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Two-dimensional phase-space picture of the photonic crystal Fano laser
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The recently realized photonic-crystal Fano laser constitutes the first demonstration of passive pulse generation
in nanolasers [Yi Yu et al., Nat. Photon. 11, 81 (2017)]. We show that the laser operation is confined to only two
degrees of freedom after the initial transition stage. We show that the original five-dimensional dynamic model
can be reduced to a one-dimensional model in a narrow region of the parameter space and it evolves into a
two-dimensional (2D) model after the exceptional point, where the eigenvalues transition from being purely
real to a complex conjugate pair. The 2D reduced model allows us to establish an effective band structure for
the eigenvalue problem of the stability matrix and to explain the laser dynamics. The reduced model is used to
associate an origin of instability with an unstable periodic orbit separating the stable steady state from the stable
periodic orbit.
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I. INTRODUCTION

Integrated photonic circuits require energy-efficient, fast,
and compact light sources [1]. Particularly promising candi-
dates to realize them are photonic-crystal (PC) lasers due to
their flexibility in design and precise control of the cavity
properties [2,3]. PC lasers can be electrically driven and allow
for modulation in the GHz range [4,5]. Moreover, they have
been shown to exhibit very rich dynamics, e.g., spontaneous
symmetry breaking [6]. Recently, a new type of PC laser
has been proposed [7] where one of the mirrors arises due
to a Fano resonance [8,9]. Furthermore, this laser has been
demonstrated to be able to generate a self-sustained train of
pulses at GHz frequencies, a property that has been observed
only in macroscopic lasers thus far [10]. The generation of
pulses by an ultracompact laser is of interest for applications
in future on-chip optical signal processing.

The configuration of the Fano laser is shown in Fig. 1. The
active material may be composed of several layers of InAs
quantum dots or quantum wells and is incorporated inside
the InP PC membrane. The laser cavity is composed of a PC
line-defect waveguide blocked with a PC mirror on the left
side, forming a broadband mirror, whereas the right mirror is
due to the Fano interference between the nanocavity and the
waveguide. The Fano resonance arises due to the interference
of a discrete mode of the nanocavity with the continuum of
PC waveguide modes. The spectral width of the resonance is
determined by the quality factor of the nanocavity enabling
the realization of a narrowband mirror. The dynamic operation
of the laser is modeled using a combination of coupled-mode
theory and conventional laser rate equations [11]. The model
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has been used to demonstrate that there are two regimes
of operation: the continuous-wave regime and a self-pulsing
regime [11]. Particularly, it has been shown that as the real
part of any of the eigenvalues of the underlying stability
matrix, evaluated at the steady state, becomes positive, the
relaxation oscillation becomes undamped, resulting in the
laser becoming unstable and self-pulsing behavior setting
in [11,12]. However, it does not fully explain the origin of
instability in the whole parameter space of the laser as there
exists a region in which the laser can become unstable even
when all the steady-state eigenvalues are negative [11].

The purpose of this work is to analyze not only the
steady-state eigenvalues of the stability matrix of the dynamic
model, but also the instantaneous eigenvalues during the laser
operation. Moreover, we determine the “minimal” model for
the laser that is required to explain the dynamics in different
regimes, thereby obtaining an alternative perspective on the
dynamics of the Fano laser. We thus demonstrate that the laser
operation can be effectively modeled by a one-dimensional
(1D) system of differential equations in a limited region of the
parameter space when the steady-state eigenvalues are purely
real and that it evolves into an effective two-dimensional (2D)
system beyond the steady-state exceptional point, when the
eigenvalues form complex conjugate pairs. These findings
are used to determine the origin of the instability that is
observed when the steady-state eigenvalues are negative. We
notice that the analysis of instabilities and chaos in injection-
locked lasers, e.g., using bifurcation analysis, has been very
successful [13–16]. Here, we use it to analyze the origin of
laser instability when the steady state is stable and set an
important goal to identify reduced systems for getting further
physical insight.

The paper is organized as follows. In Sec. II, we introduce
the model used to describe the laser dynamics. In Sec. III, we
show that the laser operation can be understood by means of
a 2D phase-space picture and we analyze the steady state and
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FIG. 1. Schematic of a PC Fano laser. The active material is
uniformly incorporated in the PC slab. The lasing cavity is composed
of a PC line-defect waveguide terminated with a broadband mirror
(the dashed green line) and a narrowband mirror due to the Fano
interference between the nanocavity and the waveguide. The length
of the lasing cavity is defined as the distance between the broadband
mirror and a reference plane (the dotted blue line). The dynamic
variables are marked in pink and are the carrier densities in the
waveguide and the nanocavity, Nw (t ) and Nc(t ), respectively, and
the right- and left-propagating complex field envelopes, A+(0, t ) and
A−(0, t ), respectively, evaluated at the reference plane.

instantaneous eigenvalues of the stability matrix. In Sec. IV,
we exploit the simplified 2D model to associate a self-pulsing
operation, when a steady state is stable to a generalized Hopf
(Bautin) bifurcation, which is characterized by a bifurca-
tion of two periodic orbits and an equilibrium point (steady
state) [17,18].

II. DYNAMIC MODEL OF THE FANO LASER

We next briefly describe the procedure required to establish
the dynamic model of the Fano laser; for more details, refer
to [11]. The complex field is decomposed into the fields
propagating to the right and left from the reference plane; see
Fig. 1. By combining the boundary conditions for both fields,
we can arrive at the oscillation condition [7]:

r1(ωs)rR(ωs, ωc)ei2k(ωs,Ns )L = 1, (1)

where r1 and rR are the broadband (left) and the narrowband
(right) reflection coefficients, respectively. rR is determined
using the coupled-mode theory [19–21], while r1 is the reflec-
tion coefficient due to the PC band gap and has to be trans-
formed towards the common reference plane using standard
transmission-line theory [22]. k is the complex wave number
of the waveguide, L is the length of the lasing cavity, and ωc

is the resonance frequency of the nanocavity. The condition
in Eq. (1) is solved for (ωs, Ns), which are the steady-state
lasing frequency and carrier density, respectively. They serve
as expansion points of the dynamic model. There are multiple
solutions of Eq. (1) [7,12], from among which the one with
the lowest modal threshold gain is chosen. The wave number
k accounts for dispersion of the refractive index of the PC
membrane and the gain of the active material.

Subsequently, the boundary condition is solved for the
left-propagating field and then the term 1/(r1(ω)ei2k(ωs,Ns )L )

is Taylor expanded around the steady-state operation point
(ωs, Ns) and a first-order differential equation for the right-
propagating complex field envelope evaluated at the refer-
ence plane A+(t ) is derived using the Fourier transform. In
the special case of an open waveguide considered here, the
coupled-mode equation for the field in the nanocavity can be
directly reformulated as an equation for the left-propagating
complex field envelope evaluated at the reference plane A−(t ).
The equations for A+(t ) and A−(t ) are complemented with the
traditional rate equations for carrier densities in the waveguide
and the nanocavity.

Since the variables introduced above differ by orders
of magnitude, we introduce dimensionless near-unity vari-
ables in order to improve numerical stability. Moreover,
detuning from the expansion point frequency ωs results in
time-varying real and imaginary parts of A+(t ) and A−(t )
at the steady state. Because of that, the differential equa-
tions for A+(t ) and A−(t ) are separated into equations for
amplitudes and phase evolutions by the following substi-
tution: A+(t ) = A0+|a+(τ/(GNCN0))|eiφ+(τ/(GNC N0 )), A−(t ) =
A0−|a−(τ/(GNCN0))|eiφ−(τ/(GNC N0 )), where A0+ and A0− are
the normalization constants, a−(τ ) and a+(τ ) are the normal-
ized complex field envelopes, τ = tGNCN0 is the normalized
time, GNC = �CvggN , and vg is the group velocity. The system
depends solely on the phase difference �φ(τ ) = φ−(τ ) −
φ+(τ ); thus, by subtracting the equations for phase evolutions
φ+(τ ), φ−(τ ) and exploiting the linearity of differentiation,
these equations can be combined into one. This leads us to the
following system of five differential equations describing the
dynamics of the laser:

d|a+(τ )|
dτ

= −γL|a+(τ )|
GNCN0

+ �|a+(τ )|(nw(τ ) − ns)

2�C

+ γL

GNCN0
|a+(τ )|Re

(
A−(τ )

rRA+(τ )

)
, (2a)

d|a−(τ )|
dτ

= − PγC

GNCN0
|a−(τ )|Re

(
A+(τ )

A−(τ )

)

− γT |a−(τ )|
GNCN0

+ |a−(τ )|(nc(τ ) − 1)

2
, (2b)

d�φ(τ )

dτ
= −α

2
(nc(τ ) − 1) + �α(nw(τ ) − ns)

2�C
− �ω

GNCN0

− Im

(
rRPγCA2

+(τ ) + γLA2
−(τ )

rRGNCN0A−(τ )A+(τ )

)
, (2c)

dnw(τ )

dτ
= −|a+(τ )|2(nw(τ ) − 1) − nw(τ ) + jc

GNCN0τs
, (2d)

dnc(τ )

dτ
= −|a−(τ )|2(nc(τ ) − 1) − nc(τ )

GNCN0τc
. (2e)

Here, nw(τ ) and nc(τ ) are the carrier densities in the
waveguide and the nanocavity, respectively, normalized with
respect to the transparency carrier density N0. γL = vg/(2L) is
the inverse of the cavity round-trip time, ns is the steady-state
carrier density obtained from the oscillation condition normal-
ized with respect to N0, �ω = ωc − ωs is the detuning of the
steady-state lasing frequency ωs from the cavity resonance
frequency ωc, and jc is the normalized effective pumping
current, which includes the injection efficiency.
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Subsequently, we linearize the problem by calculating the
total derivative of Eqs. (2) with respect to τ . The system of
equations describing the laser dynamics in Eqs. (2) can be
expressed in the short form as a function V (·) of the state
vector �ψ (τ ):

�ψ (τ ) = {|a+(τ )|, |a−(τ )|,�φ(τ ), nw(τ ), nc(τ )}, (3a)

d �ψ (τ )

dτ
= V ( �ψ (τ )). (3b)

By taking the total derivative of V ( �ψ (τ )), we obtain a
directional derivative along the curve parameterized by τ :

d2 �ψ (τ )

dτ 2
= ∇ �ψV ( �ψ (τ ))

d �ψ (τ )

dτ
= A( �ψ (τ ))

d �ψ (τ )

dτ
. (4)

Consequently, d �ψ (τ )/dτ in Eq. (3b) is interpreted as the
velocity of the state vector and is expressed as a function of the
current position of the state vector in Eq. (2). d2 �ψ (τ )/dτ 2 is
interpreted as the acceleration of the state vector; see Eq. (4).
Matrix A is the so-called Jacobian matrix; its eigenvalues λ

are used to determine the stability of the laser when evaluated
at the steady state. The system is stable if all eigenvalues
have negative real parts. On the other hand, if any eigenvalue
has a positive real part, the system is unstable. The matrix
A is purely real, but not symmetric as we separated the
complex field envelopes into the magnitudes |a+(τ )|, |a−(τ )|
and the phase difference �φ. Therefore, the matrix is non-
Hermitian and we have to distinguish between right �v and
left �w eigenvectors, which are normalized so that W T V = I is
satisfied [23,24]. The columns of W and V are the left and the
right eigenvectors, and I is the identity matrix. Furthermore,
eigenvalues of the matrix A can be purely real or form
complex conjugate pairs [25]. In the following sections, we
use Eqs. (2) and (3) to investigate the origin of instability in
the case of a stable steady state and to show that the original
laser model can be simplified to a system of two differential
equations.

III. TWO-DIMENSIONAL PHASE-SPACE PICTURE

A. Steady-state eigenvalues

Above the threshold, the laser can exhibit two types of
operation: the continuous wave and the self-pulsing opera-
tion [10,11]. Figure 2 shows the real and imaginary parts
of the two steady-state eigenvalues of the Jacobian matrix
A, with the largest real parts plotted versus �ωc, which is
the detuning of the cavity resonance frequency ωc from the
resonance frequency of the isolated cavity, normalized with
respect to γT . It is noted that �ωc defines �ω in Eq. (2)
through the oscillation condition, given by Eq. (1), and is
controlled externally. As our case study, we choose �ωc

marked with the blue line in Fig. 2.
Interestingly, it has been observed in [11] that in the

vicinity of the �ωc marked by the blue dashed line in Fig. 2,
the laser can exhibit the continuous wave or the self-pulsing
operation depending on the initial condition despite its steady-
state eigenvalues having negative real parts, and thus sug-
gesting stable operation of the laser. However, the origin of
this instability has not been explained and is examined in

FIG. 2. (a) Real and (b) imaginary parts of the two steady-
state eigenvalues of the matrix A with the largest real parts. The
horizontal dashed gray line indicates zero. The vertical dot-dashed
blue line indicates �ωc for which Fig. 3 is obtained. The pumping
current is set to J = 1.2Jthr . The green frame marks the position of
the exceptional point, while the insets show the eigenvalues in its
vicinity.

Sec. IV. On the other hand, when �ωc is increased beyond
1.26γT , the real parts become positive, the relaxation oscil-
lation becomes undamped, the laser becomes unstable, and
the state approaches a stable periodic orbit for any initial
condition [11]. All of the following figures are obtained for
the parameters listed in Table I, while the pumping current is
set to J = 1.2Jthr, where Jthr is the minimum threshold current.

B. Exceptional points

It is interesting to observe in Fig. 2 that for �ωc lower
than −1.72γT , the real part of the two eigenvalues splits
and the eigenvalues become purely real; see Fig. 2(b). At
�ωc = −1.72γT , the two eigenvalues coalesce and not only
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TABLE I. Laser parameters used in all numerical simulations.

Parameter name Symbol Value

Transparency carrier density N0 1 × 1024 m−3

Parity of the cavity mode P 1
Linewidth enhancement factor α 1
Internal loss factor αi 1000 m−1

Lasing cavity length L 5 μm
Carrier lifetimes τs, τc 0.5 ns
Laser cavity volume VLC 1.05 μm3

Nanocavity volume VNC 0.243 μm3

Nanocavity resonance λr 1554 nm
Reference refractive index nre f 3.5
Group refractive index ngr p 3.5
Differential gain gN 5 × 10−20 m2

Waveguide confinement factor � 0.5
Nanocavity confinement factor �C 0.3
Left mirror reflectivity R1 1
Nanocavity-waveguide coupling γC 1.14 ps−1

Nanocavity total passive decay rate γT 1.21 ps−1

are the eigenvalues identical at this point, but so are the
eigenvectors [26–30]. This constitutes an exceptional point
which is also known as a symmetry-breaking point for a non-
Hermitian system [31–34]. However, exceptional points are
a general phenomenon observed in optical waveguides [35],
unstable laser resonators [36], coupled PC nanolasers [37],
quantum systems [38], electronic circuits [39], and mechan-
ical resonators [40]. They only require non-Hermiticity of
the system for their existence [27,28,41]. We emphasize that
exceptional points may arise upon coalescence of eigenvectors
and eigenvalues of any matrix, e.g., a Hamiltonian matrix [42],
an S-parameter matrix [43], and impedance or admittance ma-
trices [44], to name a few. Exceptional points have also been
linked to a self-pulsing mechanism in distributed feedback
lasers [45,46], in which case the self-pulsing mechanism was
attributed to the dispersive quality factor self-switching simi-
larly as in the case of the Fano laser [10]. In the present case,
exceptional points arise due to dissimilar decay rates, γC , γL

and phenomenologically introduced gain terms |a(τ )|(n(τ ) −
1); see Eqs. (2) and (2b). They play an analogous role to the
loss and gain usually introduced as an imaginary part of the
refractive index in parity-time symmetric systems [47,48].

C. Two-dimensional phase space

In Fig. 3, we plot three trajectories of nc, marked in red,
green, and blue, versus nw, |a−| and obtained for the three
different initial conditions. The trajectories are parameterized
by τ . It is found that there are actually three different stages
of the laser operation: the initial transition stage, the later
transition stage, and the self-pulsing stage. This is in contrast
to the previously reported picture of two stages: the transition
stage and the self-pulsing stage. The red, green, and blue dots
mark the initial conditions in Fig. 3. It is found that at first,
they lie above a yellow surface; this is the initial transition
stage which lasts only a few picoseconds. After a very short
initial transition stage, the state reaches the surface at the time

FIG. 3. (a) The trajectories of nc against nw and |a−|. The black
dot on the yellow surface represents the steady state. The red, green,
and blue dots above the yellow surface are the three different initial
conditions. During an initial transition stage, the state decays towards
the surface. Then the state continues its evolution on the surface.
(b) The trajectories in time domain show the initial transition stage
lasting a few ps, the later transition stage lasting ∼1.2 ns, and, finally,
the self-pulsing stage at the edge of the surface. The vertical orange
dotted and green dash-dotted lines mark the end of the initial and
later transition stage, respectively.

instant marked with the orange dotted line in Fig. 3(b). The
state stays on the surface within the later transition and the
self-pulsing or continuous-wave stage. Eventually, the state
reaches the stable periodic orbit at the time instant marked
with the green dash-dotted line in Fig. 3(b). The state stays at
the orbit unless perturbed; this stage is called the self-pulsing
stage and takes place at the edge of the yellow surface.

Thus, it is found that once the state reaches the yellow
surface, the state is confined to the surface. The phenomenon
of data collapse to a surface also happens for the other
two variables, |a+|, �φ. Since the state always lies on the
surface after a very short initial time, we conclude that two
degrees of freedom are sufficient to specify the state after
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the initial transition stage and the propagation of the state
is locally restricted to two directions. We note that this phe-
nomenon is a general feature of a dynamical system close
to a Hopf bifurcation and is called a reduction to the center
manifold [18,49,50]. The dimension of the center manifold is
strictly related to the number of steady-state eigenvalues, the
real parts of which cross zero [18,49,50]. In Fig. 2(a), we have
seen that in the present case, there are two eigenvalues with
real parts crossing zero, while all the remaining eigenvalues
have negative real parts, giving rise to a stable manifold.
Thus, the center manifold is two dimensional, as confirmed
by the yellow curved surface in Fig. 3(a). The dynamics in
the remaining three directions quickly approach the surface
during the initial transition stage.

In Fig. 3, nw and |a−| are the two degrees of freedom, while
all the remaining degrees of freedom {|a+|, �φ, nc} of the
state vector �ψ are expressed as functions of the variables nw

and |a−| after the initial transition stage:

�ψ = {|a+(|a−|, nw )|, |a−|,�φ(|a−|, nw ), nw, nc(|a−|, nw )}.
(5a)

Similarly, equations for each component of the velocity vector
d �ψ/dτ in Eqs. (2) and (3b) can be expressed as functions of
nw and |a−|:

d �ψ
dτ

= {V1(|a−|, nw ),V2(|a−|, nw ),V3(|a−|, nw ),

×V4(|a−|, nw ),V5(|a−|, nw )}. (5b)

By taking the total derivative of d �ψ (τ )/dτ , we obtain
[

d2 �ψ (τ )

dτ 2

]
i

=
{

∂Vi

∂|a−|
d|a−|

dτ
+ ∂Vi

∂nw

dnw

dτ

}
, (6)

which, when compared with Eq. (4), indicates that the laser
dynamics can be locally approximated by a 2 × 2 Jacobian
matrix A.

The functions of nw and |a−| in Eq. (5a) and the yellow
surface in Fig. 3 are approximated by polynomials. In order
to do that, we solve the system of differential equations in
Eqs. (2) for varying initial conditions. Each solution then
corresponds to a different trajectory plotted versus nw and
|a−|. All of these trajectories are seen to lie on the surface
after the initial transition stage similarly to Fig. 3. Next, we
fit a polynomial with all the trajectories excluding the initial
transition stage. Then the polynomial describes the surface nc

in terms of nw and |a−|. Similarly, we can approximate the
surfaces for |a+(|a−|, nw )| and �φ(|a−|, nw ). We emphasize
that in order to keep the original coordinate system of the
variables, we exclude the part of the trajectory in the initial
transition stage and fit a polynomial with the remaining parts
of all the trajectories. Thus, we fit the polynomials once the
state has reached the center manifold. Having obtained these
surfaces, we can determine any state in the phase space within
the periodic orbit once nw and |a−| are known without any
need of solving the five-dimensional system of equations in
Eq. (2).

Moreover, in order to describe the dynamics on these
surfaces, we need to solve a system of two differential equa-
tions describing the two degrees of freedom, nw and |a−|.

These equations are the components of the velocity vector in
Eq. (5b),

d|a−(τ )|
dτ

= V2(|a−(τ )|, nw(τ )), (7a)

dnw(τ )

dτ
= V4(|a−(τ )|, nw(τ )). (7b)

Once Eq. (7) is solved, the remaining degrees of freedom
{|a+|, �φ, nc} can be determined using the polynomials.

D. Instantaneous eigenvalues

We compute the instantaneous eigenvalues of the matrix A
in Eq. (4) for the state vectors �ψ , given by Eq. (5a), over the
whole surfaces. In Fig. 3, we have seen that we can define
three surfaces for |a+|, �φ, nc plotted versus nw and |a−|.
After the initial transition stage, the state always lies on these
surfaces. Thus, all the dynamics are confined to these surfaces.
Then, each point of these surfaces can be substituted into
the matrix A and the instantaneous eigenvalues of the state
at this position are obtained. Figure 4 shows the real and
imaginary parts of the three instantaneous eigenvalues, with
the largest real parts over the whole surface as well as along
the trajectory marked with the green dashed line. The two
remaining eigenvalues have significantly smaller real parts,
and thus are not included in Fig. 4 as the contribution from
the corresponding eigenvectors decays rapidly.

Figure 4(a) shows that the pair of eigenvalues marked with
orange and yellow has considerably larger real parts than the
third eigenvalue (purple) over the major part of the surface.
The third eigenvalue is only comparable to the other two
eigenvalues along the line |a−| = 0, but it is still smaller and
never becomes positive. The negative real parts of the purely
real third eigenvalue (purple) and the remaining complex
conjugate pair of eigenvalues (not shown) signify that the
contribution of the corresponding eigenvectors in a recon-
struction of the solution decays very quickly. This is what is
observed in Fig. 3 in the initial transition stage. Afterwards,
once the state is on the surface, the contribution from the
three corresponding eigenvectors is negligible and the state
description is dominated by the eigenvectors corresponding
to the two eigenvalues with the largest real part (orange and
yellow).

The real parts of the pair of eigenvalues marked with
orange and yellow are seen to dominate for large values of
|a−|; this is where the pulse is released. In Figs. 4(c)–4(e), we
show the instantaneous eigenvalues in the vicinity of the pulse
along the green trajectory in Figs. 4(a) and 4(b) when the state
has already reached a limit cycle. On the right axis, we plot the
pulse power in the straight port defined as

P+(t ) = 2ε0nre f c0|A+(t ) + PA−(t )|2, (8)

where c0 is the speed of light and ε0 is vacuum permittivity.
Figure 4 shows that when the state moves along the nw

axis (just after the previous pulse has been released and
before a new one), the three eigenvalues with the largest real
parts are purely real. As the limiting value of nw is reached
[Fig. 4(a)], one of the eigenvalues (orange) starts to rapidly
increase [Fig. 4(c)], while the third eigenvalue (purple) drops
rapidly. Just as the pulse is released, the second eigenvalue
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KAMIŃSKI, ARSLANAGIĆ, MØRK, AND LI PHYSICAL REVIEW A 100, 053808 (2019)

FIG. 4. (a) Real and (b) imaginary parts of the three instantaneous eigenvalues, λ, of A with the largest real parts. The eigenvalues form
a complex conjugate pair marked with orange and yellow (light gray); the remaining eigenvalue is purely real and marked with purple (dark
gray). The red (gray) line indicates the positions when Re(λ) = 0. The blue (very dark gray) line indicates the contours of exceptional points.
The black dot indicates the eigenvalues at the steady state. The green dot at the edge of the surface indicates initial eigenvalues of the trajectory,
marked with the dashed green line, plotted in (c) and (d). (c) Real and (d) imaginary parts of the instantaneous eigenvalues, with the largest
real parts along the green trajectory in (a) and (b). The pulse power in the straight port is marked with a dashed green line (on the right axes).
(e) The imaginary parts of the eigenvalues in the vicinity of the second pair of the exceptional points.

(yellow) rapidly increases and collapses with the first one
(orange) at the exceptional point. Therefore, it is found that
as the pulse grows, the pair of eigenvalues transitions from
being purely real to being complex conjugate when crossing
the exceptional point. As the pulse power decreases, the
complex conjugate pair of eigenvalues coalesces at the second
exceptional point and transitions back to the pair of purely
real eigenvalues. Thus, most of the pulse is observed to be
bounded by the two instantaneous exceptional points with
the positive and negative real part of the eigenvalue at the
beginning and end of the pulse, respectively. Interestingly, two
more exceptional points are observed as the pulse is decaying;
see Fig. 4(e).

Within one period, the state traverses a loop in the phase
space of the model. We have seen that four exceptional points
are crossed within a single loop when the laser state is a
periodic orbit. When the exceptional point is approached, the
eigenvectors exhibit a characteristic phase jump and are phase
shifted relative to each other by ±i [41,51]. Therefore, during
an evolution along any trajectory in the diminishing vicinity
of an exceptional point, eigenvectors will acquire a phase
shift of ±i [42,52,53]. In [54], it has been shown that this
effect is preserved as long as the exceptional point is inside
the loop or crossed by it. Therefore, it is only a fourfold
loop around an exceptional point or a single loop around four
exceptional points that will restore an original scenario for

the eigenvectors concerned [26,27,29,55,56]. Since the laser
is operating in the periodic orbit in our case, in order to remain
periodic it has to cross four exceptional points within one
period in phase space.

E. Reconstruction of the solution

At most two out of five instantaneous eigenvalues have
positive real parts. Thus, after the initial transition stage,
the eigenvectors which correspond to the two dominating
eigenvalues can be used to reconstruct the solution of Eq. (4)
as follows:

d �ψ
dτ

= c1(τ ) �v1(τ ) + c2(τ ) �v2(τ ), (9)

where �v1,2 are the instantaneous right eigenvectors and c1,2

are the amplitudes of the corresponding eigenvectors. These
amplitudes can be reconstructed from a solution d �ψ (τ )/dτ

using the left eigenvectors as c1,2 = �wT
1,2(τ )d �ψ (τ )/dτ . In

the following, we show that the two eigenvectors can be
used to approximate the two tangential vectors to the surface
pointing along the |a−|, nw coordinate lines. This confirms
that the solution can be approximately expanded in the two
eigenvectors.

The tangential vector to the surface z = f (x, y) along the
parametric curve �r(t ) = {x(t ), y(t ), z(t )} on this surface is
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FIG. 5. The vectors �v′
1,2 plotted on the three surfaces: (a) |a+|, (b) �φ, and (c) nc. The vectors �v′

1,2 result from the linear combination of
the eigenvectors corresponding to the top two eigenvalues and enforcing them to point along the nw , |a−| coordinate lines. These vectors are
found to approximate the tangential vectors to the surface along the nw , |a−| coordinate lines.

expressed as �r′(t ) = {x′(t ), y′(t ), z′(t )}, where z′(t ) = ∇ f · �u,
�u = {x′(t ), y′(t )}. In our case, the tangential vectors to the
surfaces, which approximate the components of the state
vector �ψ , given by Eq. (5a), are expressed as

�r′(τ ) =
{

d|a−|
dτ

,
dnw

dτ
,

d �ψ
dτ

}
, (10)

where

d �ψ
dτ

= ∂ �ψ
∂|a−|

d|a−|
dτ

+ ∂ �ψ
∂nw

dnw

dτ
. (11)

The tangential vectors �r′(τ ) along the parameterized tra-
jectory can be decomposed into a linear combination of the
tangential vectors to the surface along its coordinates |a−|, nw:

�r′
1 =

{
1, 0,

∂ �ψ
∂|a−|

}
, �r′

2 =
{

0, 1,
∂ �ψ
∂nw

}
. (12)

It is observed that the tangential vectors to the surface are
composed of the components of the velocity vector, given by
Eq. (10), and the velocity vector can be expanded into the
two eigenvectors; see Eq. (9). Since the five-dimensional (5D)
matrix A is real, the top two eigenvalues (λ1 and λ2) and
eigenvectors ( �v1 and �v2) are either real or form a complex
conjugate pair. Then, we change these eigenvectors to point
along the original coordinate lines, |a−|, nw, as follows:[
�v′

1
�v′

2

]
=

[
v12 v14

v22 v24

]−1[
v12 v14 v11 v12 v13 v14 v15

v22 v24 v21 v22 v23 v24 v25

]
,

(13)

where vi j are the components of the top eigenvectors of the
matrix A, i is the number of the top eigenvector, j indicates the
component of the eigenvector. Then, the two vectors �v′

1 and
�v′

2 are determined at positions of the state vector approximated
by the polynomials [see Eq. (5a)] and separated by equidistant
steps. The vectors are purely real and are plotted over the
whole surfaces |a+|, �φ, nc; see Fig. 5. Subsequently, these
vectors are scaled by the distance between the steps in the
state vector along each direction in order to avoid an overlap
and create a square grid pattern. If these vectors create an
ideal square grid, then they can perfectly reconstruct the
tangential vectors in Eq. (12). A small discrepancy is only
found in Fig. 5(c) for small values of |a−|, which can be

explained by the third eigenvalue becoming comparable to
the dominating pair of eigenvalues at these points; see Fig. 4.
However, the two vectors �v′

1 and �v′
2 are found to approximate

the tangential vectors over the whole surface, as observed in
Fig. 5. Thus, the two-degrees-of-freedom picture is justified
over the whole surface and is shown to precisely reconstruct
d �ψ (τ )/dτ . Therefore, the system of five nonlinear differential
equations can be reduced to only two differential equations
after the initial transition stage. The other three dimensions
are functions of nw and |a−| and are presently approximated
by polynomials. We note that the instantaneous eigenvalues
and eigenvectors are not needed to reduce dimensionality of
the system, but they provide an additional insight into the
solution. Furthermore, the fact that the two instantaneous
eigenvectors approximate the tangential vectors to the sur-
faces proves that the system dimensionality can be reduced
to two.

Moreover, we note that although a 2D model can be used
to describe the laser dynamics after the initial transition stage,
there exists a parameter region in which even a 1D model is
sufficient to replace the original 5D model after the initial
transition stage. One may observe in Fig. 2 that for a large
negative detuning �ωc, the steady-state eigenvalues undergo
a transition from a complex conjugate pair of eigenvalues to
two purely real eigenvalues. Then, one of the eigenvalues de-
creases rapidly and the other one approaches zero. Therefore,
for detunings −2.05γT < �ωc < −1.72γT , there is a single
steady-state eigenvalue that dominates and, thus, the velocity
vector can be described by a single eigenvector; see Eq. (9).
In this case, the laser dynamics can be described by a single
differential equation after the transition stage in which the
contribution from the other four eigenvalues rapidly decays.
For detunings �ωc < −2.05γT , the lasing mode ceases to
exist [7,11,13]. Thus, as the detuning �ωc increases, the
steady-state eigenvalues transition from being purely real to
a complex conjugate pair and the system evolves from a 1D to
a 2D system [57].

IV. ORIGIN OF THE LASER INSTABILITY

A. Detection of periodic orbits

In what follows, we use the simplified 2D model, given
by Eq. (7), to explain the origin of the laser instability that
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KAMIŃSKI, ARSLANAGIĆ, MØRK, AND LI PHYSICAL REVIEW A 100, 053808 (2019)

FIG. 6. (a) Numerically evaluated shift �x = ninitial
w − ncycle

w in
phase space after one cycle of the trajectory. The single black dot
indicates the steady state; the pairs of red (gray) and blue (dark gray)
dots indicate two periodic orbits. The initial value for |a−| is fixed
and equal to the steady-state value, while the initial value for nw is
varied. The initial states are marked on the surface along the purple
line (constant |a−|) in (b). (b) A single cycle of several trajectories
(marked with different colors) initiated at different initial states along
the purple line on the curved surface nc(|a−|, nw ). The initial states
are marked with dots. The definition of �x is also indicated.

may be observed even when all real parts of the steady-state
eigenvalues are negative.

At first, the phase space of the Fano laser is scanned in the
search for periodic orbits. We choose our initial conditions
as follows: (1) |ainitial

− | is set to the steady-state value and
(2) ninitial

w is varied over the whole phase space along the purple
line, as shown in Fig. 6(b). For each initial condition, we
then compute the trajectory by solving Eq. (7) up to the point
when |a−(T )| = |ainitial

− |, where T is the time corresponding
to one cycle. Some of these trajectories are shown in Fig. 6(b)
in different colors. Subsequently, we evaluate the shift �x =
ninitial

w − ncycle
w in the state vector after the time T . If the

shift between the initial state and the state after one cycle
is zero, then we are at a periodic orbit or steady state. On
the other hand, if it is nonzero, it means that the state is
approaching or departing from the steady state or periodic
orbit.

Figure 6(a) shows the numerically evaluated shift �x in
nw after one cycle of the trajectory. It is seen that there are
five crossings with zero. These crossings are marked with
blue, red, and black dots. The single black dot indicates the
steady state, while the pairs of blue and red dots indicate
periodic orbits. The outer periodic orbit, marked with a pair
of blue dots, has been observed before and is known to be
stable for a pair of complex conjugate steady-state eigen-
values with a positive real part [11]. Here, it is seen that
for a strong enough perturbation of the initial conditions
from the steady-state value, the state can still reach the outer
periodic orbit despite all the steady-state eigenvalues having
a negative real part and thus the steady state being stable
and attracting the state. Furthermore, we find an additional
periodic orbit marked with a pair of red dots in Fig. 6(a). This
found periodic orbit separates the steady state and the outer
periodic orbit.

B. Stability of the orbits

We now prove the stability of this found orbit using
the simplified 2D model. This is done by calculating the
Floquet multipliers λ f , which tell us how the solution be-
haves in the vicinity of the periodic orbit, i.e., whether it
diverges or converges from or towards the orbit [58,59]. In
order to compute the Floquet multipliers, we first obtain
the fundamental solution matrix �(τ ), which can be deter-
mined using d�(τ )/dτ = A(τ )�(τ ) and satisfies d �ψ/dτ =
�(τ )d �ψ/dτ |τ=0 with �(0) = I. The Floquet multipliers are
the eigenvalues of �(τ ) evaluated at τ = T , where T is the
period of the orbit.

If the Floquet multipliers are within the unit circle in the
complex plane, the orbit is stable, otherwise it is unstable. The
Floquet multipliers for the outer periodic orbit are λ f 1 = 0.04
and λ f 2 = 1, confirming its stability. On the other hand, the
Floquet multipliers of the found orbit are λ f 1 = 2.31 and
λ f 2 = 1, proving that this orbit is unstable. We note that for
a periodic orbit, there is always one of the Floquet multipliers
for which λ f = 1 and the corresponding eigenvector is tan-
gential to the periodic orbit. This neutral stability accounts for
the possibility of drift along the periodic orbit [58].

Furthermore, we study the stability of the found orbit with
variation of the detuning, �ωc. It is observed that the Floquet
multiplier crosses the unit circle along the real axis in the
complex plane. This indicates an exchange of instability [50].
Indeed, as �ωc decreases from �ωc = 0.52γT (see Fig. 2),
the found unstable periodic orbit increases in size. Eventually,
it collapses with the stable periodic orbit. Both orbits disap-
pear due to a fold bifurcation [18] and only the stable (time-
independent) steady state remains present in the phase space.
On the other hand, when �ωc increases, the unstable orbit
decreases in size. Eventually, it collapses with the stable
steady state, resulting in the steady state becoming unstable.
This happens in the vicinity of �ωc = 1.52γT , which is the
critical bifurcation point and, as �ωc is increased further,
the real part of the steady-state eigenvalues becomes positive.
Since the cycle is present before the bifurcation point, i.e.,
before the real parts of the steady-state eigenvalues become
positive, the bifurcation at this point is called a subcritical
Hopf bifurcation.
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FIG. 7. Phase diagram of the Fano laser as a function of pump
current J/Jthr and cavity detuning �ωc/γT . Blue indicates solutions
below threshold (the dark gray area on the left of the black solid
curve); cyan (light gray) marks a stable continuous-wave solution.
Orange (gray) indicates the presence of a stable limit cycle and an
unstable steady state, while dark red (the dark gray area between
the dotted and the dash-dotted lines) indicates two orbits being
present, stable and unstable, as well as a stable steady state. The
laser threshold curve is shown in black. The dashed yellow line
and dotted red line mark the supercritical and subcritical Hopf
bifurcations, respectively. The dash-dotted magenta line indicates a
fold bifurcation.

Both bifurcations are marked in the phase diagram in
Fig. 7. It shows that as �ωc is decreased from large values
along the dark green arrow, at first the system undergoes
a supercritical Hopf bifurcation at the dashed yellow line.
There, the real part of the steady-state eigenvalues crosses
zero and becomes positive, resulting in the steady-state point
becoming unstable and a stable limit cycle being present after
the bifurcation point. As we decrease �ωc further, the system
undergoes a subcritical Hopf bifurcation at the dotted red
line. Here, the steady-state point becomes stable again, while
the stable periodic orbit coexists with an unstable periodic
orbit. Eventually, as �ωc is further decreased, the unstable
periodic orbit collides with the stable one, and both orbits
disappear through a fold bifurcation, leaving the stable steady-
state point as the only solution [18,50]. Analogous behavior
is observed for lower pump currents including J = 1.2Jthr;
however, in this case, the laser is below threshold for large
detuning �ωc.

The occurrence of both Hopf bifurcations, i.e., supercritical
and subcritical, is a signature of a Bautin bifurcation, also
known as the generalized Hopf bifurcation [17,18]. A Bautin
bifurcation is characterized by the presence of two orbits and
an equilibrium point (steady state) in phase space. We note
that a Bautin bifurcation cannot be detected by merely mon-
itoring the eigenvalues [17,18]. Upon the external parameter
variation �ωc, an inner orbit may collide with an outer orbit
and annihilate or exchange stability with an equilibrium point,

as has been observed. We note that since each �ωc results
in different solutions (ωs, Ns) of the oscillation condition in
Eq. (1), we adjust the polynomial approximation of the surface
in each case.

The stability of the orbits can also be assessed based on
Fig. 6(a). It is seen that if the model is slightly perturbed from
the orbit marked with the red dots, the perturbation will in-
crease after one cycle. Thus, the state is always repelled away
from the orbit, confirming that the found orbit is unstable.

V. CONCLUSION

We demonstrate that after a fast initial transient, the dy-
namics of the recently realized Fano laser [10] are con-
fined to a 2D center manifold. The dimension of the center
manifold follows the number of steady-state eigenvalues,
the real parts of which cross zero. We show that there are
two steady-state eigenvalues with real parts crossing zero,
while the remaining three eigenvalues have negative real parts
forming a stable manifold. The dynamics is attracting along
the corresponding three directions and quickly tends to the
curved surface, i.e., the center manifold, during the initial
transition stage. Afterwards, the state vector is confined to the
curved surface and can be solely described by two degrees
of freedom. The surface geometry of the phase space can be
approximated by the two eigenvectors of the linear stability
matrix corresponding to the eigenvalues with the largest real
parts. As the pulse develops, the instantaneous eigenvalues
transition from a pair of purely real eigenvalues to a complex
conjugate pair at the first exceptional point. The main part
of the repeating pulse is bounded by two exceptional points
with a positive and negative real part of the eigenvalue at
the beginning and end of the pulse, respectively. Moreover,
the trajectory encounters four exceptional points during one
period, ensuring that both the eigenvalues and eigenvectors are
periodic in τ . Furthermore, we show that the 5D model used
to describe the laser dynamics, after the initial transition stage,
can be reduced to only 1D in part of the parameter space and
evolves into a 2D model beyond the exceptional point of the
steady-state eigenvalues as the detuning �ωc increases. More-
over, we have used the simplified 2D model to associate the
unknown source of laser instability with the found unstable
periodic orbit, which arises due to a generalized Hopf (Bautin)
bifurcation. These findings allow one to better understand the
laser dynamics and may lead to the design of new function-
alities in nanolasers used for on-chip communications and
sampling.
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