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A methodology is devised for building optimal bases for the generalized Dicke model based on the symmetry
adapted variational solution to the problem. At order zero, the matter sector is constructed by distributing Na

particles in all the possible two-level subsystems connected with electromagnetic radiation; the next order is
obtained when the states of Na − 1 particles are added and distributed again into the two-level subsystems and
so on. In the electromagnetic sector, the order zero for each mode is the direct sum of the Fock spaces, truncated
to a value of the corresponding constants of motion of each two-level subsystem; by including contributions of
the other modes, the next orders are obtained. As an example of the procedure, we consider four atoms in the �

configuration interacting dipolarly with two modes of electromagnetic radiation. The results may be applied to
situations in quantum optics, quantum information, and quantum computing.
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I. INTRODUCTION

The study of a finite number of n-level matter systems, be
they atoms, artificial atoms, spin systems, or molecules, inter-
acting with an electromagnetic field of � modes, has regained
importance as applications in quantum optics, quantum gates,
and quantum information have become realistic. In particular,
electromagnetic induced transparency, population trapping,
and quantum memories require the presence of, at least, three
atomic (matter) levels [1–3].

Dynamically driven quantum coherence in qubit systems,
which are made to cross the quantum phase transition into
the superradiant region, has been shown [4–6] as well as
the generation of field-matter entanglement in the system by
varying the light-matter coupling parameter [7].

Even if one restricts the number of photons in the radiation
field with some upper bound, a strong limitation in these
studies is that the dimension of the Hilbert space becomes
unwieldy as the number of atoms and total excitations grow.

In this paper, we build a sequence of ever-approximating
bases for the infinite-dimensional Hilbert space H of matter
interacting with radiation in order to carry out a complete
study for noninteracting particles exchanging energy with �

modes of electromagnetic radiation. In particular, an upper
bound is placed on the total number of excitations of the
system, essentially limiting the number of photons in order
to obtain a finite-dimensional Hilbert space to work on. This
upper bound is chosen in such a way that the ground state
(which is the one to be studied) obtained in this truncated
space differs from the exact ground state by no more than a
certain allowed error err as measured by the fidelity F between
the two states. We, here, show examples for both err = 10−10

and err = 10−15. The value for err is, of course, arbitrary and
will be demanded by the type of application to be given. For

*sergio.cordero@nucleares.unam.mx

err = 10−10, for example, the error in the energy surface and
observables is less than 10−8.

The fact that we have an iterative method for reducing a
system of n-level atoms interacting with radiation to a system
of n − 1 levels [8] plus the result that the polychromatic phase
diagram divides itself into monochromatic subregions [8–10]
where only one of the radiation modes strongly dominates
suggest a methodology for reducing the space dimension even
further. This methodology is used to build a sequence of bases
for the Hilbert space which approximates better the exact
results as we move along the sequence. Previously untractable
problems may be tackled in this way, and, depending on the
desired approximation, the appropriate basis may be chosen.

The iterative method just mentioned allows the study of
the ground state of a very general atomic system of n levels
in the presence of an electromagnetic field of � modes even in
the case where each mode produces transitions between more
than one pair of levels to be carried out by studying subsys-
tems consisting of two atomic levels interacting dipolarly with
one radiation mode.

The investigation of the four-level N and λ atomic config-
urations interacting with two radiation modes has been shown
to present qualitatively different quantum phase diagrams [9].
While the collective superradiant regime in the latter divides
itself into two subregions, corresponding to each of the modes,
that of the former may be divided into two or three subre-
gions depending on how the field modes divide the atomic
system into two-level subsystems. Furthermore, a four-level
Josephson circuit shows the dynamics of two-qubit systems
[11]. This shows the importance of studying two-level atomic
systems under the influence of one-mode radiation fields (for
a review, cf. Ref. [12]). Recently, the importance of adding
unitary invariant phase factors in the matter-field interactions
of two- and three-level particles has been established, which
can be seen as a canonical transformation represented as a
unitary transformation [13]. They found that the phase factors
affect the intrinsic symmetry of the two- and three-level Dicke
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models interacting with one mode of radiation [14]. However,
we want to stress that the ground-state phase diagram pre-
sented is very similar to the case of the Dicke model but with
two modes of electromagnetic radiation [8].

As mentioned above, in Ref. [9], we have studied the quan-
tum phase diagrams for the four-level systems associated with
the λ and N atomic configurations by means of a variational
procedure. Our present approach allows one to investigate
these systems without approximations and in different ways:

(i) By considering the optimal basis presented here to
study the corresponding eigensystems for the different parity
symmetries together with transitions between different levels,
preserving or not the parity symmetry.

(ii) By studying the entanglement properties between the
matter and the field sectors together with the statistical proper-
ties of light, such as squeezing, delocalization, and the Mandel
parameter.

(iii) By allowing subsystems of two and three levels to
be considered as open quantum systems where the remain-
ing part of the system behaves as an environment and con-
sider the dynamics through a Gorini-Kossakowski-Sudarshan-
Lindblad type of master equation. This approach considers the
dynamics of the environment to be similar to the dynamics
of the system under study as opposed to other approximation
methods, such as the quantum trajectory approach [15–17]
or the master equation [18,19].1 For the reader interested in
two-level systems, an efficient numerical simulation using
permutational invariance that allows one to study the evolu-
tion mainly of the superradiant emission for different initial
states and under different local and collective processes, may
be found in Ref. [20].

(iv) Another specific problem would be the determina-
tion of universal parametric curves for three- and four-level
systems following the procedure indicated in Ref. [21] and
establishing the properties of light when the transitions in the
finite quantum phase diagrams are crossed.

Our methodology shows how to study the properties of
the ground state by reducing the full system to two-level
subsystems and has been tested in the particular case of
one three-level atom [22] and in the existence of universal
parametric curves [21]. Here, we show that the method is
generalizable to any finite number of atoms.

After presenting the general methodology, the study of
four atoms in the � configuration in the presence of two
electromagnetic modes is given in full as an example. The
energy surface and the photon number fluctuations are also
calculated.

This paper is organized as follows: In Sec. II, the gener-
alized Dicke model is presented. Section III builds the full
basis of the Hilbert space as well as a criterion to obtain
convergence of the solution based on the fidelity of states.
We show that this procedure yields the minimum number of
excitations needed to obtain convergence in a related two-level
system, and we discuss a method to obtain the convergence in
the general three-level case. We also calculate the minimum
energy surface for the exact quantum solution of a three-level
system. In Sec. IV, a reduction method is presented which

1This approach is under current consideration.

results in a sequence of ever-approximating bases for the
Hilbert space. Section V presents the results for a three-level
system interacting with two modes of electromagnetic field,
obtained from the exact solution and from the reduced bases.
These results are discussed and compared. Finally, in Sec. VI,
some concluding remarks are given.

II. GENERALIZED DICKE MODEL

A. Preliminaries

In a noninteracting gas of atoms or molecules, the spon-
taneous emission of a two-level system leads to the emission
of coherent radiation called superradiant emission. This yields
a completely different behavior if the atoms or molecules are
considered independent. It is a collective performance induced
by the interaction with the electromagnetic field.

In the Dicke description of an N molecule gas, it is assumed
that each molecule has two internal degrees of freedom and
the Hamiltonian is written in two parts, one related to the
translational degrees of freedom H0 and a second one related
to the two internal degrees of freedom σkz, i.e.,

H = H0 + h̄ωJz, (1)

where Jz = (1/2)
∑

k σkz. As H0 commutes with the internal
degrees of freedom Jz, the eigenstates of the Hamiltonian are
the direct product of the center-of-mass degree of freedom |g〉
times the so-called Dicke states |rm〉,

J2|rm〉 = h̄r(r + 1)|rm〉, Jz|rm〉 = h̄m|rm〉, (2)

where |m| � r � N/2 because Jz is a constant of motion
of the Hamiltonian. For the case of identical molecules,
when r = m = N/2, the eigenstate is not degenerate, and it
is straightforward to show that when all the molecules are
excited the spontaneous decay probability is I ∝ N , whereas
for m = 0 one obtains I ∝ N2 (cf. Ref. [23]).

In what follows, we will consider a generalization of the
Dicke studies in that the internal degrees of freedom for
each atom or molecule are constituted by n levels, which
interact dipolarly with � modes of electromagnetic radiation
in a cavity. We are, here, interested in the determination of
the quantum phase diagrams or quantum phase transitions
for a finite number of particles (sometimes called precursors
of quantum phase transitions). However, for any quantum-
mechanical system described by an effective Hamiltonian of
the form H = Ha + H f + Ha f , the results obtained in this
contribution can be applied.

B. Generalized model

Let us consider Na atoms of n levels interacting dipolarly
with � modes of an electromagnetic field where the transition
between any given pair of atomic levels is promoted only
by one mode of the field. The Hamiltonian is composed of
two terms: a diagonal part HD containing the field and matter
sectors and a nondiagonal H int containing the matter and field
dipolar interactions. So we can write (h̄ = 1) [10]

H = HD +
�∑

s=1

H (s)
int , (3)
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with

HD =
�∑

s=1

�sνs +
n∑

k=1

ωkAkk, (4)

where �s denotes the s-mode field frequency, ωk the fre-
quency of the atomic level k, νs the bosonic field operator
νs = a†

s as of mode s with a†
s and as the creation and anni-

hilation operators, and Akk and A jk are atomic weight and
transition operators, respectively, obeying the unitary algebra
U (n) in n dimensions,

[A jk, Alm] = δklA jm − δ jmAlk . (5)

For the totally symmetric irreducible representation of U (n),
the generators have a bosonic representation as A jk = b†

jbk

and first-order Casimir operator,
n∑

k=1

Akk = Na1matt, (6)

with 1matt the identity operator in the matter sector of the
Hilbert space.

The second contribution term in (3) reads

H (s)
int = − 1√

Na

n∑
j<k

μ
(s)
jk (A jk + Ak j )(a†

s + as), (7)

where μ
(s)
jk is the matter-field coupling parameter and denotes

the dipolar intensity. Since we have assumed that transitions
between a pair of atomic levels are promoted only by one
mode of electromagnetic field, say �s, one has as a condition
that, if μ

(s)
jk �= 0, then μ

(s′ )
jk = 0 for all s′ �= s.

The adopted convention ω j � ωk for j < k on the atomic
levels allows us to refer to a particular atomic configuration
by the appropriate choice of vanishing dipolar strengths μ

(s)
jk .

Also, fixing values ω1 = 0 and ωn = 1, one may to refer to all
energy (and frequency) quantities in units of h̄ ωn (and ωn).

For each mode s, the interaction term (7) has the
form H (s)

int = R(s)
int + C(s)

int with R(s)
int the rotating and C(s)

int the
counterrotating terms. The rotating term preserves the total
number of excitations,

R(s)
int = − 1√

Na

n∑
j<k

μ
(s)
jk (A jka†

s + Ak jas), (8)

because a decrease (or increase) in an atomic excitation in-
volves an increase (or decrease) in the photon number. The
counterrotating term does not preserve the total number of
excitations and is given by

C(s)
int = − 1√

Na

n∑
j<k

μ
(s)
jk (A jkas + Ak ja†

s ). (9)

The Hamiltonian in the rotating-wave approximation (RWA),
obtained when the counterrotating term is neglected, would be
called the generalized Tavis-Cummings model (GTCM).

III. FULL BASIS

A complete basis for the Hamiltonian (3) is formed by the
direct product of the Hilbert spaces of the field and matter

sectors. An element is of the form

|�ν; �n〉 := |ν1, . . . , ν�; a1, . . . , an〉, (10)

which satisfies the eigenvalue equations,

νs|�ν; �n〉 = νs|�ν; �n〉, Akk|�ν; �n〉 = ak|�ν; �n〉 (11)

for the number of photon operator νs of mode �s and the
particle number operator Akk for the atomic level k.

Denoting the Fock space of each mode �s by

Fs := {|νs〉|νs = 0–2, . . .}, (12)

with infinite dimension and the matter space by

M :=
{

|a1, . . . , an〉
∣∣∣∣

n∑
k=0

ak = Na, ak � 0

}
, (13)

with finite dimension given by
(Na+n−1

n−1

)
because the number

of particles is preserved (6), the full basis is then

B :=
�⊗

s=1

Fs ⊗ M. (14)

A. Parity adapted basis

When the rotating-wave approximation is considered, op-
erators of the form

Kζ =
�∑

s=1

η(ζ )
s νs +

n∑
k=1

λ
(ζ )
k Akk (15)

commute with the Hamiltonian for certain values of the coeffi-
cients η(ζ )

s , λ
(ζ )
k . These operators Kζ play the role of constants

of motion of the system.
For the generalized Dicke Hamiltonian, only the parity

of Kζ is preserved, i.e., the full Hamiltonian commutes with
operators,

�ζ = eiπKζ , ζ = 1, 2, . . . , ζ0, (16)

with ζ0 denoting the number of parity operators that commute
with the Hamiltonian. Its value depends on the particular
atomic configuration and is given, in general, by [10]

ζ0 + 1 = � + n − R, (17)

where R is the rank of the system of algebraic equations,

μ
(s)
jk (ηs + λ j − λk ) = 0, (18)

in which one needs to take into account all the modes s =
1, 2, . . . , � and the connected pairs for each mode. Note that
when each mode connects only one pair of levels, the number
of constants of motion is ζ0 = n − 1. On the other hand, when
only one mode is responsible for all dipolar transitions, one
gets ζ0 = 1.

Table I shows the values of the coefficients η(ζ )
s , λ

(ζ )
k for the

particular case of three-level atoms interacting dipolarly with
two modes of the electromagnetic field.

The basis in the RWA approximation can be characterized
in terms of the eigenvalues κ = {k1, k2, . . . , kζ0} of the con-
stants of motion Kζ and can be written as

B(κ )
RWA := {|�ν; �n〉|Kζ |�ν; �n〉 = kζ |�ν; �n〉 for ζ = 1, 2, . . . , ζ0} .

(19)
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TABLE I. Coefficients corresponding to the Kζ operators in
Eq. (15) for the 
, �, and V atomic configurations. Subscripts s, s′,
and s′′ correspond to the modes of the transitions 1 � 2, 1 � 3, and
2 � 3, respectively.

Configuration Kζ η(ζ )
s η

(ζ )
s′ η

(ζ )
s′′ λ

(ζ )
1 λ

(ζ )
2 λ

(ζ )
3




K1 0 1 1 0 0 1
K2 0 0 1 1 0 1

�

K1 1 0 1 0 1 2
K2 0 0 1 0 0 1

V
K1 1 1 0 0 1 1
K2 0 1 0 0 0 1

For three-level atoms interacting with two modes of the elec-
tromagnetic field, the dimension of this basis can be obtained
in analytic form (cf. the Appendix).

When the counterrotating terms are included in the Hamil-
tonian, only the parity of the constants of motion is preserved.
The Hilbert space then takes into account the direct sum of all
the subbases B(κ )

RWA for which the parity of each element kζ in
κ is preserved.

The full basis is then divided in blocks as

B =
⊕

σ

Bσ , (20)

where σ = parity(κ ), Bσ is given by

Bσ :=
∞⊕

j1=0

· · ·
∞⊕

jζ0 =0

B(κσ +2{ j1, j2,..., jζ0 })
RWA , (21)

and κσ is the set of minimum values of the ele-
ments of κ with the desired parity. The expression
κσ + 2{ j1, j2, . . . , jζ0} denotes element by element addition,
i.e., {kmin

1 + 2 j1, . . . , kmin
ζ0

+ 2 jζ0}.
The full Hamiltonian (3) may then be rewritten as H =⊕
σ Hσ , and the minimum energy surface is given by

Eg = min{Egσ }, (22)

at each point in parameter space, where Egσ is the eigenvalue
of Hσ for the ground state: Hσ |�gσ 〉 = Egσ |�gσ 〉 for each
parity σ .

B. Truncated basis via fidelity

In practice, the exact quantum ground-state |�gσ 〉 is ob-
tained to an approximate precision |ψκ

gσ 〉 by using the cutoff
basis with fixed parity,

Bκ
σ :=

J1⊕
j1=0

J2⊕
j2=0

· · ·
Jζ0⊕

jζ0 =0

B(κσ +2{ j1, j2,..., jζ0 })
RWA , (23)

where Ji is the minimum value of ji required for convergence
to the desired precision of the ground-state solution in the
Hilbert space.

In order to calculate the minimum values κ in (23) which
provide a good approximation to the ground state, one may

take the variational solution of the problem [8,10] and pro-
pose as minimum values kζ = 〈Kζ 〉 + 3(�Kζ ). This proposal,
however, provides a good value of kζ only when Kζ obeys
a Gaussian distribution and except in the normal region.
Another approach is to use a criterion based on the fidelity
between two states.

In this paper, we use the fidelity criterion to get an approxi-
mate ground state. Noting that the error between the exact and
the approximate quantum ground states,

eκ
σ := 1 − ∣∣〈ψκ

gσ

∣∣�gσ
〉∣∣2 (24)

vanishes in the limit κ → ∞ and for values of κ, κ + 2, . . .,
one has eκ

σ > eκ+2
σ > · · · , one may cut the full basis to a

desirable error err by imposing the condition,

1 − F κ
σ � err, F κ

σ := ∣∣〈ψκ
gσ

∣∣ψκ+2
gσ

〉∣∣2. (25)

This criterion is more general in that it does not depend on
the particular distribution of the values of Kζ , and an iterative
method allows us to evaluate the value of κ for the desired
approximation.

In order to illustrate the method, we next consider the
particular case of a two-level system.

1. Two-level system

We, here, consider Na atoms of two levels (ω j < ωk)
interacting with a single-mode �s of an electromagnetic field.
The Hamiltonian is

H = �sνs + ω jA j j + ωkAkk

− 1√
Na

μ
(s)
jk (A jk + Ak j )(a†

s + as). (26)

This possesses only one parity operator, namely,

�
(s)
jk = eiπM (s)

jk , with M (s)
jk = νs + Akk . (27)

Here, M (s)
jk stands for the total number of excitations oper-

ator (with eigenvalues m(s)
jk = 0, 1, . . ., if the rotating-wave

approximation were considered). From the variational calcu-
lation, one finds that this system presents a phase transition at
the critical point,

μ̄
(s)
jk := 1

2

√
�sω jk ; ω jk := |ω j − ωk|,

which allows us to write the Hamiltonian in terms of the di-
mensionless dipolar intensity x(s)

jk and the detuning parameter

�
(s)
jk , given by

x(s)
jk := μ

(s)
jk

μ̄
(s)
jk

, �
(s)
jk := �s

ω jk
− 1, (28)

so that all the two-level systems with the same detuning values
�

(s)
jk have the same quantum phase diagram as function of x(s)

jk ,
i.e., all of these systems are equivalent in these variables.

We then calculate, iteratively, a value of κ = {m(s)
jk } for a

fixed parity which will fulfill the inequality in Eq. (25). This
value depends of the number of particles Na, the dimension-
less dipolar intensity x(s)

jk , the detuning parameter �
(s)
jk , and the

error value err.

053810-4



OPTIMAL BASIS FOR THE GENERALIZED DICKE MODEL PHYSICAL REVIEW A 100, 053810 (2019)

 0

 20

 40

 60

 80

 0  1  2  3  4  5  6

m(s)
jk

x(s)
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FIG. 1. For Na = 3 atoms with �
(s)
jk = 0, the value of m(s)

jk as a

function of x(s)
jk is shown for an error of err = 10−10 (circles) and err =

10−15 (dots) in the fidelity F [Eq. (25)].

In Fig. 1, the value of m(s)
jk for the even solution σ = e is

displayed as a function of the dimensionless dipolar intensity
x(s)

jk for the case of Na = 3 particles, zero detuning, and error

values err = 10−10 (circles) and err = 10−15 (dots). As the
error becomes smaller, m(s)

jk grows considerably and, hence,
the corresponding dimension of the truncated basis. In fact,
it diverges as err → 0. For the case of the odd-parity σ = o,
the number of excitations is given by m(s)

jk + 1 with m(s)
jk the

number of excitations for the even solution.
Fixing the error value to err = 10−10 and taking the even-

parity σ = e, Fig. 2(a) shows the number of excitations m(s)
jk

as a function of the number of particles Na for a fixed
value of x(s)

jk = 3/2 and for different detuning values �
(s)
jk =

−1/2, 0, 1/2. In a similar way, for Na = 4 atoms, the number
of excitations is shown as a function of x(s)

jk in Fig. 2(b). The

calculation for �
(s)
jk = 0 overestimates the values of m(s)

jk when

�
(s)
jk > 0. Note also that, for small values of x(s)

jk , m(s)
jk does not

depend on the detuning value.

2. General case

In order to justify the general procedure, it is convenient to
first look at a specific case. We take that of three-level atoms in
the � configuration interacting dipolarly with two modes of an
electromagnetic field. The modes �1,�2 promote transitions
ω1 � ω2 and ω2 � ω3, respectively. The coefficients of the
two operators Kζ Eq. (15) are given in Table I, identifying
the number of excitations M (s)

jk of each subsystem and may be
written as

K1 = M (1)
12 + M (2)

23 + A33, (29)

K2 = M (2)
23 . (30)

The Hilbert space then divides itself into four sub-
spaces according to the parity of the eigenvalues of K1 and
K2:{ee, eo, oe, oo}. For each of these subspaces, the minimum
values for k1, k2 that satisfy the convergence criterion (25)
are calculated by using the iterative method described ear-
lier. These values are determined from those of m(1)

12 , m(2)
23

of the two-level subsystems and from the total number of
particles Na.

 0
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 100

 0  5  10  15  20  25  30  35  40

(a)

m(s)
jk
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(s)

(s)
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Δjk = -1/2

Δjk =  0

Δjk =  1/2
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(b)

(4,50)

(2,24)m(s)
jk

(s)

(s)

(s)

x(s)
jk

Δjk = -1/2
Δjk =  0
Δjk =  1/2

FIG. 2. Number of excitations m(s)
jk as a function of: (a) the

number of particles Na with x(s)
jk = 3/2 and (b) the dipolar intensity

x(s)
jk for Na = 4. In both cases, the detuning values used are indicated,

and we have taken err = 10−10.

Therefore, the maximum eigenvalues that the operators
M (1)

12 and M (2)
23 will take are precisely m(1)

12 and m(2)
23 . Using

these and the value of Na for the operator A33, we arrive at

k1 = m(1)
12 + m(2)

23 + Na, (31)

k2 = m(2)
23 . (32)

Consequently, imposing the condition that the number of
excitations of each two-level subsystem m(s)

jk satisfies the

inequality m(s)
jk � m(s)

jk for each state of the basis (23), the
criterion (25) must also be fulfilled.

For this example, Table II shows the dimension of the basis
(23) at fixed values of the dimensionless dipolar strength.
One may observe how this dimension grows as the number
of particles and dipolar strengths increases.

For the general case of n-level atoms interacting with �

modes, we first identify, in the RWA, the number of operators
that commute with the Hamiltonian. These are rewritten in
terms of the two-level subsystem operators M (s)

jk and the

weight operators Akk . Their maximum eigenvalues m(s)
jk are

calculated via the iterative procedure described.
For the full Hamiltonian, only the parities of the operators

Kζ are preserved, and these tell us the number of parity
subsystems into which the whole Hilbert space divides. For
each one of these parities, we substitute the value of the
operators M (s)

jk for m(s)
jk and the value of the weight operators
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TABLE II. Dimension of the truncated basis Bκ
ee Eq. (23) for

three-level atoms in the � configuration interacting with two modes
of the electromagnetic field under resonant condition �

(s)
jk = 0. The

number of allowed photons is restricted by νs � m(s)
jk . This basis

permits us to approximate the quantum ground state with a desirable
error en := 10−n at two different values of the dimensionless dipolar
strength (x12, x23) shown.

Na e10(1.5, 1.5) e10(3, 3) e15(1.5, 1.5) e15(3, 3)

1 91 271 169 397
2 330 925 532 1426
3 664 2295 1030 3667
4 1222 4876 2170 7956
5 2017 9090 3442 13985

Akk for Na. These yield the values for kζ , and for all m(s)
jk �

m(s)
jk , the convergence criterion (25) will be fulfilled.
A good estimate for the dimension of the basis is given by

1

ζ0

�∏
s=1

(
m(s)

jk + 1
)(Na + n − 1

n − 1

)
, (33)

where ζ0 is the number of parities preserved, which, in our
example of Table II, is ζ0 = 4 together with � = 2 and n = 3.

C. Minimum energy surface

The minimum energy surface of physical systems lets us
determine the quantum phase transitions at zero temperature
[24]. In the Dicke model, the quantum phase transitions were
determined by Hepp and Lieb [25], and the free energy of
the system in the thermodynamic limit was calculated by
Wang and Hioe [26]. A review of the dynamics of matter-field
interactions of two- and three-level systems was performed by
Yoo and Eberly [27]. A procedure to determine the quantum
phase transitions was proposed by Gilmore [28], which uses
a variational test function together with the catastrophe for-
malism. Another possibility to determine the quantum phase
transitions (also called crossovers) for a finite number of
particles is by means of the fidelity concept of quantum
information [21,22,29,30]. Here, we illustrate how to build the
ground-state energy surface of Na = 4 atoms of three levels
interacting dipolarly with two modes of an electromagnetic
field together with the determination of the quantum phase
diagram through the calculation of the fidelity.

We choose the parameters in the Hamiltonian to be as
follows: atomic levels ω1 = 0, ω2 = 1/4, and ω3 = 1; field
frequencies �1 = 1/4 and �2 = 3/4; and, as phase-space
parameters, the dimensionless dipolar strengths x(1)

12 and x(2)
23 .

The superscripts indicate that modes �1 and �2 promote
transitions between the atomic levels ω1 � ω2 and ω2 � ω3,
respectively. Note that the system is in double resonance, i.e.,
the case of zero detuning.

Recall that the basis B(κ )
RWA in Eq. (19) allows us to calculate

the ground-state energy surface of the generalized Tavis-
Cumming model where the operators Kζ are constants of
motion. In this case, one can evaluate the ground-state energy
surfaces for fixed values of κ and, then, take the minimum
value as a function of the control parameters. On the other

FIG. 3. Quantum ground energy surface for Na = 4 atoms in the
� configuration. (a) Generalized Tavis-Cumming model, where k1 is
a constant; the color indicates the value of the total number of exci-
tations in the system. (b) Generalized Dicke model where only the
parity of k1 is conserved; the black lines define the separatrix where
a minimum in the fidelity occurs. Parameters used are discussed in
the text.

hand, the minimum energy surface for the generalized Dicke
model requires the use of the basis Bκ

σ in Eq. (23). One, then,
evaluates the minimum energy surfaces for every fixed parity
of κ and takes the one which is minimum at every point in
phase space. For atoms in the � configuration, the ground-
state energy surface has even-even-parity σ = ee when the
number of particles is even, whereas it is composed of the
parities σ = ee and σ = oe for an odd number of particles
(depending on the region of phase space). A similar situation
occurs for the one atom 
 configuration [22].

In the Tavis-Cumming model, we have two constants of
motion, viz., the total number of excitations k1 and the number
of excitations of the 2 � 3 subsystem k2. Its energy surface
is plotted in Fig. 3(a) for Na = 4, and we see that the phase
diagram is divided into three regions: a normal region where
Eg = 0 and a collective region showing a separatrix between
its two subregions. The height indicates the energy value (in
units of h̄ω3), and the color gives the value of k1; in this ap-
proximation, k2 = 0 for the smaller values of x23 where there
are only photons of mode �1. For the collective region where
there are only photons of mode �2, k2 increases gradually
from three in steps of the unity. Note that all the transitions
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are discontinuous because the ground state changes from one
subspace to another as k1 changes. The transitions where k1 is
increased (or decreased) by a value greater than one remain as
discontinuous transitions in the thermodynamic limit. When
leaving the normal region as x(1)

12 increases, the transition is
continuous; when leaving it as x(2)

23 increases, the transition is
discontinuous.

For the generalized Dicke model, k1 and k2 are no longer
constants of motion, only their parity is preserved, and they
distribute about their corresponding GTCM values taking into
account that the dimensionless coupling strengths xi j scale by
a factor of 1/2. The ground-state energy surface is plotted in
Fig. 3(b). Since Na is even, the ground-state energy surface
has an even-even parity. We also show the separatrix (black
points), obtained from the local minima in the fidelity between
neighboring points. Here, one finds a second-order transition
from the normal region (the enclosed region around the ori-
gin) to the collective region that we reach by increasing the
value of x(1)

12 ; all other transitions are first-order discontinuous
transitions.

IV. REDUCED BASES

We have shown how the dimension of the truncated basis
Bκ

σ Eq. (23) grows quickly as both the number of particles and
the dimensionless parameter control x(s)

jk increase. However,
for a fixed desirable error err (as, for example, err = 10−10),
it is clear that any value less than err in the calculation is
negligible. Thus, in principle, one may discard all the weakly
coupled states in the ground state with a joint probability less
than err defining in this way a reduced basis and obtaining a
good approximation for the quantum ground state.

The variational solution is used as a criterion that allows us
to discard weakly coupled states of the basis. The variational
solution of this kind of system shows that the collective
region is divided into subregions where only one kind of
photon contributes to the ground state, whereas the other ones
remain in the vacuum state. In fact, in each subregion, the full
system has a behavior similar to a subsystem with a single
mode [8–10] except in a small vicinity of the separatrix. This
behavior was exhibited for the case of a single particle [22].

In order to discard states in the full basis, we consider the
two sectors, matter and field, separately.

A. Matter sector

The procedure to extract the significant states from the mat-
ter sector is based on the following statement: By considering
the case where a single-mode �s promotes the transitions
between a pair of atomic levels, that is, x(s)

jk �= 0, we have

x(s′ )
jk = 0 for s′ �= s. In this case, the variational solution shows

that the collective region divides itself into �0 subregions
(here, �0 = �, but, in general, �0 � �) where, in each of
them, a two-level Hamiltonian of the form given in Eq. (26)
dominates [8]. For the variational solution, one finds that
the parity of the operator M (s)

jk in Eq. (27) is preserved and
also A j j + Akk = Na1matt is fulfilled. Therefore, we define the
number of particles of each subsystem as

N (s)
jk := 〈a1, . . . , an|A j j + Akk|a1, . . . , an〉. (34)

Since the variational solution of the matter sector has contri-
butions of states where, at least, one N (s)

jk takes the value Na,
one may classify the matter subbasis by the set of states Mr

where N (s)
jk = Na − r is satisfied, at least, for one subsystem,

i.e.,

Mr :=
{

|a1, . . . , an〉
∣∣∣∣∨

s

N (s)
jk = Na − r

}
, (35)

where
∨

s is the logical “or” operator. Note that M0 is the
matter contribution according to the variational solution and,
hence, this contribution remains in the thermodynamic limit,
whereas the other ones (for r > 0) vanish as Na grows. Also
note that the full matter basis (13) is given by

M =
O1⊕

r=0

Mr, (36)

where O1 is the maximum number of matter subbases and it
is given, in general, by the floor of (greatest integer less than
or equal to) Na/�0,

O1 =
⌊

Na

�0

⌋
, (37)

relationship that is obtained from the inequalities,

Na � N (1)
jk + · · · + N (�0 )

j′k′ � �0Na.

From expression (36), one may consider different orders to
the matter contribution,

M[o1] :=
o1⊕

r=0

Mr, o1 � O1. (38)

As an example of the division of the matter sector, con-
sider four three-level atoms in the � configuration interacting
dipolarly with two modes of the electromagnetic field. In this
case, we have two two-level subsystems as described above
N (1)

12 = a1 + a2, N (2)
23 = a2 + a3, and

Mr := {|a1, a2, a3〉|a1 + a2 = 4 − r ∨ a2 + a3 = 4 − r},
which gives rise to

Subbasis States

M0 |a1, a2, 0〉, |0, a2, a3〉
M1 |a1, a2, 1〉, |1, a2, a3〉
M2 |a1, a2, 2〉, |2, a2, a3〉

Here, a1 + a2 + a3 = 4, the number of particles.
In Fig. 4, we show schematically the states in each Mr .

The variational solution for the ground state has matter sector
M0 [8,10]. Hence, M[o1] with o1 = 1, 2 provides the correc-
tions in the matter sector due to the entanglement between the
subsystems.

In the general case, when a single mode may promote
transitions of two or more atomic level pairs, Eqs. (35)–(38)
are the same, but the expression of N (s)

jk is replaced by N (s),
which takes the form of the sum of the matter weight operators
Akk that describe the sth subsystem. One may find the different
subsystems by breaking down the full atomic configuration in
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Subset M0

Subset M1

Subset M2

FIG. 4. For Na = 4 atoms in the � configuration, the matter states are shown for each defined matter subspace Mr . Horizontal lines denote
atomic levels, and circles denote atomic occupations.

parts where only one mode connects the atomic levels as was
shown in Refs. [9,10].

B. Field sector

In the truncated basis of Bκ
σ Eq. (23), the maximum photon

contribution ν̃s for each mode �s depends on the value of κ .
Since, in general, there is no simple relationship between κ

and ν̃s, we take without loss of generality ν̃s := ν0 = max(κ ).
In the end, we eliminate the states that do not satisfy the parity
and upper limits of the truncated basis. So, for the value ν0, the
truncated Fock basis of each mode is

Fs[ν0] := {|νs〉|νs � ν0}, (39)

and the truncated field sector is thereby given, in general, as

F =
�⊗

s=1

Fs[ν0]. (40)

We next want to subdivide the different photon contribu-
tions. Since the Hamiltonian interaction (3) connects state |νs〉
with states |νs + 1〉 and |νs − 1〉 and using the fact that in the
variational solution for each subsystem Hs the contribution
of mode �s′ (s′ �= s) is negligible, one may truncate the

contribution of negligible photons by taking

F[o2] =
�⊕

s=1

[
�⊗
s′

Fs′[ζss′ ]

]
, (41)

with

ζss′ =
{
ν0, s = s′,
2o2 + 1, s �= s′.

(42)

Here, o2 is the order in the field sector, which can take the
maximum value,

O2 :=
⌊ν0

2

⌋
. (43)

As an example of how to truncate the field sector, we
consider as before four atoms in the � configuration with
two photon modes, one for each two-level subsystem. By
considering x(1)

12 = 2 and x(2)
23 = 4, one determines (see Fig. 2)

m(1)
12 = 24, m(2)

23 = 50.

Therefore, the minimum values for the constants of motion to
achieve convergence to the required value of err = 10−10 are
given by

k1 = m(1)
12 + m(2)

23 + 4 = 78, k2 = m(2)
23 = 50.
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The basis states are given by

F[o2] = F1[ν0] ⊗ F2[2o2 + 1] ⊕ F1[2o2 + 1] ⊗ F2[ν0],

where ν0 = 78, 0 � o2 � 39 and the dimension is given by

Dim(F [o2]) = 4(ν0 + 1)(o2 + 1) − 4(o2 + 1)2

= 4(ν0 − o2)(o2 + 1), (44)

in comparison with the dimension of the full field basis given
by Dim[F] = (ν0 + 1)2. Note the difference in the cardinality
of the different bases,

Subbasis Dimension

F[0] 312
F[1] 616
F[2] 912
F 6241

C. Matter-field sector

For the combined matter-field system, using the definition
of the truncated basis in the matter and field sectors, we take
the reduced basis to be

Bκ
σ [o1, o2] :=

[
o1⊕

r1=0

o2⊕
r2=0

F[r2] ⊗ M[r1]

]κ

σ

. (45)

Indices κ and σ indicate that states that do not preserve the
parity, σ and states with values κ ′ > κ are eliminated. Note
that one has the identity

Bκ
σ = Bκ

σ [O1, O2]. (46)

We should remark that this procedure to obtain reduced bases
is useful only when the full system is divided into subsystems
where a single mode promotes transitions between a few
atomic levels. In addition, for large values of Na, the reduc-
tion Bκ

σ [o1, o2] will give a good approximation to the exact
quantum ground state because this state approaches better and
better the symmetry-adapted variational case.

V. RESULTS FOR THE � CONFIGURATION

As an example of the application of the reduced basis,
we consider a three-level system in the � configuration in
resonance with two modes of the electromagnetic field (zero
detuning).

A. Dimensions for different orders

In order to compare the dimension of the reduced basis
(45) with the exact basis (23), we fix the dimensionless dipolar
strength values at x(1)

12 = x(2)
23 = 4 and the error in the fidelity at

err = 10−10. For these equal values of x(1)
12 and x(2)

23 , the values
for m(1)

12 and m(2)
23 are equal. The bases will allow us to find

the ground state as a function of the parameters in the region
[0, 4] × [0, 4] as in Fig. 3(b).

By definition of the reduced bases, these satisfy

Bκ
σ [o1, o2] = Bκ

σ [O1, o2], when o1 � O1,

Bκ
σ [o1, o2] = Bκ

σ [o1, O2], when o2 � O2.

0.0
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κ
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Exact
Bσ[0,0]
Bσ[1,1]
Bσ[2,2]

×105

FIG. 5. The dimension of the Hilbert space (23) is shown as a
function of the number of particles Na, considering an error err =
10−10 in the fidelity and maximum values of x12 = x23 = 4 for the
� configuration (solid circles) and even-even-parity σ = ee. This
is compared to the corresponding dimensions of the reduced bases
(45) with orders o1 = o2 = 0 (solid squares), o1 = o2 = 1 (empty
squares), and o1 = o2 = 2 (empty circles).

In this sense, one may refer to any order of approximation
independent of the number of particles Na, which establishes
the value O1 in Eq. (37), and maximum number of photons ν0

for the value of O2 in Eq. (43).
The dimension of the reduced bases as function of the

number of particles are shown in Fig. 5 for the even-even
parity (σ = ee). Note that the savings are tremendous. In
particular, for Na = 1 and Na = 10, we have

Basis dimension for Na = 1 dimension for Na = 10

Bκ
σ 397 133549

Bκ
σ [2, 2] 252 18452

Bκ
σ [1, 1] 216 10226

Bκ
σ [0, 0] 176 3754

In order to calculate the table above, we used

m(1)
12 = m(2)

23 = 22 for Na = 1,

and

m(1)
12 = m(2)

23 = 92 for Na = 10,

which imply that (k1, k2) = (45, 22) and (194, 92), respec-
tively. Clearly, the reduced bases will be more important in
calculations where the number of particles is large.

B. Comparison between energy surfaces

Previously, we have shown the exact ground energy surface
for the case Na = 4 in Fig. 3(b). For this case, we find that
the dimensions of the reduced bases are dim(Bκ

σ [0, 0]) =
1020, dim(Bκ

σ [1, 1]) = 2413, and dim(Bκ
σ [2, 2]) = 3609, in

comparison with the dimension of the exact quantum basis
dim(Bκ

σ ) = 9546.
To compare the different energy surfaces, we define

Eo1,o2 as the ground-state energy by using the reduced basis
Bκ

σ [o1, o2] and calculate the percentual error with respect to
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FIG. 6. Percentual error �o1,o2 in the quantum ground energy
surface for the reductions: (a) Bκ

σ [0, 0], (b) Bκ
σ [1, 1], and (c) Bκ

σ [2, 2].
Note that the plots are given at different scales. The parameters are
discussed in the text.

the exact quantum ground energy Eg as

�o1,o2 =
∣∣∣∣ (Eg − Eo1,o2)

Eg

∣∣∣∣ × 100%. (47)

We define �o1,o2 = 0 when Eg = 0 since this value is obtained
at points on the axes, and one may see easily that any basis
reduction provides the same results as the exact basis when
Eg = 0.

We choose the parameters for the system indicated in
Sec. III C for Na = 4 atoms in the � configuration and
compare the energy surfaces in Fig. 6 for the reductions (a)
Bκ

σ [0, 0], (b) Bκ
σ [1, 1], and (c) Bκ

σ [2, 2].

FIG. 7. Absolute error in the fluctuation of the number of pho-
tons �(σν ) for the quantum ground state in comparison with the
ground state in the reduction Bκ

σ [0, 0], (a) for photon �1 and (b) for
photon �2. Note that the plots are given at different scales.

Each energy surface divides itself into three regions, de-
noted by N, S12, and S23. N is associated with the normal
sector where the ground state is dominated by the state with
four particles in the lowest-energy level and zero photons.
The Si j are superradiant regions in which the ground state is
dominated by the two-level subsystem ωi � ω j where only
one type of photon is present. The dark lines in the figure
represent the separatrices which separate these phases, and
the percentual error �o1,o2 is color mapped to the scale beside
each plot.

In all cases, one may observe that the maximum percentual
error lies around the separatrix where discontinuous transi-
tions occur, whereas, away from the separatrix, it tends rapidly
to zero. The reader should note the differences in scale given
in each plot: While we have a maximum error around 30%
for the Bκ

σ [0, 0] basis, this reduces to approximately 0.4% for
the basis Bκ

σ [2, 2]. In other words, we can obtain excellent
agreement with the exact value for the ground-state energy
when using our reduced bases.

We should also note that the error appears larger in the
superradiant region S12 than in the region S23. This responds
to the fact that the value of the coupling constant in the sub-
system ω2 � ω3 is already larger than that of the subsystem
ω1 � ω2 when the corresponding separatrix with the normal
region is crossed.
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C. Photon number fluctuations

In the previous subsection, we saw that the value of the
ground-state energy found with the reduced bases is in very
good agreement with the exact quantum calculation. Similar
results are obtained for any expectation value of both number
of photons or atomic populations. Here, we show the absolute
error in the fluctuations in the number of photons,

�(σν ) := |σg(ν) − σo1,o2(ν)|, (48)

a quantity that is not well approximated by variational
methods.

In Fig. 7, the absolute error in the fluctuation of the number
of photons is shown for the calculations with the reduced basis
Bκ

σ [0, 0] for photons �1 in Fig. 7(a) and for photons �2 in
Fig. 7(b). The normal N and superradiant regions Si j in the
phase diagram are also shown. Once again, the maximum
error lies around the separatrix, and the difference in scale
for each plot should be noted. The error will tend to zero as
the order of the reduced basis increases (in fact, for the bases
Bκ

σ [1, 1] and Bκ
σ [2, 2] plotted errors would be difficult to see).

This shows that, in addition to the expectation values, one has
an excellent agreement for their fluctuations and, hence, the
ground state obtained with a reduced basis provides the same
statistical properties than the exact calculation.

We should also stress that as the number of particles
increases, the exact quantum ground state tends to the one
obtained with the reduced basis Bκ

σ [0, 0].

VI. CONCLUDING REMARKS

In this paper, we built a sequence of ever-approximating
bases for the infinite-dimensional Hilbert space H of matter
interacting with radiation. The ground state (which is the one
under study) obtained in these truncated spaces differs from
the exact ground state by no more than a certain allowed
error err as measured by the fidelity F between the two
states. We have shown examples for both err = 10−10 and
err = 10−15. The reduced bases provide solutions with the

same statistical properties as those of the exact solution and
are especially useful when the number of particles is large.
In fact, at different orders of the approximation, one may
study the physical properties of the system for any number
of particles as was exemplified even for a single particle in
Ref. [22].
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APPENDIX: DIMENSIONS OF THE RWA BASES

For the three-level atoms interacting dipolarly with two
modes of electromagnetic field, the degeneracy of states with
fixed values κ = {k1, k2} of the operators K1, K2, respectively
(see Table I) is given by the dimension of the subspace
B(κ )

RWA Eq. (19). To find the dimension as a function of the
parameters, we proceed as follows: For a fixed set of values
{Na, k1, k2}, the number of elements of the basis B(κ )

RWA is
calculated by means of equations of the form

a1N2
a + a2Na + b1k2

1 + b2k1 + c1k2
2 + c2k2 + d. (A1)

Note that an equation of second order in the variables Na, k1,
and k2 is proposed because the states are the direct product
of five Fock states, similar to a problem of five harmonic
oscillators, whose degeneracy is given by a second-order
equation.

By comparing expression (A1) with the dimension found
from the basis, given (seven sets of) values for Na, k1, and k2,
the coefficients a j, b j, c j , and d are determined and provide
us with an analytical expression for the dimension. The region
of the validity of the expression is also obtained.

After this procedure is finished, the expression for the
dimension of the basis for each atomic configuration and any
value of {Na, k1, k2} is obtained.

For the 
 configuration, one gets

dim
(
B(κ )

RWA

) =

⎧⎪⎪⎨
⎪⎪⎩

g(Na + k1 − k2 + 1), Na < k2 ∧ k1 � k2,

g(k1 + 1), k2 � Na ∧ k1 � k2,

g(k2 + 1), k2 � Na ∧ k2 < k1,

g(Na + 1), other case,

(A2)

where we defined

g(x) := (x)(x + 1)

2
, (A3)

and the operators K1, K2 are given in Table I. Given the values of k1 = 0, 1, 2, . . ., the values of k2 are limited by k2 =
0, 1, . . . , k1 + Na; in all other cases the subspace is empty.

For the � configuration, one finds

dim
(
B(κ )

RWA

) =

⎧⎪⎪⎨
⎪⎪⎩

g(k1 − k2 + 1), k1 − k2 � Na ∧ k1 � 2k2,

g(k1 + 1) − g(k1 − k2) − 2g(k2), k1 − k2 � Na ∧ 2k2 < k1,

g(Na + 1) − g(Na − k2), Na < k1 − k2 ∧ k2 < Na,

g(Na + 1), other case.

(A4)

In a similar way to the 
 configuration, the values satisfy k1 = 0, 1, 2, . . . and k2 = 0, 1, . . . , k1.
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For the V configuration,

dim
(
B(κ )

RWA

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k2 + 1)(k1 − k2 + 1), k1 � Na,

(2Na � k1 ∧ k2 � Na)
h(k2, Na), ∨ (Na < k1 ∧ k1 < 2Na ∧ Na < k1 − k2),

(Na < k1 ∧ k1 < 2Na ∧ Na < k2)
h(k1 − k2, Na), ∨ (2Na � k1 ∧ k1 − k2 � Na),

(k1 − k2)k2 + h(Na, k1) − g(k1), Na < k1 ∧ k1 < 2Na ∧ k2 � Na ∧ k1 − k2 � Na,

g(Na + 1), other case,

(A5)

with k1 = 0, 1, 2, . . ., and k2 = 0, 1, . . . , k1 and where we defined

h(x, y) := (x + 1)(y + 1) − g(x) (A6)

to simplify the notation.
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