entropy and negativity of the idler-signal field read,
respectively,

SL = 2

1 + |λ(α0)|2
{

|λ(α0)|2 − [1 − |λ(α0)|2]

×
∞∑

k=1

|λ(α0)|2ke−k2(�θ )2

}
, (57)

N =
∞∑

k=1

|λ(α0)|ke−k2(�θ )2/2. (58)

The formula (58) expresses the negativity in terms of an
infinite sum and reduces to Eq. (54) if one considers terms up
to the second power of gt only. In general, the infinite sum can
be bounded from below by using the inequality e−x � 1 − x
for real x. This leads to the following estimation:

N �
∞∑

k=1

|λ(α0)|k
[

1 − k2(�θ )2

2

]

= |λ(α0)|
1 − |λ(α0)|

[
1 − [1 + |λ(α0)|](�θ )2

2[1 − |λ(α0)|]2

]

= 1

2
(e2gt |α0| − 1)

[
1 − (e4gt |α0| + e2gt |α0|)

(�θ )2

4

]
.

Let us summarize the results of this section. Dephasing
of the coherent pump diminishes both the purity and the
entanglement of the signal-idler field. Deviation of the purity
and negativity from the corresponding values for a genuinely
coherent pump is quadratic with respect to the dephasing
parameter �θ .

B. Phase-averaged pump

The phase-averaged coherent state is defined through

�p =
∫ 2π

0
|α0eiϕ〉〈α0eiϕ | dϕ

2π
(59)

and describes the complete dephasing. It is realized exper-
imentally as an ensemble of coherent states with random
phases, with the phase shift being created stochastically by a
mirror mounted on a piezoelectric movement [100,102]. The
P function for such a state reads

P(α) = δ(|α| − |α0|)
2π |α0| . (60)

In full analogy with the thermal state (32), the P function
of the phase-averaged coherent state is invariant to rotations
in the phase space, which leads to vanishing coefficients cnm

and �nm
is if n 
= m. As a result, the negativity vanishes too,

N = 0. (61)

In the perturbation theory, we have c11 = |α0|2 and

SL = 2|α0|2g2t2 + o(g2t2). (62)

In the generalized parametric approximation, we combine
(60), (17), and (24) and get

SL = 1 − 1

cosh 2gt |α0| . (63)

FIG. 5. Histogram approximation of a general continuous phase
distribution function L(θ ). The dashed line illustrates the uniform
distribution function L(θ ) = 1/2π .

Comparing the purity of �is for the phase-averaged co-
herent pump and that for the thermal pump of the same
intensity [Eq. (35) with n ∼ |α0|2], we see that they coincide.
Therefore, the thermal pump is indistinguishable from the
phase-averaged coherent pump from the viewpoint of the idler
and signal modes.

Let us summarize the results of this section. A phase-
averaged coherent pump cannot generate entanglement be-
tween the signal and the idler because it has a uniform phase
distribution. Similarly to the case of the thermal pump, only
classical correlations are present in the output signal-idler
field. The purity of the signal-idler field equals 1/cosh 2gt |α0|
and is less than the purity of the signal-idler field for a
genuinely coherent pump (which is equal to 1).

C. General phase distribution

Consider the pump state �p = ∫ 2π

0 f (ϕ)|α0eiϕ〉〈α0ei| dϕ.
Define L(θ ) = f ((θ − argα0)mod2π ). Then the P function of
�p reads

P(|α|eiθ ) = δ(|α| − |α0|)
|α0| L(θ ), (64)

where L(θ ) is a general phase distribution or quasidistribution
such that

∫ 2π

0 L(θ )dθ = 1.
Suppose that the function L(θ ) is continuous; then it can be

approximated by a histogram function with k bins (see Fig. 5).
Let θ j be the midpoint of the jth bin and �θ j the size of the
jth bin. Then

L(θ ) ≈
k∑

j=1

h ju j (θ ), (65)

where u j (θ ) is a rectangular distribution function in the inter-
val [θ j − 1

2�θ j, θ j + 1
2�θ j ) and the coefficients h j satisfy the

normalization condition
∑k

j=1 h j = 1. Combining (65), (64),
and (15), we get the parameters of the down-converted two-
mode state in perturbation theory

cmn = |α0|m+n
k∑

j=1

h jsinc

[
1

2
�θ j (m − n)

]
eiθ j (m−n), (66)
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where sinc(x) = sinx
x . As an example consider a mixture of

two narrow uniform distributions with equal weights and
the midpoints θ ′ and θ ′′. Since the distributions are narrow,
sinc[ 1

2�θ j (m − n)] ≈ 1, and |c01| ≈ |α0 cos[ 1
2 (θ ′ − θ ′′)]|,

|c11| ≈ |α0|2, and |c02| ≈ |α0|2| cos (θ ′ − θ ′′)|. The linear
entropy and the negativity measure of entanglement for the
two-mode idler-signal state read, respectively,

SL ≈ 2g2t2 sin2 1
2 (θ ′ − θ ′′), (67)

N ≈ gt |α0|| cos 1
2 (θ ′ − θ ′′)| + (gt |α0|)2| cos (θ ′ − θ ′′)|. (68)

The quantities (67) and (68) oscillate with the increase of
θ ′ − θ ′′ and resemble the constructive interference if θ ′ −
θ ′′ = 0 and destructive interference if θ ′ − θ ′′ = π .

So far in this section we have been considering the factor-
ized P functions of the pump with respect to the amplitude
and the phase, i.e., P(|α|eiθ ) = A(|α|)L(θ ). To deal with a
general continuous function P(|α|eiθ ), we use the Schmidt
decomposition

P(|α|eiθ ) =
∑

r

λrAr (|α|)Lr (θ ), (69)

where the real functions Ar (|α|) and Lr (θ ) satisfy the con-
ditions

∫ ∞
0 Ar (|α|)As(|α|) = δrs and

∫ 2π

0 Lr (θ )Ls(θ )dθ = δrs,
respectively. The functions Lr (θ ) can be further approx-
imated by histogram functions (65) with possibly nega-
tive coefficients h j such that

∑
h j = ∫ 2π

0 Lr (θ )dθ . This ap-
proach allows one to deal with general continuous func-
tions P(α) including those describing nonclassical states of
light [103–105]. In the generalized parametric approximation,
the use of the formulas (64) and (69) significantly simplifies
the calculation of coefficients (17) too.

Let us summarize the results of this section. The phase dis-
tribution of the pump plays a crucial role in the entanglement
between the signal and the idler. If the phase distribution has
several peaks, then the entanglement is sensitive to a relative
phase difference between the peaks. For a general P function
of the pump one can exploit the decomposition (69) over
factorized amplitude-phase quasidistributions.

VII. PUMP WITH KERR SQUEEZING

The third-order nonlinear susceptibility χ (3) of a medium
results in the intensity-dependent refractive index known as
the optical Kerr effect. This effect is significant in some
glasses [106] and optical fibers [107,108]. As a result of the
optical Kerr effect, the quantum state of light experiences an
intensity-dependent phase shift leading to a banana-shaped
quadrature squeezing [109–111]. As the radiation in the pump
mode is to be quite intense to observe the nontrivial down-
converted state in OPG, the pump itself is subjected to the
optical Kerr effect. This happens if the radiation from the
pump source (e.g., a laser) is delivered to the down-conversion
crystal through a fiber. In this section we study how the
Kerr-modulated pump affects the entanglement and purity of
the idler and signal modes.

The optical Kerr effect in the pump mode is de-
scribed a quartic interaction Hamiltonian Hint = gK (a†

p)2a2
p =

gK np(np − 1), where np = a†
pap and gK ∝ χ (3) [68,112]. We

denote by tK the time of Kerr modulation. Then the modified
pump state �̃p is related to the original pump state �p through

�̃p = exp[−igKtK np(np − 1)]�p exp[igKtK np(np − 1)]. (70)

Clearly, if the original pump state �p is thermal or phase
averaged, then �̃p = �p. The Kerr medium actually modifies
only those states �p that exhibit some degree of coherence. In
view of this, further in this section we focus on the coherent
state �p = |α0〉〈α0| and the displaced thermal state (38) as
inputs to the Kerr medium.

To use the formula (15) we need to find the Glauber-
Sudarshan function for the output of the Kerr medium. The
straightforward approach is to express the P function through
the Husimi-Kano function Q(ξ ) = π−1 〈ξ | �̃p|ξ 〉 as follows:

P(α) = 1

(2π )2

∫
Q(ξ ) exp

( |ξ |2
4

+ ξα∗ + ξ ∗α
2

)
d2ξ . (71)

This approach works well if the input to the Kerr medium is
the displaced thermal state (38) with n > 0. In Fig. 6 we depict
the P function of the Kerr medium output for different times tK
of the Kerr modulation. However, there are two complications
related to such an approach: (i) The use of Eq. (71) conceals
the physical properties of the P function and the effect of the
parameters α0, n, and gKtK on the purity and entanglement
of OPG two-mode states and (ii) Eq. (71) is not applicable
directly to the coherent input |α0〉〈α0| to the Kerr medium
because of the singular character of the P function [104,113].

Due to the above complications, we develop an approxi-
mate treatment of the P function based on the factorization

P(|α|eiθ ) ≈ A(|α|)L(θ ), (72)

where L(θ ) is the phase distribution function defined through

L(θ ) =
∫ ∞

0
P(|α|eiθ )|α|d|α|. (73)

We verify the validity of the approximation (72) for the Kerr-
modulated displaced thermal state by numerically calculating
the Schmidt coefficients λr in the formula (69) for such a state.
In Fig. 7 we depict the distribution of Schmidt coefficients
for different times tK . The approximation (72) is valid if the
coefficients λr decay rapidly with r. This takes place indeed if
�θ � 2π , where �θ is the characteristic width of the phase
distribution function L(θ ).

Let us estimate the characteristic phase spreading of the
P function in phase space for the Kerr-modulated pump.
The operator exp(−ia†aϕ) rotates the phase space by the
angle ϕ and transforms the Fock state |n〉 into e−inϕ |n〉. The
operator exp[−i(a†)2a2ϕ] transforms the Fock state |n〉 into
e−in(n−1)ϕ |n〉, which can be interpreted as a rotation in the
phase space by the angle (n − 1)ϕ. This means that the ro-
tation angle for Fock states is linearly proportional to their en-
ergy. Therefore, the characteristic phase spreading �θ of the P
function due to the Kerr medium can be estimated through the
dispersion of photon numbers n in the Fock states significantly
contributing to �p, namely, �θ ∼ gKtK

√
〈n2〉 − 〈n〉2. For the

coherent state �p = |α0〉〈α0| we have

�θcoh ∼ gKtK |α0|. (74)
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FIG. 6. Phase distribution L(θ ) and the Glauber-Sudarshan function P(α) of the Kerr-modulated displaced thermal state with the
parameters n = 1 and |α0| = √

399 (the average number of photons is 400) for various Kerr interaction constants gKtK : (a) 0, (b) 0.001,
(c) 0.003, and (d) 0.009.

In contrast to the coherent state, the displaced thermal
state (38) itself has the phase dispersion n/|α0|2 if |α0|2 � n.
This dispersion is enhanced by the dispersion (gKtK )2(〈n2〉 −
〈n〉2) when the pump light passes through the Kerr medium.
We use the known photon-number distribution function [114]
and get

�θdis th ∼
√

n

|α0|2 + (gKtK )2|α0|2(2n + 1) (75)

provided |α0|2 � n.

FIG. 7. Distribution of the Schmidt coefficients λr in Eq. (69) for
the Kerr medium output. The input is a displaced thermal state (38)
with |α0| = √

399 and n = 1 (the average number of photons is 400).
Labels 1,2,3,4 correspond to the Kerr interaction constants gKtK =
0, 0.001, 0.003, 0.009, respectively. The decomposition is performed
numerically via rasterization of the P function in Fig. 6 in the range
Re α, Im α ∈ [−25; 25] with 400 points in each direction.

We focus on experimentally achievable modulation con-
stants gKtK � 1 such that the characteristic phase spreading
�θ � 2π . If this is the case, then the Glauber-Sudarshan
function P(|α|eiθ ) of �̃p is well approximated by a factorized
form A(|α|)L(θ ).

The amplitude distributions Acoh(|α|) and Adis th(|α|) for
the initially coherent state �p = |α0〉〈α0| and the displaced
thermal state (38) read, respectively,

Acoh(|α|) = 1

|α0|δ(|α| − |α0|), (76)

Adis th(|α|) = 1√
πn|α0|

exp

(
− (|α| − |α0|)2

n

)
(77)

and satisfy
∫ ∞

0 Acoh(|α|)|α|d|α| = 1 and
∫ ∞

0 Adis th(|α|)
|α|d|α| ≈ 1 if |α0|2 � n. Substituting the approximation
P(|α|eiθ ) ≈ A(|α|)L(θ ) in Eq. (15), we get

cmn ≈ |α0|m+n
∫ 2π

0
L(θ )eiθ (m−n)dθ. (78)

It is the phase distribution L(θ ) that contributes significantly
to the coefficients cmn and defines the purity and the entangle-
ment of the signal and idler modes.

In Appendix A we analytically calculate the phase dis-
tribution Lcoh(θ ) in the case of the coherent state �p =
||α0|eiθ0〉〈|α0|eiθ0 | as an input to the Kerr medium; the
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FIG. 8. Negativity and linear entropy of the two-mode state of
signal and idler generated by a coherent pump subjected to the Kerr
effect (|α0| = 20). Labels 1,2,3,4 correspond to the Kerr interaction
constants gKtK = 0, 0.001, 0.003, 0.009, respectively.

result is

Lcoh(θ ) = e−|α0|2
∞∑

k=0

|α0|2k

4πk!
Dk (θ − θ0 + gKtK (2k − 1)),

(79)

where Dk (x) = sin(k+1/2)x
sin(x/2) is the Dirichlet kernel. We further

substitute Eq. (79) into Eq. (78) and numerically calculate the
linear entropy and negativity of the signal and idler modes.
The results are presented in Fig. 8. The greater the Kerr
modulation gKtK , the less entangled and more mixed the state
of the signal and idler modes.

In Appendix B we analytically calculate the phase distri-
bution Ldis th(θ ) in the case of the displaced thermal state (38)
as an input to the Kerr medium; the result is

Ldis th(θ ) = e−|α0|2/n

4πn

∑
k, l = 0, 1, 2, . . .

k + l is even

�
(

3k+l+4
4

)
(

k+l
2

)
!
(

k−l
2

)
!

( |α0|2n

n + 1

)(k−l )/4(
n

n + 1

)(k+l+2)/2

1F1

(
3k + l + 4

4
;

k − l + 2

2
;

|α0|2
n(n + 1)

)

× exp

{
−i[θ − θ0 + gKtK (k + l − 1)]

k − l

2

}
, (80)

where �(x) is the Gamma function and 1F1(a; b; z) is the
confluent hypergeometric function.

If �θdis th � 2π , then Ldis th(θ ) is well approximated by
a Gaussian distribution with the standard deviation (75) and
one can use the results of Sec. VI. If �θdis th ∼ π , then
the Gaussian approximation for Ldis th(θ ) is not valid (see

Fig. 9). However, substituting Eq. (80) into Eq. (78), we still
get the coefficients cnm and calculate the linear entropy and
negativity of the signal and idler modes [see Fig. 10(b)].
Even in this case, our results are in good agreement with
the exact numerical calculation exploiting the formula (71)
[cf. Fig. 10(a)].

FIG. 9. Phase distribution L(θ ) and the Glauber-Sudarshan function P(α) of the Kerr-modulated displaced thermal state with the
parameters n = 39 and |α0| = 19 (the average number of photons is 400) for various Kerr interaction constants gKtK : (a) 0, (b) 0.001, (c) 0.003,
and (d) 0.009.
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FIG. 10. Negativity and linear entropy of the signal-idler two-
mode state obtained in OPG with the Kerr-modulated displaced
thermal state as a pump. The displaced thermal state has the param-
eters n = 39 and |α0| = 19 (the average number of photons is 400).
Labels 1,2,3,4 correspond to the Kerr interaction constants gKtK =
0, 0.001, 0.003, 0.009, respectively. (a) Numerical calculations with
the use of the exact P function (71). (b) Approximate calculation with
the use of the phase distribution function (80).

Comparing the results for the Kerr-modulated displaced
thermal pump (Fig. 10) and the Kerr-modulated coherent
pump (Fig. 8) with the same number of photons, we conclude
that the former leads to worse entanglement and lower purity
of the signal-idler modes than the latter. The greater the Kerr
modulation gKtK , the more significant the advantage of the
coherent state.

Let us summarize the results of this section. We have
found the phase distributions for a coherent pump subjected
to the optical Kerr effect [Eq. (79)] and a noisy coherent
pump subjected to the optical Kerr effect [Eq. (80)]. The
characteristic widths of such distributions are given by the
formulas (74) and (75), respectively. Using the obtained phase
distributions and Eq. (78), we have managed to calculate the
negativity and the linear entropy for the signal-idler fields
generated with corresponding Kerr-modulated pumps.

VIII. EFFECT OF AN INCOHERENT
PUMP ON QUADRATURES

Homodyne measurements enable one to get access to
correlations between the idler and signal fields in terms of

quadratures. The crucial fact is that the dispersions of the
combined quadratures

X− = Xi − Xs√
2

= ai + a†
i − as − a†

s

2
, (81)

P+ = Pi + Ps√
2

= ai − a†
i + as − a†

s

2i
(82)

can both be significantly below the dispersion of the vac-
uum field (equal to 1

2 ), which is an indication of non-
classical correlations. The experiments deal with the quan-
tity −10 log10[2〈(�X−)2〉], which quantifies the squeezing
in decibels and serves as a quality factor for the prepared
entangled state [24–27].

For the idler-signal density operator �is = ∑∞
n,m=0 �nm

is
|nins〉 〈mims| we have

〈2(�X−)2〉 = 〈2(�P+)2〉 = 1 + 2
∞∑

n=0

n
(
�nn

is − Re�n,n−1
is

)
.

(83)
In the case of the coherent pump �p = |α0〉 〈α0| with
α0 = i|α0|, we get the following expression in the parametric
approximation (11):

〈2(�X−)2〉 = e−2gt |α0|. (84)

For the incoherent pump the quantity 〈2(�X−)2〉 differs
from e−2gt |α0|. Namely, for the noisy coherent state (32) with
n � |α0|2 we combine (42) and (83), take into account that

Re

(
∂2

∂ (Reα)2
+ ∂2

∂ (Imα)2

)
α

|α| f (|α|)
∣∣∣∣
α=|α|

= − 1

|α|2 f (|α|) +
(

∂2

∂ (Reα)2
+ ∂2

∂ (Imα)2

)
f (|α|), (85)

and finally get

〈2(�X−)2〉 = e−2gt |α0| + n

4|α0|2 sinh 2gt |α0|

+ n

4

(
∂2

∂ (Reα)2
+ ∂2

∂ (Imα)2

)
e−2gt |α|

∣∣∣∣
α=α0

= e−2gt |α0| + n

4|α0|2 [sinh 2gt |α0|

+ 2gt |α0|(2gt |α0| − 1)e−2gt |α0|]. (86)

For the dephased coherent state (50) we combine (56) and (83)
and get

〈2(�X−)2〉 = e−2gt |α0| + (1 − e−(�θ )2/2) sinh 2gt |α0|. (87)

Figure 11 depicts the effect of the noisy coherent pump
and the dephased coherent pump on the relative quadrature
variance 〈2(�X−)2〉.

Let us summarize the results of this section. We have
considered another quantifier of the signal-idler entanglement,
namely, the combined quadrature squeezing. We have shown
that the squeezing parameter is diminished if some noise
is added to a coherent pump. The admixture of the phase-
insensitive Gaussian noise is described by Eq. (86). The effect
of pump dephasing is described by Eq. (87).
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FIG. 11. Quadrature variance 〈2(�X−)2〉 in dB vs dimensionless
parameter gt |α0| for different pumps: coherent pump (red solid
line), displaced thermal pump (blue dashed line, n/|α0|2 = 0.1), and
dephased pump (blue dotted line, �θ = 0.1). Point (a) indicates
the experimentally achievable value of quadrature squeezing of
8 dB [26].

IX. CONCLUSION

Current technology provides sources of intense light be-
yond conventional lasers, for instance, laser diodes which
could be used as a pump in the OPG. The down-converted
photons pairs are still created simultaneously with such an
incoherent pump; however, they correspond to a mixed state
�is of the signal and idler modes rather than to a pure one. In
fact, the down-converted modes (signal and idler ones) inherit
the incoherent properties of the pump and exhibit a lower
degree of entanglement and purity as compared to the OPG
with the coherent pump. These results can also be extended
to the field of microwave quantum state engineering with
Josephson traveling-wave parametric amplifiers, where the
thermal noise in the pump is inevitable [115,116].

We have demonstrated, that the thermal pump and the
phase-averaged coherent pump result in no entanglement
between the idler and signal modes; only classical correlations
are present. The noisy coherent (displaced thermal) pump
and the partially dephased coherent pump produce some
entanglement between the idler and signal modes; the degree
of entanglement decreases with the growth of the thermal
contribution and dephasing, respectively. The variance of
the combined quadratures exhibits the same behavior. The
feature of the phase-sensitive Gaussian noise is that the degree
of signal-idler entanglement can either decrease or increase
depending on the relation between the phase of the dominant
noise component and the pump phase.

We have developed an approach to deal with an arbitrary
pump defined by the Glauber-Sudarshan function P(α). The
entanglement and the purity of �is are much more sensitive
to the phase distribution L(θ ) of the pump than to the ampli-
tude distribution A(|α|). The general observation is that the
wider the phase distribution L(θ ) is, the less entangled the
signal and idler modes are. As an instructive example, we
have analytically calculated the phase distribution L(θ ) for
the Kerr-modulated coherent pump and the Kerr-modulated
displaced thermal pump and used this distribution to infer the
entanglement properties of the idler and signal modes.
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APPENDIX A: PHASE DISTRIBUTION FOR THE KERR-MODULATED COHERENT STATE

In this Appendix we derive the phase distribution L(θ ) for a coherent pump modulated by the Kerr medium. We start with a
general transformation of the P function in the Kerr medium, which follows from Eq. (70) and Ref. [71],

Pout (|α|eiθ ) =
∞∑

k,l=0

exp{−i[θ + gKtK (k + l − 1)](k − l )}
2π (k + l )!

∫ ∞

0
d|β|

∫ 2π

0
dϕ e−|β|2 Pin(|β|eiϕ )|β|k+l+1eiϕ(k−l )

×e|α|2

|α|
(

− ∂

∂|α|
)k+l

δ(|α|), (A1)

where Pin (out) is the P function of the Kerr medium input (output).
To find the phase distribution (73), we utilize several mathematical transformations. The idea of the first transformation is

based on the extension of the integration limits in Eq. (73) and formally include negative values, i.e., |α| → a ∈ (−∞,+∞).
Defining

I (+)
n =

∫ ∞

0
ea2

(
− ∂

∂a

)n

δ(a)da, (A2)

I (−)
n =

∫ 0

−∞
ea2

(
− ∂

∂a

)n

δ(a)da = (−1)nI (+)
n , (A3)
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then the integration of Pout (aeiθ ) over a ∈ (−∞,+∞) yields∫ ∞

−∞
Pout (aeiθ )a da =

∫ 0

−∞
Pout (aeiθ )a da +

∫ ∞

0
Pout (aeiθ )a da =

∞∑
k,l=0

(· · · )
[
I (+)
k+l + I (−)

k+l

] =
∞∑

k,l=0

(· · · )
[
(−1)k+l I (+)

k+l + I (+)
k+l

]
,

(A4)

where (· · · ) denotes the terms in the first line of Eq. (A1). Since (−1)k+l = e−iπ (k−l ), we combine (· · · ) and e−iπ (k−l ) and get∫ ∞

−∞
Pout (aeiθ )a da =

∫ ∞

0
Pout (aei(θ+π ) )a da +

∫ ∞

0
Pout (aeiθ )a da = L(θ + π ) + L(θ ). (A5)

On the other hand,

I (+)
n + I (−)

n =
∫ ∞

−∞
ea2

(
− ∂

∂a

)n

δ(a)da = |Hn(0)| =
{

0 if n is odd
n!

(n/2)! if n is even,
(A6)

where Hn(x) is the nth-order Hermite polynomial. Equations (A1), (A5), and (A6) imply that

L(θ + π ) + L(θ ) =
∑

k, l = 0, 1, 2, . . .

k + l is even

(· · · )
(k + l )!(

k+l
2

)
!

=
∑

k, l = 0, 1, 2, . . .

k + l is even

∫ ∞

0
d|β|

∫ 2π

0
dϕ e−|β|2 Pin(|β|eiϕ )|β|k+l+1 exp{−i[θ − ϕ + gKtK (k + l − 1)](k − l )}

2π
(

k+l
2

)
!

.

(A7)

Note that the relation ∑
n is even

e−iβn = 1

2

∑
n is even

(e−i(β+π )n/2 + e−iβn/2) (A8)

holds for any real β, so the function

L(θ ) =
∑

k, l = 0, 1, 2, . . .

k + l is even

∫ ∞

0
d|β|

∫ 2π

0
dϕ e−|β|2 |β|k+l+1Pin(|β|eiϕ )

exp{−i[θ − ϕ + gKtK (k + l − 1)](k − l )/2}
4π

(
k+l

2

)
!

(A9)

satisfies Eq. (A7) and is the actual phase distribution of the output of the Kerr medium.
If the input to the Kerr medium is a coherent state |α0〉〈α0| with α0 = |α0|eiθ0 , then Pin(|β|eiϕ ) = |α0|−1δ(β − |α0|)δ(ϕ − θ0)

and Eq. (A9) yields

Lcoh(θ ) = e−|α0|2
∑

k, l = 0, 1, 2, . . .

k + l is even

|α0|k+l

4π
(

k+l
2

)
!

exp{−i[θ − θ0 + gKtK (k + l − 1)](k − l )/2}. (A10)

We make a change of variables, which takes into account that both k + l and k − l are even:

k + l = 2x, k − l = 2y, |y| � x, x, y = 0, 1, 2, . . . . (A11)

Finally, we have

Lcoh(θ ) = e−|α0|2
∞∑

x=0

x∑
y=−x

|α0|2xe−i[θ−θ0+gK tK (2x−1)]y

4πx!
= e−|α0|2

∞∑
x=0

|α0|2x

4πx!
Dx(θ − θ0 + gKtK (2x − 1)), (A12)

where Dx(z) = sin(x+1/2)z
sin(z/2) is the Dirichlet kernel.

APPENDIX B: PHASE DISTRIBUTION FOR THE KERR-MODULATED DISPLACED THERMAL STATE

In this Appendix we find the phase distribution L(θ ) for the output of the Kerr medium when the input is a displaced thermal
state with the P function

Pin(|β|eiϕ ) = 1

πn
exp

(
−||β|eiϕ − |α0|eiθ0 |2

n

)
= 1

πn
exp

(
−|β|2

n
− |α0|2

n
+ 2|β||α0| cos (ϕ − θ0)

n

)
. (B1)
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While substituting (B1) in the general formula (A9), we integrate over ϕ first and then integrate over |β|. The first integration
yields ∫ 2π

0
exp

(
2|β||β0| cos (θ − θ0)

n
+ i

ϕ(k − l )

2
dϕ

)
= 2πeiθ0(k−l )/2I|k−l|/2

(
2|β||α0|

n

)
, (B2)

where In(x) is the modified Bessel function of the first kind. The second integration yields [117]∫ ∞

0
exp

(
−n + 1

n
|β|2

)
|β|k+l+1I|k−l|/2

(
2|β||α0|

n

)
d|β| =

(
n

2|α0|
)a

�[(a + b)/2] 1F1((a + b)/2; b + 1; (4p)−1)
2b+1 p(a+b)/2�(b + 1)

, (B3)

where �(x) is the Gamma function, 1F1(x; y; z) is the confluent hypergeometric function, and

a = k + l + 2, b = k − l

2
, p = n(n + 1)

4|α0|2 . (B4)

Using the property �(n + 1) = n! for non-negative integers n and combining (A9), (B1), and (B3), we finally get

Ldis th(θ ) = e−|α0|2/n

4πn

∑
k, l = 0, 1, 2, . . .

k + l is even

�
(

3k+l+4
4

)
(

k+l
2

)
!
(

k−l
2

)
!

( |α0|2n

n + 1

)(k−l )/4(
n

n + 1

)(k+l+2)/2

1F1

(
3k + l + 4

4
;

k − l + 2

2
;

|α0|2
n(n + 1)

)

× exp

{
−i[θ − θ0 + gKtK (k + l − 1)]

k − l

2

}
. (B5)
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