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Few-cycle solitons of an integrable generalization of the reduced Maxwell-Bloch equations
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The physical generalization of the system of the reduced Maxwell-Bloch equations describing the nonlinear
interaction of the laser pulses with the multilevel quantum medium is obtained without using the slowly varying
envelope approximation. It is shown that this system is integrable in the frameworks of the inverse scattering
transformation method. The soliton and breather solutions in the form of the unipolar and few-cycle pulses are
constructed. Their distinctive features caused solely by the multilevel structure of the medium are discussed. It
is revealed that the collision of the solitons can lead to an appearance of the large-amplitude short-living pulse,
whose dynamics resembles that of rogue waves.

DOI: 10.1103/PhysRevA.100.053807

I. INTRODUCTION

An appearance in the 1960s of the powerful pulse lasers
stimulated the experimental and theoretical investigations of
the nonlinear interaction of the light pulses with matter. The
resonant phenomenon of the self-induced transparency (SIT)
was revealed this way [1]. A theoretical explanation of this ef-
fect was given on the basis of the notion of the optical soliton.

The duration τp of the SIT pulse is about 10−9 s, while
its carrier frequency ω is 1015 s−1. Therefore, such a pulse
contains N ∼ ωτp ∼ 106 optical oscillations. The presence of
the small parameter δ ∼ 1/N ∼ 10−6 gave an opportunity to
apply the approximation of the slowly varying envelope and to
obtain the system of the so-called SIT equations [1,2]. In the
case of the sharp line resonance, the SIT equations are reduced
to the famous sine-Gordon equation [2]. It was found under
further research [3–5] that the sine-Gordon and SIT equations
are integrable by the inverse scattering transformation method
[6–9] and have multisoliton solutions corresponding to the
discrete part of the scattering data [6]. These solitons known
also as 2π pulses describe exactly the SIT phenomenon.

One of the tendencies of development of laser physics con-
sists of shortening of the duration of the pulses generated in
physical laboratories [10–13]. This leads to a gradual increase
of the parameter δ. For the pulses with a duration of a few
femtoseconds, this parameter can reach the values of the order
of unit. In this case, the pulse contains about one period of
optical oscillations. The term “few-cycle pulse” was strongly
assigned to such pulses [10,13]. In that case, the concept of
the envelope loses meaning, and the slowly varying envelope
approximation is not yet applicable.

In 1973, an alternative approach to describe the
SIT phenomenon, in which the slowly varying envelope
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approximation was not exploited, was offered [14]. It was
suggested that the concentration of two-level is small. This
allowed the derivatives on the coordinate and time in the wave
equation for the pulse electric field from the second order to
the first one to be reduced. Supplementing the equation ob-
tained here by the system of the material equations on the den-
sity matrix elements of the two-level atom led to the system
of the so-called reduced Maxwell-Bloch (RMB) equations.

The RMB equations contain no the envelopes of the elec-
tric field of the pulse and dipole moment of the atoms and
are written for the full electric field and dipole moment as the
whole. The system of the RMB equations is also integrable
by the inverse scattering transformation method [14], and its
soliton and breather solutions were studied in detail [9].

An obvious shortcoming of the system of the RMB equa-
tions is that its derivation is based on the model of medium
consisting of the two-level atoms. This model rather ade-
quately describes the propagation of resonant or quasiresonant
solitons of the envelope, i.e., breathers with ωτp � 1 and
ω ≈ ω0, where ω0 is the frequency of quantum transition
between the states of the two-level atom. However, in the
case ωτp ∼ 1, we have for the spectral width of the breather
δω ∼ 1/τp ∼ ω. Owing to the large width of the spectrum
of such a pulse, the large number of quantum transitions of
the medium can be involved in the interaction with the pulse.
Thus, the model of the two-level medium loses the adequacy
and demands a replacement by a more realistic model.

Different models of the multilevel quantum medium were
considered in Refs. [15–20] in particular. The approximation
of the sudden perturbations [21,22] was applied in these cases.
This approximation relies on the condition

ω jkτ
∗ � 1, (1)

where ω jk is the frequency of quantum transition j ↔ k, and
τ ∗ = min{τp, ω

−1} is the minimum time scale of the pulse.
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It follows from condition (1) that the spectrum of the pulse
overlaps all quantum transitions involved in the interaction.
Therefore, the excitation of the medium is strong, i.e., the
populations of the quantum levels are subject to considerable
changes under the pulse propagation [17,18].

Another approximation used often when considering the
multilevel quantum media is that of the optical transparency
[17,18,23–27]. This approximation is based on the following
condition:

μ = (ω jkτ
∗)−1 � 1. (2)

Contrary to condition (1), this one corresponds to rather weak
excitation of the medium [18,25].

It was offered in Refs. [28,29] to approximate the mul-
tilevel medium by the model of the four-level atoms. The
frequency of one allocated transition satisfied condition (1),
while the frequencies of other allowed transitions to the
remote quantum levels satisfied condition (2). The gener-
alized sine-Gordon equation for the electric field of the
pulse was obtained after applying the approximation of the
sudden perturbations and optical transparency. This equa-
tion was shown in Ref. [29] to be integrable in the frame-
work of the inverse scattering transformation method, and
the scheme of construction of its multisoliton solutions was
developed.

In order that the model used in Refs. [28,29] would have
a wider physical reliability, it can be generalized in the case
of any number of the remote quantum states. Besides, one
can refuse from the approximation of the sudden perturbations
and, as a consequence, from restrictions (1). This expands the
domain of physical applicability of the model in the case, for
example, of the electron-optical transitions corresponding to
the visible range. On the other hand, it is possible this way to
derive a generalization of the RMB system integrable by the
inverse scattering transformation method and to investigate its
soliton and breather solutions. This constitutes the essence of
the present work.

The paper is organized as follows: In Sec. II, the model of
the multilevel quantum medium with two allocated low-lying
states is introduced. Then, the procedure of the exclusion
of elements of the density matrix that correspond to the
transitions to remote quantum levels is carried out by using
condition (2). As result, we obtain the system of the equations
containing the electric field of the pulse and the elements
of the density matrix of the allocated transition only. We
call these equations the generalized RMB (GRMB) system.
In Sec. III, the integrability of the GRMB system in the
framework of the inverse scattering transformation method
is considered. The two-soliton and breather solutions are
investigated in Sec. IV. These solutions are compared with the
proper ones in the cases of the RMB and the generalized sine-
Gordon equations. Also, particular attention is paid here to
the collision of the solitons with opposite polarities, in which
the large-amplitude short-living pulse having the dynamics
similar to that of rogue waves can appear. Finally in Sec.V,
the main results of the consideration are summarized, some
concluding remarks are given, and future developments are
discussed.

2
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FIG. 1. The scheme of the allowed quantum transitions. Num-
bers 1 and 2 correspond to two lower levels. The gray rectangle
designates a series of the quantum states removed up on the energy
scale. The bold continuous arrow represents the transition changing
the populations of the lower levels. The gray continuous arrows
represent the transitions from the lower levels to the remote ones.
The dotted arrow represents schematically the allowed transitions
between the remote states.

II. GENELALIZED REDUCED
MAXWELL-BLOCH SYSTEM

Let two quantum states (1 and 2) having the lowest values
of the energy be allocated from a large number of the states
(Fig. 1). Assume that these states possess opposite parities.
Consequently, the electrodipole transition between them is
allowed. Other quantum transitions allowed owing to the
parity selection rule happen from state 1 or state 2 on the
overlying ones and between overlying states.

Suppose that the overlying states are removed from states
1 and 2 so that inequalities

ω j1, ωk2 � ω21, (3)

where j = 3, 5, 7, . . . and k = 4, 6, 8, . . . , on the frequen-
cies of allowed transitions take place. This situation is re-
alized, for example, in the medium of the tunnel transitions
between the minima of the deep two-pit potential. The ferro-
electric materials [30,31], the metamaterials consisting of the
quantum dots and quantum wells [32,33] can be considered as
a medium having such properties.

We assume also that the frequencies of transitions 1 ↔ j
and 2 ↔ k satisfy condition (2). In that case, they rather
weakly interact with a light pulse, but have an impact on tran-
sition 1 ↔ 2. The formal restrictions on quantum transition
1 ↔ 2 are not imposed. This transition belongs to the far- or
middle-infrared range in the examples given above. In turn,
transitions 1 ↔ j and 2 ↔ k lie in the near-infrared range.
The transitions j ↔ k are weakened considerably here, and
we neglect them [28,29].

The equations for elements of ρml of the density matrix ρ̂ of
the multilevel atom in the representation of the eigenfunctions
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of the Hamiltonian of the free atom have the following form:

∂ρml

∂t
= −iωmlρml + i

h̄
E [d̂, ρ̂]ml , (4)

where h̄ is Planck’s constant, E is the electric field of the
pulse, d̂ is the dipole moment operator, and the elements d jk

of matrix d̂ are assumed to be real owing to its hermiticity,
i.e., d jk = dk j .

Assuming that the pulse propagates along the z axis, we
supplement the material equations (4) by the following wave
equation on its electric field:

∂2E

∂z2
− 1

c2

∂2E

∂t2
= 4π

c2

∂2P

∂t2
, (5)

where

P = n Sp (ρ̂d̂ ) = n

⎧⎨
⎩d21(ρ21 + ρ∗

21) +
∑

q �=1,2

⎡
⎣dq1(ρq1 + ρ∗

q1)

+ dq2(ρq2 + ρ∗
q2) +

∑
m �=1,2,q

dqmρqm

⎤
⎦
⎫⎬
⎭ (6)

(n is the concentration of the multilevel atoms).
Supposing that the concentration n is small (see below), we

reduce the order of the derivatives in Eq. (5) as it was done in
Refs. [14,18]. This gives us the following equation:

∂E

∂z
+ 1

c

∂E

∂t
= −2π

c

∂P

∂t
. (7)

Let us exclude the density matrix elements different from
ρ21, ρ12, ρ11, and ρ22 from the system (4) in the first order
with respect to the small parameter μ [see Eq. (2)]. For this,
we rewrite Eqs. (4) in the following manner:

∂ρ21

∂t
= − iω0ρ21 + i

d21

h̄
E (ρ11 − ρ22)

+ i
E

h̄

∑
m �=1,2

(dm2ρm1 − dm1ρ
∗
m2), (8)

∂ρ11

∂t
= i

d21

h̄
E (ρ21 − ρ∗

21) + i
E

h̄

∑
m �=1,2

dm1(ρm1 − ρ∗
m1), (9)

∂ρq1

∂t
= − iωq1ρq1 + i

E

h̄
[dq1(ρ11 − ρqq) + dq2ρ21 − d21ρq2]

+ i
E

h̄

∑
m �=1,2,q

(dqmρm1 − dm1ρqm), (10)

∂ρqr

∂t
= − iωqrρqr +i

E

h̄
(dq1ρ

∗
r1 + dq2ρ

∗
r2 − dr1ρq1−dr2ρq2)

+ i
dqrE

h̄
(ρrr − ρqq )+i

E

h̄

∑
m �=1,2,q,r

(dqmρmr − dmrρ
∗
qm),

(11)

where ω0 ≡ ω21 and q, r = 3, 4, 5, . . . . The equations for
elements ρ22 and ρq2 are obtained under the replacement of
indices 1 ↔ 2 in Eqs. (9) and (10), respectively. The equation
for elements ρqq are obtained from Eq. (11) in the case r = q.

We assume that the states 1 and 2 are populated only with
probabilities w1 and w2, respectively, before the pulse impact.

Having put ∂ρq1/∂t = 0 in Eq. (10) in the first-order
approximation with respect to the small parameter μ, we find

ρq1 = E

h̄ωq1
[dq1(ρ11 − ρqq ) + dq2ρ21 − d21ρq2]

+ E

h̄ωq1

∑
m �=1,2,q

(dqmρm1 − dm1ρ
∗
qm). (12)

It is seen from this relation and from Eq. (11) that the terms
in the sum and the last term in the square brackets can be
neglected in the first order with respect to μ. Thus, we have
the following expressions for elements ρq1 and ρq2:

ρq1 = E

h̄ωq1
[dq1(ρ11 − ρqq) + dq2ρ21],

ρq2 = E

h̄ωq2
[dq2(ρ22 − ρqq) + dq2ρ

∗
21].

We have ωq1 ≈ ωq2 owing to inequalities (3). Then, the ap-
proximations used here allow us to rewrite the last equalities
in the following forms:

ρq1 = E

h̄ωq2
[dq1(ρ11 − ρqq ) + dq2ρ21],

ρq2 = E

h̄ωq1
[dq2(ρ22 − ρqq) + dq2ρ

∗
21]. (13)

For fixed value m, one of two matrix elements dm1 and dm2

is equal to zero according to the parity selection rules. Then
dm1dm2 = 0. Taking this into account, we obtain the following
after substitution of relations (13) into the right-hand sides of
Eqs. (8) and (9):

∂ρ21

∂t
= −

⎡
⎣ω0 + E2

h̄2

∑
m �=1,2

(
d2

m1

ωm1
− d2

m2

ωm2

)⎤⎦ρ21

+ i
d21

h̄
E (ρ11 − ρ22), (14)

∂ρ11

∂t
= −∂ρ22

∂t
= i

d21

h̄
E (ρ21 − ρ∗

21). (15)

Thus, we have ρqr = 0 for q, r > 2 in the first-order
approximation with respect to the small parameter μ. The
pulse field causes a coherence in the system of transitions
q ↔ 1 and q ↔ 2 (q = 3, 4, 5, . . . ), but does not populates
the remote states: ρq1, ρq2 �= 0 and ρqq = 0.

The quantum transitions between the states represented by
the dotted arrow in Fig. 1 are considerably weakened and do
not display themselves in any way. This allows us to neglect
the last sum in the square brackets of expression (6) in the
approximation considered. Then we have after the substitution
of expressions (13) into relation (6):

P = n

⎡
⎣d21(ρ21 + ρ∗

21) + 2E

h̄

∑
m �=1,2

(
d 2

m1

ωm1
ρ11 + d 2

m2

ωm2
ρ22

)⎤⎦.

(16)

Since states 1 and 2 remain populated only in the approx-
imation accepted, we have ρ11 + ρ22 = 1. Then, introducing
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the Bloch’s variables

U = ρ21 + ρ∗
21

2
, V = ρ∗

21 − ρ21

2i
, W = ρ22 − ρ11

2
,

we obtain from Eqs. (14), (15), (7), and (16) the system of
generalized RMB (GRMB) equations:

∂U

∂τ
= −(ω0 + β	2)V, (17)

∂V

∂τ
= (ω0 + β	2)U + 	W, (18)

∂W

∂τ
= −	V, (19)

∂	

∂z
= −α

∂

∂τ
(U − 2β	W ). (20)

Here

τ = t − z/v0,

1

v0
= 1

c

⎡
⎣1 + 2πn

h̄

∑
m �=1,2

(
d 2

m1

ωm1
+ d 2

m2

ωm2

)⎤⎦,

α = 8πd 2
21n

h̄c
, β = 1

4d 2
21

∑
m �=1,2

(
d 2

m1

ωm1
− d 2

m2

ωm2

)
,

	 = 2d21E

h̄
.

From these formulas, we see that the condition of a small
concentration of the atoms, at which the reduction of the wave
equation (5) to Eq. (7) was performed, is written as

8πd 2n

h̄ω0
� 1,

where d 2 = max (d 2
21, {d 2

m1}, {d 2
m2}).

Parameter β considers here a digression from the two-
level model. Taking β = 0 in Eqs. (17)–(20) gives us the
well-known RMB system for the two-level case. The matrix
elements dm1 in the sum of the parameter β definition are
different from zero if m is odd. At the same time, dm2 �= 0
if m is even.

It follows from Eqs. (17) and (18) that the presence of
quantum transitions to overlying quantum states leads in
the first order with respect to the small parameter μ to the
dynamic Stark shift of frequency ω0 of transition 1 ↔ 2.
Besides, as it is seen from Eq. (20), the transitions to overlying
states cause a nonlinear contribution in the dynamic polariza-
tion response of the medium. At the same time, the changes of
populations of the overlying quantum states are absent in this
order of the approximation [see Eq. (19)]. All evolution of the
population occurs between the allocated states 1 and 2.

It is important to note that the dipole moments d21, dm1,
and dm2 (m � 3) of the allowed quantum transitions can
be in various quantitative relations with each other (see the
definition of the parameter β). Therefore, it is impossible to
consider the terms in Eqs. (17), (18), and (20), which take into
account a deviation from the model of the two-level medium,
as small corrections to the RMB system. The GRMB system
represents an independent full-fledged interest.

III. ZERO-CURVATURE REPRESENTATION

The GRMB system [Eqs. (17)–(20)] is integrable in the
framework of the inverse scattering transformation method
[34]. It admits the following zero-curvature condition:

∂L̂

∂z
− ∂Â

∂τ
+ [L̂, Â] = 0,

where

L̂ =
⎛
⎝ −iσ	 λ

[
ω0+β	2

2ω0
+ iε	

]
λ
[

ω0+β	2

2ω0
− iε	

]
iσ	

⎞
⎠,

Â = ω0α

λ2 + ω2
0

⎛
⎝ i(ω0σU + λ2εV ) λ

[
W
2 − i(σV + ω0εU )

]
λ
[

W
2 + i(σV + ω0εU )

] −i(ω0σU + λ2εV )

⎞
⎠ + 2αβW L̂,

with λ being the spectral parameter,

σ =
√

1 + 4βω0

2
, ε =

√
− β

ω0
. (21)

Also, the GRMB system [Eqs. (17)–(20)] is connected
through the change of variables (T, Z,	0,U0,V0,W0) →
(τ, z,	,U,V,W ), where

dτ = (
1 +

√
1 − ε2	2

0

)
dT + 2ε2W0dZ, dz = dZ

ω0α
,

	(τ, z) = 	0(T, Z )

1 +
√

1 − ε2	 2
0 (T, Z )

, W (τ, z) = W0(T, Z ),

U (τ, z) = V0(T, Z ), V (τ, z) = −U0(T, Z ), (22)

with the system of the modified RMB equations

∂U0

∂T
= −2ω0

√
1 − ε2	2

0 V0, (23)

∂V0

∂T
= 2ω0

√
1 − ε2	2

0 U0 + 	0W0, (24)

∂W0

∂T
= −	0V0, (25)

∂	0

∂Z
= − 1

ω0

∂U0

∂T
. (26)

This system coincides with the RMB equations [14] in the
case ε = 0 and is integrable by the inverse scattering trans-
formation method also. The systems, which are equivalent to
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the modified RMB system, were considered in Refs. [35–38]
under an investigation of the nonlinear dynamics of two-
component electromagnetic and acoustic extremely short
pulses in the two-level media.

IV. COLLISIONS OF SOLITONS
AND BREATHER SOLUTIONS

The multisoliton solutions of the modified RMB equa-
tions (23)–(26) were studied well in Refs. [34,36,38]. These
solutions and the change of variables (22) are used below
to construct the multisoliton solutions of the GRMB system
[Eqs. (17)–(20)]. Here, there exist three cases depending on
the value of the parameter β. Looking ahead, we note that the
solutions of the GRMB system are quite different from the
ones of the modified RMB system.

A. Case β < − 1
4ω0

(iσ and ε are real)

In this case, we have the following for the effective fre-
quency of quantum transition:

ωef = ω0 + β	2 < ω0

[
1 −

(
	

2ω0

)2
]

[see Eqs. (17) and (18)].
The expression for the variable 	0 of the one-soliton

solution of the modified RMB equations is written as follows:

	0 = ±2
√

A
sinh θ

�1
, (27)

where

�1 = A sinh2 θ + ε2, A = ε2

(
1 + ω2

0

ν2

)
− 1

4ν2
,

θ = 2ν

(
T − W (0)

0 Z

ν2 + ω2
0

)
+ θ0,

here W (0)
0 = (w2 − w1)/2, and ν and θ0 are real constants.

It is assumed here and below that the asymptotic values
of variables U0, V0, and W0 are equal to 0, 0, and W (0)

0 ,
respectively. Also, we put θ0 = 0 without loss of generality.

The profile of 	0 consists of two peaks with amplitudes
equal to 1/|ε|. The peaks have opposite polarities. The interval
between them is determined by the value of the parameter ν.

The variable 	 of the one-soliton solution of the GRMB
system [Eqs. (17)–(20)] is defined implicitly by the substi-
tution of expression (27) into Eqs. (22). The square roots in
Eqs. (22) change the branch in the points, where |	0| takes
its maximum value 1/|ε|. Since the variable 	0 is equal to
zero between the peaks, we see that the soliton solutions of
the GRMB system are singular in the case considered.

The well-defined solution of the GRMB system can be
obtained using the breather solution of the modified RMB
equations. The expression for the variable 	0 of this solution
has the form

	0 = 1

iσ

∂

∂T
ln

∣∣∣∣ s−
s+

∣∣∣∣, (28)

–6

–4

–2

0
–5 5

Ω/ω0

τω0

FIG. 2. Profiles of the variable 	 of breather solutions with
parameters β = −1/2ω0, W (0)

0 = −1/2, Z = 0, νR = 0.7ω0 and
νI = ω0 (normal line), and νI = 5ω0 (bold line).

where

s± = νI [r+ exp(−θR) + r− exp(θR)]

±iνR[r+ exp(−iθI ) + r− exp(iθI )],

r± = ε(νI − iνR) ± iσ,

θR = 2νR

[
T − W (0)

0

(
ν2

R + ν2
I + ω2

0

)
Z

ν4
R + 2

(
ν2

I + ω2
0

)
ν2

R + (
ν2

I − ω2
0

)2

]
+ θR,0,

θI = 2νI

[
T + W (0)

0

(
ν2

R + ν2
I − ω2

0

)
Z

ν4
R + 2

(
ν2

I + ω2
0

)
ν2

R + (
ν2

I − ω2
0

)2

]
+ θI,0,

where νR, νI , θR,0, and θI,0 are real constants. In what fol-
lows, we use the shifts of the independent variables to put
θR,0 = θI,0 = 0.

The implicit definition of variable 	 of the breather so-
lution of the GRMB system [Eqs. (17)–(20)] is obtained
by the substitution of expression (28) into Eqs. (22). The
profiles of the variable 	 of the breather solution for different
values of the parameter νI determining mainly the carrier
frequency are presented in Fig. 2. If the carrier frequency is
high enough, then the breather solution of the GRMB system
[Eqs. (17)–(20)] is similar to that of the RMB equations (see
the plot with the bold line). If the carrier frequency tends
from above to a finite limit depending on the parameter νR,
then the oscillation with the amplitude exceeding ones of
the nearest oscillations in a few times can appear. Here, the
instantaneous value of the effective frequency of the quantum
transition is negative: ωef < 0. This means that the ground and
excited states interchange their places in the location of such
an oscillation of the breather.

B. Case − 1
4ω0

< β < 0 (σ and ε are real)

The expression for the variable 	0 of the one-soliton
solution of the modified RMB system [Eqs. (23)–(26)] can
be written in the form of Eq. (27) if |ν| � |σ/ε|. The corre-
sponding solution of the GRMB system is singular.

If |ν| < |σ/ε|, then the variable 	0 of the one-soliton
solution of the modified RMB system is defined as given:

	0 = ±2
√−A

cosh θ

�2
, (29)

053807-5



S. V. SAZONOV AND N. V. USTINOV PHYSICAL REVIEW A 100, 053807 (2019)

0

2

4

–5 5

Ω/ω0

τω0

FIG. 3. Profiles of the variable 	 of one-soliton solutions with
parameters β = −1/8ω0, W (0)

0 = −1/2, Z = 0, ν = 0.9ω0 (normal
line), and ν = 0.5ω0 (bold line).

where

�2 = A cosh2 θ − ε2.

It follows Eq. (29) that

max |	0| =

⎧⎪⎨
⎪⎩

2|ν|
|σ |

√
1 − ν2 ε2

σ 2 for |ν| <
|σ |√
2|ε| ,

1
|ε| for |σ |√

2|ε| � |ν| <
|σ |
|ε| .

(30)

In the second case, the profile of 	0 consists of two peaks
having the same polarities and separated by the interval de-
pending on the parameter ν.

The substitution of expression (29) into Eqs. (22) defines
implicitly the variable 	0 of the one-soliton solution of the
GRMB system [Eqs. (17)–(20)]. In this case, the first relation
in Eqs. (22) gives

τ = 2T + ε

2σ
ln

[
σ − νε tanh θ

σ + νε tanh θ

]
+ ε2W (0)

0 Z.

It follows from this equality that the one-soliton solution of
the GRMB system is steady state.

We have from Eqs. (21), (22), and (29) that

max |	| = |ν|√
σ 2 − ν2ε2

(31)

for the one-soliton solution of the GRMB system. It is as-
sumed here that |ν| < |σ/ε|. The single expression for the
amplitude of the variable 	 [compare Eqs. (30) and (31)] is a
result of the change of the sign by the square root in Eqs. (22)
between the peaks of the variable 	0.

The profiles of the variable 	 of the one-soliton solutions
of the GRMB system [Eqs. (17)–(20)] are presented in Fig. 3.
It is seen that the amplitude of the soliton is not proportional
to its inverse duration as it takes place in the case of the RMB
system. Also, the amplitude of the variable 	 tends to infinity
when |ν| → |σ/ε| [see Eq. (31)].

The expression for the variable 	0 of the two-soliton
solution of the modified RMB system [Eqs. (23)–(26)] can

be written in the following form:

	0 = 1

σ

∂

∂T

(
arctan

ν+ sinh θ−
ν− cosh θ+

+ arctan
ν+[η− sinh θ− − 2ν−εσ cosh θ−]

ν−[η+ cosh θ+ − 2ν+εσ sinh θ+]

)
, (32)

where

ν± = ν1 ± ν2

2
, θ± = θ1 ± θ2

2
, η± = σ 2 ± ν1ν2ε

2,

θ1,2 = 2ν1,2

(
T − W (0)

0 Z

ν2
1,2 + ω2

0

)
+ θ

(0)
1,2 + ik1,2π

(ν1,2 and θ
(0)
1,2 are the real constants, and parameters k1 and

k2 are equal to 0 or 1). This solution describes the collision
of the solitons considered above of the modified RMB equa-
tions. The shifts of the independent variables allow us to put
θ

(0)
1 = θ

(0)
2 = 0 without loss of generality.

The implicit definition of the variable 	 of the two-soliton
solution of the GRMB system is obtained by the substi-
tution of expression (32) into Eqs. (22). We assume that
|ν1,2| < |σ/ε| for the two-soliton solution to be well-defined.
Consider the collision of the solitons of the GRMB system
[Eqs. (17)–(20)] in detail.

Let (−1)k1+k2ν1ν2 < 0. In this case, the two-soliton so-
lution describes an interaction of the solitons of the same
polarities. The character of such an interaction is similar to
that for the solitons of, e.g., the RMB system, the Korteweg-
de Vries equation, or modified Korteweg-de Vries equations
[39,40].

Now, let (−1)k1+k2ν1ν2 > 0. The two-soliton solution of
the GRMB system [Eqs. (17)–(20)] describes here an interac-
tion of solitons with opposite polarities. When the amplitudes
of the variable 	 of the solitons are much smaller than 1/|ε|
[i.e., |ν1|, |ν2| � |σ/

√
2ε|; see Eq. (31)], this interaction is

similar to that for the modified Korteweg-de Vries or RMB
equations and leads to an appearance of the pulse of the
variable 	, whose amplitude is equal nearly to a sum of the
amplitudes of the colliding solitons [39,40]. However, if at
least one of the amplitudes of the variable 	 of the solitons
is close enough to 1/|ε| (i.e., |ν1| ≈ |σ/

√
2ε| or/and |ν2| ≈

|σ/
√

2ε|), then the collision of the well-defined solitons is ac-
companied by an appearance of the short-living pulse having
extraordinarily large amplitude or even leads to the blow-up
of the two-soliton solution.

Figure 4 shows the main phases of the collision of the
solitons of the GRMB system [Eqs. (17)–(20)] in the case
of opposite polarities. Here, the amplitude of the short-living
pulse of the variable 	 that appears under the interaction of
solitons exceeds significantly the sum of the amplitudes of
the colliding solitons [Fig. 4(b)]. The dynamics of such short-
living pulses resembles that of the rogue waves [41–44]. Note
that ωef > 0 in the locations of each of the solitons before
their collision. An emergence of the short-living pulse with
large amplitude is followed in its location by a drastic change
of the state of the medium since ωef < 0 there. Such character
of the soliton interaction can be used for strengthening and
shortening of the pulses.
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FIG. 4. Profiles of the variable 	 of two-soliton solutions
with parameters β = −1/8ω0, W (0)

0 = −1/2, k1,2 = 0, ν1 = 0.65ω0,
ν2 = 0.5ω0, Z = 90ω0 (a), Z = −0.95ω0 (b), and Z = −90ω0 (c).

The variable 	0 of the breather solution of the modified
RMB system is defined as follows:

	0 = 1

σ

∂

∂T

(
arctan

νR sin θI

νI cosh θR

+ arctan
νR[(σ 2 − |ν|2ε2) sin θI − 2νIεσ cos θI ]

νI [(σ 2 + |ν|2ε2) cosh θR − 2νRεσ sinh θR]

)
,

(33)

where |ν|2 = ν2
R + ν2

I . Substituting expression (33) into
Eqs. (22), we obtain an implicit definition of the variable 	

of the breather solution of the GRMB system. The plot of the
variable 	 of the breather solution is presented in Fig. 5. The
oscillations having a sharp form can appear here as well as for
the breathers of the previous case.

–4

–3

–2

–1

1

–10 –5 0

Ω/ω0

τω0

FIG. 5. Profiles of the variable 	 of breather solutions with
parameters β = −1/8ω0, W (0)

0 = −1/2, Z = 0, νR = 0.7ω0, νI = ω0

(normal line), and νI = 5ω0 (bold line).

C. Case β > 0 (σ and iε are real)

Here ωef > 0. This causes distinctive features in the struc-
tures of the solitons and breathers and also in the dynamics of
their collision.

The variable 	0 of the one-soliton solution of the modified
RMB system can be written in this case as

	0 = 1

σ

∂

∂T
arctan

2σ 2 exp θ

σ 2[1 − exp(2θ )] + ν2ε̃ 2
, (34)

where

ε̃ = −iε =
√

β

ω0
.

The maximum value of |	0| is equal to∣∣∣ ν
σ

∣∣∣√σ 2 + ν2ε̃2.

The substitution of expression (34) into Eqs. (22) gives
us an implicit definition of the variable 	 of the one-soliton
solution of the GRMB system [Eqs. (17)–(20)]. Here, we have
the following expression for the variable τ :

τ = 2T + ε̃

σ
arctan

σ 2[1 + exp(2θ )] − ν2ε̃ 2

2σ ε̃ν
− ε̃ 2W (0)

0 Z.

(35)

0

0.5

1

–5 5

Ω/ω0

τω0

FIG. 6. Profiles of the variable 	 of one-soliton solutions with
parameters β = 1/ω0, W (0)

0 = −1/2, Z = 0, ν = 100ω0 (normal
line), and ν = ω0 (bold line).
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FIG. 7. Profiles of the variable 	 of two-soliton solutions with
parameters β = 1/ω0, W (0)

0 = −1/2, k1,2 = 0, ν1 = ω0, ν2 = 4ω0,
Z = 20ω0 (a), Z = 0 (b), and Z = −20ω0 (c).

It is seen from this relation that the one-soliton solution of the
GRMB system is steady state in the case considered also. The
profiles of the variable 	 for different values of the parameter
ν are presented in Fig. 6.

It follows from Eq. (35) that the duration of the one-soliton
solution tends in the limit |ν| → ∞ to the minimal value

τmin = π |ε̃|
|σ | ,

while the amplitude of |	| tends in this limit to its maxi-
mum value 1/|ε̃|. Due to these properties, the form of the
one-soliton solution becomes “rectangular” if |ν| increases
(see Fig. 6). It may be said that the one-soliton solution of
the GRMB system [Eqs. (17)–(20)] has compact support in
the limit |ν| → ∞. The solutions having compact support are
known as compactons [45]. Similar compacton-like solutions
have been found for different generalizations of the sine-
Gordon equation [28,29,34].
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–10 10

Ω/ω0

τω0

(a)

–1

0

1

–10 10

Ω/ω0

τω0

(b)

FIG. 8. Profiles of the variable 	 of breather solutions with
parameters β = 1/ω0, W (0)

0 = −1/2, Z = 0, νR = 0.5ω0, νI = 8ω0

(a), and νR = νI = ω0 (b).

The variable 	0 of the two-soliton solution of the modified
RMB system is written in the following manner:

	0 = 1

σ

∂

∂T

(
arctan

σ (ν1 + ν2)s̃+
r̃−

+ arctan
σ (ν1 + ν2)s̃−

r̃+

)
,

(36)

where

s̃± = σ [exp(−θ1) − exp(−θ2)] ± ε̃(ν1 − ν2) exp(−θ1 − θ2),

r̃± = (ν1 − ν2)[σ 2 + (σ 2 − ε̃ 2ν1ν2) exp(−θ1 − θ2)]

±σ ε̃(ν1 + ν2)[ν1 exp(−θ1) − ν2 exp(−θ2)].

Substitution of expression (36) into Eqs. (22) defines implic-
itly the variable 	 of the two-soliton solution of the GRMB
system [Eqs. (17)–(20)]. The profiles of the variable 	 in
the case of the collision of solitons having opposite polarities
are presented in Fig. 7. The interaction of such solitons can
lead to appearance of the “rectangular” pulse [Fig. 7(b)]. The
duration and amplitude of this pulse tend to τmin and 1/|ε̃|,
respectively.

The variable 	0 of the breather solution of the modified
RMB system is written in the case considered as

	0 = 1

σ

∂

∂T

(
arctan

νRq−
νI p−

− arctan
νRq+
νI p+

)
, (37)

where

p± =σ+ ε̃νI ± 2ε̃νR sin(θI ) exp(−θR)+ (σ− ε̃νI ) exp(−2θR),

q± = p± − σ [1 ∓ 2 cos(θI ) exp(−θR) + exp(−2θR)].
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Substituting expression (37) into Eqs. (22), we obtain
implicit definition of the variable 	 of the breather solution of
the GRMB system. The plot of the variable 	 of this solution
is presented in Fig. 8. The form of two oscillations in the
center of the breather becomes “rectangular” if |νI | > |σ/ε̃|
and νR → 0 [see Fig. 8(a)]. The period of the “rectangular”
oscillations is equal approximately to τmin, while their ampli-
tude tends to the maximum value 1/|ε̃|.

V. CONCLUSION

In this study, the physical generalization of the RMB sys-
tem was carried out by the refusal from the model of the two-
level medium. It is important that this generalization is also
integrable by the inverse scattering transformation method.
The soliton and breather solutions of the GRMB system
[Eqs. (17)–(20)] investigated here differ significantly from the
corresponding solutions of the RMB system. We conclude
that the existence in the case of the multilevel medium of
the short-living pulses with extraordinarily large amplitude,
which appear under the soliton collisions, and “rectangular”
solitons or breathers is caused by the taking into account of
the additional levels.

The properties of the solitons and breathers of the GRMB
system in cases B and C are similar to those of the generalized
sine-Gordon equation considered in Refs. [28,29]. This is a
consequence of using models with remote quantum levels in
both the cases. The solution in case A has no the counterparts
among the solutions of the generalized sine-Gordon equation.
This is a result of the application under its derivation of the

approximation of sudden perturbations. This approximation
implies that the frequency ω0 is small enough for condition (1)
to be valid. Then, the condition on parameter β corresponding
to case A becomes unfeasible.

The profiles of the few-cycle breathers of the GRMB
system with νI = ω0 are represented in Figs. 2, 5, and 8(b). In
this case, the spectrum of the breathers captures the quantum
transition. An interaction of the pulses with the medium
becomes resonant as a result. This allows us to remark on the
SIT effect for the few-cycle pulses. It is extremely important
to note in this regard that this effect is not considered in the
limit νI � ω0, in which the generalized sine-Gordon equation
can be applied. On the other hand, the few-cycle resonant
breathers of the GRMB system differ significantly from the
ones of the RMB system. Indeed, we have breathers of the
GRMB system with pointed (β < 0) and blunted (β > 0)
oscillations. Such kinds of the few-cycle breathers are not
observed in the case of the resonant effect of the SIT in the
two-level medium.

It is of significant interest to consider the subsequent phys-
ical generalizations of the GRMB system and to investigate
their integrability and the soliton solutions. For example,
the effects of the permanent dipole moment, anisotropy, and
inhomogeneous broadening of the quantum transitions can be
taken into account.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-
tion (Project No. 17–11–01157).

[1] S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).
[2] G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
[3] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,

Phys. Rev. Lett. 30, 1262 (1973).
[4] M. J. Ablowitz, D. J. Kaup, and A. C. Newell, J. Math. Phys.

15, 1852 (1973).
[5] P. J. Caudrey, J. C. Eilbeck, J. D. Gibbon, and R. K. Bullough,

J. Phys. A: Math. Nucl. Gen. 6, L53 (1973).
[6] G. L. Lamb, Jr., Elements of Soliton Theory (Wiley, New York,

1980).
[7] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering

Transform (SIAM, Philadelphia, 1981).
[8] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P.

Pitaevskii, Theory of Solitons: The Inverse Scattering Method
(Consultants Bureau, New York, 1984).

[9] R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons
and Nonlinear Wave Equations (Academic Press, New York,
1982).

[10] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[11] A. I. Maimistov, Quantum Electron. 30, 287 (2000).
[12] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[13] H. Leblond and D. Mihalache, Phys. Rep. 523, 61 (2013).
[14] J. C. Eilbeck, J. D. Gibbon, P. J. Caudrey, and R. K. Bullough,

J. Phys. A 6, 1337 (1973).
[15] S. V. Sazonov and A. Yu. Parkhomenko, J. Exp. Theor. Phys.

87, 864 (1998).

[16] A. Nazarkin, Phys. Rev. Lett. 97, 163904 (2006).
[17] E. M. Belenov and A. V. Nazarkin, Pis’ma Zh. Eksp. Teor. Fiz.

51, 252 (1990) [JETP Lett. 51, 288 (1990)].
[18] E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii,

Zh. Eksp. Teor. Fiz. 100, 762 (1991) [Sov. Phys. JETP 73, 422
(1991)].

[19] S. V. Sazonov, JETP Lett. 102, 834 (2015).
[20] S. V. Sazonov, Optics Commun. 380, 480 (2016).
[21] A. B. Migdal, Zh. Eksp. Teor. Fiz. 9, 1163 (1939).
[22] D. W. Robinson, Helv. Phys. Acta 36, 140 (1963).
[23] I. V. Melnikov, D. Mihalache, F. Moldoveanu, and N.-C.

Panoiu, Phys. Rev. A 56, 1569 (1997).
[24] S. A. Kozlov and S. V. Sazonov, J. Exp. Theor. Phys. 84, 221

(1997).
[25] S. V. Sazonov, J. Exp. Theor. Phys. 92, 361 (2001).
[26] S. V. Sazonov and A. F. Sobolevskii, J. Exp. Theor. Phys. 96,

1019 (2003).
[27] H. Leblond, S. V. Sazonov, I. V. Melnikov, D. Mihalache, and

F. Sanchez, Phys. Rev. A 74, 063815 (2006).
[28] S. V. Sazonov, J. Exp. Theor. Phys. 119, 423 (2014).
[29] S. V. Sazonov and N. V. Ustinov, Phys. Rev. A 98, 063803

(2018).
[30] V. G. Vaks, Introduction to the Microscopic Theory of Ferro-

electrics (Nauka, Moscow, 1983).
[31] R. Blintz and B. Zheks, Soft Modes in Ferroelectrics and

Antiferroelectrics (North-Holland, Amsterdam, 1974).

053807-9

https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1103/PhysRevLett.30.1262
https://doi.org/10.1103/PhysRevLett.30.1262
https://doi.org/10.1103/PhysRevLett.30.1262
https://doi.org/10.1103/PhysRevLett.30.1262
https://doi.org/10.1063/1.1666551
https://doi.org/10.1063/1.1666551
https://doi.org/10.1063/1.1666551
https://doi.org/10.1063/1.1666551
https://doi.org/10.1088/0305-4470/6/5/001
https://doi.org/10.1088/0305-4470/6/5/001
https://doi.org/10.1088/0305-4470/6/5/001
https://doi.org/10.1088/0305-4470/6/5/001
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1070/QE2000v030n04ABEH001712
https://doi.org/10.1070/QE2000v030n04ABEH001712
https://doi.org/10.1070/QE2000v030n04ABEH001712
https://doi.org/10.1070/QE2000v030n04ABEH001712
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1088/0305-4470/6/9/009
https://doi.org/10.1088/0305-4470/6/9/009
https://doi.org/10.1088/0305-4470/6/9/009
https://doi.org/10.1088/0305-4470/6/9/009
https://doi.org/10.1134/1.558734
https://doi.org/10.1134/1.558734
https://doi.org/10.1134/1.558734
https://doi.org/10.1134/1.558734
https://doi.org/10.1103/PhysRevLett.97.163904
https://doi.org/10.1103/PhysRevLett.97.163904
https://doi.org/10.1103/PhysRevLett.97.163904
https://doi.org/10.1103/PhysRevLett.97.163904
https://doi.org/10.1134/S0021364015240091
https://doi.org/10.1134/S0021364015240091
https://doi.org/10.1134/S0021364015240091
https://doi.org/10.1134/S0021364015240091
https://doi.org/10.1016/j.optcom.2016.06.053
https://doi.org/10.1016/j.optcom.2016.06.053
https://doi.org/10.1016/j.optcom.2016.06.053
https://doi.org/10.1016/j.optcom.2016.06.053
https://doi.org/10.1103/PhysRevA.56.1569
https://doi.org/10.1103/PhysRevA.56.1569
https://doi.org/10.1103/PhysRevA.56.1569
https://doi.org/10.1103/PhysRevA.56.1569
https://doi.org/10.1134/1.558109
https://doi.org/10.1134/1.558109
https://doi.org/10.1134/1.558109
https://doi.org/10.1134/1.558109
https://doi.org/10.1134/1.1364734
https://doi.org/10.1134/1.1364734
https://doi.org/10.1134/1.1364734
https://doi.org/10.1134/1.1364734
https://doi.org/10.1134/1.1591214
https://doi.org/10.1134/1.1591214
https://doi.org/10.1134/1.1591214
https://doi.org/10.1134/1.1591214
https://doi.org/10.1103/PhysRevA.74.063815
https://doi.org/10.1103/PhysRevA.74.063815
https://doi.org/10.1103/PhysRevA.74.063815
https://doi.org/10.1103/PhysRevA.74.063815
https://doi.org/10.1134/S1063776114090192
https://doi.org/10.1134/S1063776114090192
https://doi.org/10.1134/S1063776114090192
https://doi.org/10.1134/S1063776114090192
https://doi.org/10.1103/PhysRevA.98.063803
https://doi.org/10.1103/PhysRevA.98.063803
https://doi.org/10.1103/PhysRevA.98.063803
https://doi.org/10.1103/PhysRevA.98.063803


S. V. SAZONOV AND N. V. USTINOV PHYSICAL REVIEW A 100, 053807 (2019)

[32] I. S. Osad’ko, Blinking Fluorescence of Nanoparticles
(Fizmatlit, Moscow, 2011).

[33] S. A. Dubovis and A. M. Basharov, Phys. Lett. A 359, 308
(2006).

[34] N. V. Ustinov, J. Math. Phys. 60, 013503 (2019).
[35] A. A. Zabolotskii, J. Exp. Theor. Phys. 96, 1089 (2003); Phys.

D (Amsterdam, Neth.) 185, 117 (2003).
[36] N. V. Bakhar and N. V. Ustinov, Proc. SPIE 6181, 61810Q

(2006).
[37] S. V. Sazonov and N. V. Ustinov, Theor. Math. Phys. 151, 632

(2007).
[38] S. V. Sazonov and N. V. Ustinov, Phys. Solid State 50, 1122

(2008).

[39] A. V. Slyunyaev, J. Exp. Theor. Phys. 92, 529 (2001).
[40] E. G. Shurgalina and E. N. Pelinovsky, Phys. Lett. A 380, 2049

(2016).
[41] N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373,

675 (2009).
[42] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T.

Arecchi, Phys. Rep. 528, 47 (2013).
[43] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty,

Nat. Photon. 8, 755 (2014).
[44] V. B. Matveev and A. O. Smirnov, J. Math. Phys. 59, 091419

(2018).
[45] P. Rosenau and A. Zilburg, J. Phys. A: Math. Theor. 51, 343001

(2018).

053807-10

https://doi.org/10.1016/j.physleta.2006.06.049
https://doi.org/10.1016/j.physleta.2006.06.049
https://doi.org/10.1016/j.physleta.2006.06.049
https://doi.org/10.1016/j.physleta.2006.06.049
https://doi.org/10.1063/1.5034223
https://doi.org/10.1063/1.5034223
https://doi.org/10.1063/1.5034223
https://doi.org/10.1063/1.5034223
https://doi.org/10.1134/1.1591220
https://doi.org/10.1134/1.1591220
https://doi.org/10.1134/1.1591220
https://doi.org/10.1134/1.1591220
https://doi.org/10.1016/S0167-2789(03)00208-2
https://doi.org/10.1016/S0167-2789(03)00208-2
https://doi.org/10.1016/S0167-2789(03)00208-2
https://doi.org/10.1016/S0167-2789(03)00208-2
https://doi.org/10.1117/12.675084
https://doi.org/10.1117/12.675084
https://doi.org/10.1117/12.675084
https://doi.org/10.1117/12.675084
https://doi.org/10.1007/s11232-007-0050-z
https://doi.org/10.1007/s11232-007-0050-z
https://doi.org/10.1007/s11232-007-0050-z
https://doi.org/10.1007/s11232-007-0050-z
https://doi.org/10.1134/S1063783408060218
https://doi.org/10.1134/S1063783408060218
https://doi.org/10.1134/S1063783408060218
https://doi.org/10.1134/S1063783408060218
https://doi.org/10.1134/1.1364750
https://doi.org/10.1134/1.1364750
https://doi.org/10.1134/1.1364750
https://doi.org/10.1134/1.1364750
https://doi.org/10.1016/j.physleta.2016.04.023
https://doi.org/10.1016/j.physleta.2016.04.023
https://doi.org/10.1016/j.physleta.2016.04.023
https://doi.org/10.1016/j.physleta.2016.04.023
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1063/1.5049949
https://doi.org/10.1063/1.5049949
https://doi.org/10.1063/1.5049949
https://doi.org/10.1063/1.5049949
https://doi.org/10.1088/1751-8121/aabff5
https://doi.org/10.1088/1751-8121/aabff5
https://doi.org/10.1088/1751-8121/aabff5
https://doi.org/10.1088/1751-8121/aabff5

