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Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction
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Antibunching and entanglement play important roles in quantum information processing as antibunching is
an essential ingredient for the production of single photons (phonons) and entanglement is a crucial resource for
quantum communication and metrology. In this paper, we propose a atom-photon-phonon (tripartite) interaction
in a hybrid cavity-atom-mechanics system, and show that both photon and phonon antibunching can be observed
simultaneously under the resonant atomic driving. More importantly, the generated single photons and phonons
are strongly correlated and entangled with each other, i.e., single entangled photon-phonon pairs are generated
via the atom-photon-phonon interaction. The generation of single entangled photon-phonon pairs is the first
step to implement entanglement-based quantum state transfer, which is essential for connecting mechanical and
optical systems to build hybrid quantum networks.
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I. INTRODUCTION

Optomechanical systems with parametric coupling be-
tween optical and mechanical modes provide us a promising
platform for generating and manipulating nonclassical pho-
tons and phonons [1]. As an important application, single-
photon (-phonon) generation [2–4] in the optical (mechanical)
mode based on optomechanical interaction has attracted sig-
nificant interest in the past few years. A number of designs
based on diverse mechanisms are proposed to demonstrate
photon (phonon) antibunching in optomechanical systems,
such as photon (phonon) antibunching based on strong op-
tomechanical couplings [5–15] and photon (phonon) anti-
bunching in the weak nonlinear regime induced by quantum
interference [16–20].

In a recent experiment [21], the nonclassical correlation
between single photons and phonons was reported by driv-
ing the nanomechanical photonic crystal cavity with a blue-
detuned optical pulse. Additionally, quantum correlations be-
tween photons and phonons were also proposed theoretically
based on indirect coupling via a two-level quantum dot [22].
Moreover, we studied the photon and phonon statistics in a
quadratically coupled optomechanical system, and show that
both photon and phonon antibunching can be observed in the
same parameter regime and, more important, the single pho-
tons and single phonons are strongly anticorrelated [23]. Here,
we will do a further study and propose a method to generate
correlated single photons and phonons under constant atomic
driving. Even more interestingly, we will show theoretically
that the correlated single photons and phonons are entangled
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with each other, i.e., they are single entangled photon-phonon
pairs.

Entangled states have great significance in both fundamen-
tal physics study and applications in quantum communication
and metrology. Optomechanical entanglement has already
been proposed theoretically [24–29] and demonstrated ex-
perimentally [30–33]. Both bipartite [34–37] and multipartite
[38–42] entanglement have been proposed to be generated
via optomechanical interaction. However, there are substantial
differences between the entanglement we will discuss in this
paper and the entanglement proposed previously. One striking
difference is that the entanglement we propose here is for
single photons and phonons, which are non-Gaussian, so that
the generally adopted method, i.e., the linearization of the
optomechanical interaction, is no longer applicable.

Inspired by a recent experiment [43], which presented a
design of hybrid optomechanics by a quantum two-level sys-
tem (qubit), here we consider a hybrid cavity-atom-mechanics
system which enables a tripartite interaction between a two-
level atom, an optical (or microwave) mode, and a mechanical
mode. We note that a similar atom-photon-phonon interaction
has been proposed in Refs. [44,45], and the tripartite interac-
tion provides an optically controllable interaction between a
two-level atom and a macroscopic mechanical oscillator by
driving the optical mode strongly [19,45]. Nevertheless, in
this paper, we will show that the atom-photon-phonon inter-
actions with coherent atom driving can be used to generate
single entangled photon-phonon pairs. As a crucial resource
for quantum communication, single entangled photon-phonon
pairs are essential for quantum state transfer by quantum
teleportation, and the hybrid cavity-atom-mechanics system
can serve as a quantum transducer in building hybrid quantum
networks.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the theoretical model of a hybrid
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FIG. 1. (a) Schematic of a hybrid cavity-atom-mechanics system. (b) Electrical circuit scheme of the cavity-atom-mechanics tripartite
system. (c, d) The energy spectrum of the hybrid system with atom-photon-phonon interaction [see the Hamiltonian in Eq. (5)] given (c) in the
noncoupling basis and (d) in the diagonal basis.

cavity-atom-mechanics system, and show the simple deriva-
tion of the atom-photon-phonon interaction and the energy
spectrum of the Hamiltonian. In Sec. III, the photon and
phonon statistics, and the quantum correlation between the
photons and phonons, are discussed numerically. Finally, a
summary is given in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider a hybrid cavity-atom-mechanics system, illus-
trated in Fig. 1(a), consisting of a two-level atom (σ± being
the ladder operators) of transition frequency ω0 coupling to an
optical cavity a of resonance frequency ωc with a transverse
interaction gac(a† + a)(σ+ + σ−), and coupling to a mechani-
cal resonator b of resonance frequency ωm with a longitudinal
interaction gamσ+σ−(b† + b). A Hamiltonian of this kind has
been realized in superconducting Josephson-junction quan-
tum circuits [43] [see Fig. 1(b)], where a qubit (two-level
system) is coupled to a microwave resonator with a trans-
verse interaction gac(a† + a)(σ+ + σ−), and a mechanical res-
onator is coupled to the qubit through a movable capacitance
C(x), which creates a longitudinal coupling gamσ+σ−(b† + b).
It is worth mentioning that the optomechanical interaction
goma†a(b† + b) is ignored here as the coupling strength is
weak, i.e., gom � min{gac, gam} [43,46]. Under the conditions
max{gac, gam} � min{ω0, ωc, ωm}, the hybrid system is de-
scribed by the Hamiltonian under the rotating-wave approx-
imation as (h̄ = 1)

Hhybrid = ω0σ+σ− + ωca†a + ωmb†b

+ gac(σ+a + a†σ−) + gamσ+σ−(b† + b)

+ �(σ+e−iωpt + σ−eiωpt ), (1)

where the two-level atom is pumped by a coherent field with
strength � and frequency ωp. By applying a displacement
transformation U ≡ exp[ησ+σ−(b† − b)] with Lamb-Dicke
parameter η ≡ gam/ωm to Eq. (1), we obtain the effective
Hamiltonian H̃ = UHhybridU † as

H̃ = ω′
0σ+σ− + ωca†a + ωmb†b

+ gac[aσ+eη(b†−b) + a†σ−e−η(b†−b)]

+ �[σ+eη(b†−b)e−iωpt + H.c.], (2)

where ω′
0 ≡ ω0 − δ is the effective atomic transition fre-

quency with frequency shift δ ≡ g2
am/ωm induced by the dis-

placement transformation.
Typically the coupling strength gam is much smaller than

the mechanical frequency ωm, i.e., η � 1, so that eη(b†−b) ≈
1 + η(b† − b). Then we have

H̃ ≈ ω′
0σ+σ− + ωca†a + ωmb†b + gac(aσ+ + a†σ−)

+ J (aσ+ − a†σ−)(b† − b)

+ �{σ+[1 + η(b† − b)]e−iωpt + H.c.} (3)

where J ≡ gacgam/ωm is the tripartite atom-photon-phonon
interaction strength. Under the conditions ω′

0 = ωc + ωm and
ωp ≈ ω′

0 > {ωc, ωm} � gac � �, the bipartite atom-photon
interaction gac(aσ+ + a†σ−) and sideband driving terms
�[σ+η(b† − b)e−iωpt + H.c.] can be ignored for large detun-
ing. The remaining resonant interaction in the hybrid system
is only the tripartite atom-photon-phonon interaction

Hint = −J (σ+ab + σ−a†b†), (4)
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which describes the simultaneous generation of a photon and
a phonon with the two-level atom jumping from the excited
state to its ground state and the reverse process.

We note that a similar tripartite interaction termed mode
field coupling has been proposed theoretically in a multimode
optomechanical system coupled to a two-level atom [45],
which can be demonstrated experimentally by employing
copper-doped silicon nanobeam optomechanical resonators
[47]. Also, such interaction can be implemented in the elec-
tromechanical systems [30,48–50] with artificial atoms or in
a Fabry-Pérot cavity with a membrane containing two-level
atoms [51–54].

The effective Hamiltonian for the hybrid cavity-atom-
mechanics system in the rotating frame with respect to R(t ) =
exp [iωpσ+σ−t + i(ωp − ωm)a†at + iωmb†bt] reads

Heff = �σ+σ− + �a†a − J (σ+ab + σ−a†b†) + �σx, (5)

where we introduce the detuning � ≡ ω′
0 − ωp = ωc + ωm −

ωp � ωm. This hybrid cavity-atom-mechanics system with
tripartite atom-photon-phonon interaction provides us an ef-
fective way to generate photon-phonon pairs. The validity of
the effective Hamiltonian has been checked numerically in
the Appendix. Numerical examples illustrate that almost the
same results can be obtained by the Hamiltonian in Eq. (1)
and the effective Hamiltonian in Eq. (5) under the conditions
ω′

0 = ωc + ωm and ωp ≈ ω′
0 > {ωc, ωm} � {gac, gam} � �.

The energy spectrum of the effective Hamiltonian in
Eq. (5) for the hybrid cavity-atom-mechanics system is shown
in Figs. 1(c) and 1(d). In the noncoupling basis [Fig. 1(c)], |e〉
(|g〉) denotes the excited (ground) state of the two-level atom,
and |n, m〉 represents the Fock state with n photons in the opti-
cal mode and m phonons in the mechanical mode. In Fig. 1(d),
we denote the eigenstates in the diagonal basis as |0, 0〉0 ≡
|g〉|0, 0〉, |1, 0〉0 ≡ |g〉|1, 0〉, |0, 1〉0 ≡ |g〉|0, 1〉, and |1, 1〉± ≡
(|g〉|1, 1〉 ± |e〉|0, 0〉)/

√
2 with eigenvalues zero, ωc, ωm, and

ω′
0 ± J , respectively.

III. CORRELATION AND ENTANGLEMENT

To quantify the statistics of the phonons and photons in the
system, we consider the equal-time second-order correlation
functions g(2)

n (0) and g(2)
m (0) and cross-correlation function

g(2)
nm(0) in the steady state (t → ∞) defined by

g(2)
n (0) ≡ 〈a†a†aa〉

〈n〉2
, (6)

g(2)
m (0) ≡ 〈b†b†bb〉

〈m〉2
, (7)

g(2)
nm(0) ≡ 〈a†b†ba〉

〈n〉〈m〉 , (8)

where 〈n〉 ≡ 〈a†a〉 and 〈m〉 ≡ 〈b†b〉 are the mean photon and
phonon numbers. The dynamic behavior of the total open
system is described by the master equation for the density
matrix ρ of the system [55]

∂ρ

∂t
= −i[Heff , ρ] + κL[σ−]ρ + γcL[a]ρ

+ γm(mth + 1)L[b]ρ + γmmthL[b†]ρ, (9)

where L[o]ρ = oρo† − (o†oρ + ρo†o)/2 denotes a Lindblad
term for an operator o; κ is the damping rate of the two-
level atom and γc (γm) is the damping rate of the optical
(mechanical) mode; mth is the mean thermal phonon number.
We assume that the frequencies of the two-level atom and
the optical mode are so high that the thermal effect can be
neglected.

The equal-time second-order correlation functions [g(2)
n (0)

and g(2)
m (0)] and cross-correlation function g(2)

nm(0) are plot-
ted as functions of the detuning �/κ in Fig. 2 under both
weak-coupling condition [(a) J = 0.1κ] and strong-coupling
condition [(c) J = 100κ]. It is clear that both photon anti-
bunching and phonon antibunching, i.e., g(2)

n (0) = g(2)
m (0) <

1, appear with the same optical and mechanical damping
rates (γc = γm = 10κ). Moreover, the antibunching (single)
photons and phonons are strongly correlated with each other,
i.e., g(2)

nm(0) � 1, which means that the single photons and
phonons are generated simultaneously or in pairs. The optimal
detuning � for generating single entangled photon-phonon
pairs depends on the coupling strength J: � = 0 for weak cou-
pling and |�| ≈ J for strong coupling. Moreover, the mean
photon (phonon) number 〈n〉 = 〈m〉 in the weak-coupling
regime is much smaller than the one in the strong-coupling
case.

Physically, the single entangled photon-phonon pairs are
generated one by one with the two-level atom jumping from
the excited state to its ground state. In the weak-coupling
regime (J � κ), the system is driven resonantly with detuning
� = 0 because the states |1, 1〉+ and |1, 1〉− are not resolved.
In the strong-coupling regime (J � κ), the system should be
investigated by the dressed states as shown in Fig. 1(d), and
the single photon-phonon pairs are generated with detuning
� = ±J for resonant pumping.

In order to understand the behavior of the cross-correlation
function g(2)

nm(0), we can give the expression of g(2)
nm(0)

approximately. Under the weak-exciting condition, i.e.,
max{〈n〉, 〈m〉} � 1, we have mean photon (phonon) number

〈n〉 ≈ ρ5,5 + ρ4,4, (10)

〈m〉 ≈ ρ5,5 + ρ3,3, (11)

and the cross-correlation function g(2)
nm(0)

g(2)
nm(0) ≈ ρ5,5

(ρ5,5 + ρ3,3)(ρ5,5 + ρ4,4)
, (12)

where ρ3,3 = 〈g|〈0, 1|ρ|g〉|0, 1〉, ρ4,4 = 〈g|〈1, 0|ρ|g〉|1, 0〉,
and ρ5,5 = 〈g|〈1, 1|ρ|g〉|1, 1〉, and they satisfy the relations

ρ3,3 ≈ γc

γm
ρ5,5, (13)

ρ4,4 ≈ γm

γc
ρ5,5. (14)

As we set γc = γm, then we have ρ3,3 ≈ ρ4,4 ≈ ρ5,5, 〈n〉 =
〈m〉 ≈ 2ρ5,5, and

g(2)
nm(0) ≈ 1

2〈n〉 . (15)

Under the resonant conditions at the detuning � = 0 for weak
coupling and |�| ≈ J for strong coupling, we have maxi-
mum 〈n〉 = 〈m〉, and thus minimum cross-correlation function
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FIG. 2. In panels (a) and (d), the equal-time second-order correlation functions [g(2)
n (0) and g(2)

m (0)] and cross-correlation function g(2)
nm(0)

are plotted as functions of the detuning �/κ . In panels (b) and (e), the mean photon (phonon) number [〈n〉 = 〈m〉] is plotted as a function of
the detuning �/κ . In panels (c) and (f), the logarithmic negativity EN is plotted as a function of the detuning �/κ . We set J = 0.1κ in panels
(a)–(c) and set J = 100κ in panels (d)–(f). Other used parameters are γc = γm = 10κ , � = κ , and mth = 0.

g(2)
nm(0), corresponding to the dips around the detuning � = 0

for weak coupling and |�| ≈ J for strong coupling.
It is not hard to guess that the strongly correlated single

photons and single phonons generated simultaneously are en-
tangled with each other. The entanglement between the optical
and mechanical modes can be characterized by the logarith-
mic negativity [56]

EN = log2

∥∥ρ
TA
AB

∥∥
1, (16)

where the symbol ‖ · ‖1 denotes the trace norm, and ρ
TA
AB is

the partial transpose of the reduced density matrix ρAB of the
optical and mechanical modes. The logarithmic negativity EN

is non-negative and EN > 0 would mean that the generated
single photons and single phonons are entangled. It is worth
mentioning that the entangled state for the single photons
and single phonons obtained here is non-Gaussian. Thus the
logarithmic negativity for Gaussian states [57] widely used
in the previous works [24–29] cannot be used to accurately
describe the entangled state here.

The logarithmic negativity EN is shown in Figs. 2(c) and
2(f). Obviously, the strongly correlated single photons and
single phonons generated simultaneously are entangled with
each other in both the weak-coupling (J < κ) and strong-
coupling (J > κ) regimes. In the weak-coupling regime as
shown in Fig. 2(c), there is a dip around the detuning
� = 0, which is induced by the quantum interferences be-

tween two routes: (a) the direct transition channel |g〉|0, 0〉 �→
|e〉|0, 0〉 J→ |g〉|1, 1〉 and (b) the indirect transition channel

|g〉|0, 0〉 �→ |e〉|0, 0〉 �→ |g〉|0, 0〉 �→ |e〉|0, 0〉 J→ |g〉|1, 1〉 (or
higher-order variants). Thus the width of the dip depends
on the driving strength �, as shown in Fig. 3(a). Similar
mechanisms can induce transparency in lambda-type three-
level atoms [58,59] and optomechanical systems [60–62].
Differently, in Fig. 2(f), there are two peaks around the

detunings � = ±J in the strong-coupling regime. This phe-
nomenon can be understood by analyzing the energy spectrum
shown in Fig. 1(d): the transition process |0, 0〉0 → |1, 1〉±
is resonantly enhanced with detunings � = ±J . As a conse-
quence, we can shift the optimal value of the detuning for
entanglement by tuning the coupling strength J as shown in
Fig. 3(b).

Figure 4 shows the second-order correlation functions
[g(2)

n (0) and g(2)
m (0)] and cross-correlation function g(2)

nm(0)
with the coupling strength J from weak to strong. The
mean photon (phonon) number [〈n〉 = 〈m〉] and logarithmic

FIG. 3. The logarithmic negativity EN is plotted as a function of
the detuning �/κ for different driving strengths � in panel (a) and
for different coupling strengths J in panel (b). We set J = 0.1κ in
panel (a) and set � = κ in panel (b). Other used parameters are γc =
γm = 10κ and mth = 0.
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FIG. 4. (a) The equal-time second-order correlation functions
[g(2)

n (0) and g(2)
m (0)] of the logarithmic negativity EN are plotted as

functions of the coupling strength log10(J/κ ). (b) The mean photon
(phonon) number [〈n〉 and 〈m〉] and cross-correlation function g(2)

nm(0)
are plotted as functions of log10(J/κ ). There are two curves for
g(2)

nm(0), where the red dashed one is obtained from Eq. (9) and
the blue short-dashed one is obtained from Eq. (15). Other used
parameters are |�| = J , γc = γm = 10κ , � = κ , and mth = 0.

negativity EN increase with the enhancing of the coupling
strength J . As shown in Fig. 4(b), the cross-correlation func-
tion g(2)

nm(0) decreases with the increasing of the mean photon
(phonon) number [〈n〉 = 〈m〉], and the numerical results (red
dashed curve) agree well with the analytical results given in
Eq. (15) (blue short-dashed curve). The second-order corre-
lation functions [g(2)

n (0) and g(2)
m (0)] increase first with the

mean photon (phonon) number, and then decrease with the
coupling strength J . The suitable coupling strength J for
observing correlated single photons and single phonons, i.e.,
g(2)

n (0) = g(2)
m (0) � 1 and g(2)

nm(0) � 1, is J � κ or J � κ .
Generally, the damping rate of the mechanical mode is

much smaller than the damping rate of the optical mode.
However, the effective damping of the mechanical mode can
be controlled and significantly enhanced by coupling the
mechanical mode to an auxiliary optical mode [63–66]. In
addition, the phonon statistics can be observed indirectly by
measuring statistics of the photons output from the auxil-
iary optical mode [67–70]. The dependence of the second-
order correlation functions [g(2)

n (0) and g(2)
m (0)] and cross-

correlation function g(2)
nm(0) on the mechanical damping rate

γm is shown in Fig. 5. In the weak-coupling case [Figs. 5(a)
and 5(b)], the correlation and cross-correlation functions
change monotonically with the mechanical damping rate. In
the strong-coupling case [Figs. 5(c) and 5(d)], the correla-
tion and cross-correlation functions change nonmonotonously
with the mechanical damping rate. The mean phonon num-
ber 〈m〉 decreases rapidly with the mechanical damping rate
in both weak- and strong-coupling regimes and the mean
photon number 〈n〉 decreases monotonously for weak

FIG. 5. (a, c) The equal-time second-order correlation functions
[g(2)

n (0) and g(2)
m (0)] and cross-correlation function g(2)

nm(0) are plotted
as functions of the mechanical damping rate log10(γm/κ ). (b, d) The
mean photon (phonon) number [〈n〉 and 〈m〉] and the logarithmic
negativity EN are plotted as functions of the mechanical damping rate
log10(γm/κ ). We set J = 0.1κ in panels (a) and (b) and set J = 100κ

in panels (c) and (d). Other used parameters are |�| = J , γc = 10κ ,
� = κ , and mth = 0.

coupling (J � κ), while 〈n〉 increases first and then decreases
with the mechanical damping rate in the strong-coupling
regime (J � κ), i.e., we can enhance photon emission by
increasing the mechanical damping rate when γm < κ . More-
over, there is an optimal mechanical damping rate γm for
entanglement EN around the point γm ≈ 1.32κ (γm ≈ 3.47κ)
in the case of J = 0.1κ (J = 100κ).

These interesting phenomena can be understood by the
probability distribution in the bare states as shown in Fig. 6,
where ρ1,1 = 〈g|〈0, 0|ρ|g〉|0, 0〉, ρ2,2 = 〈e|〈0, 0|ρ|e〉|0, 0〉,
ρ3,3 = 〈g|〈0, 1|ρ|g〉|0, 1〉, ρ4,4 = 〈g|〈1, 0|ρ|g〉|1, 0〉, ρ5,5 =
〈g|〈1, 1|ρ|g〉|1, 1〉, ρ1,5 = 〈g|〈0, 0|ρ|g〉|1, 1〉, and ρ2,5 =
〈e|〈0, 0|ρ|g〉|1, 1〉. It is clear that we have ρ3,3 ≈ ρ4,4 ≈ ρ5,5

around γm = γc, which agrees with Eqs. (13) and (14). In
the weak-coupling regime (J � κ) as shown in Fig. 6(a),
most of the probability is distributed in the states |g〉|0, 0〉
and |e〉|0, 0〉; the probability in states |g〉|1, 1〉 (as well as the
off-diagonal elements |ρ1,4| and |ρ1,5|, which determine the
entanglement EN between the photons and phonons) increases
slowly in the regime of γm < κ , and decreases rapidly when
γm > κ; the probability in single-phonon state |g〉|0, 1〉
(single-photon state |g〉|1, 0〉) decreases (increases) in the
regime of γm < γc, and decreases rapidly when γm > γc.
Differently, in the strong-coupling regime (J � κ) as shown
in Fig. 6(b), most of the probability (87.5%) is distributed
in the single-phonon state |g〉|0, 1〉 when γm � κ , as the
damping rate of the state |g〉|0, 1〉 is much smaller than the
other states; the probability in the ground state |g〉|0, 0〉
increases monotonously with the mechanical damping rate;
the probabilities in states |e〉|0, 0〉 and |g〉|1, 1〉 are almost the
same, i.e., ρ2,2 ≈ ρ5,5, and they (as well as the off-diagonal
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FIG. 6. The elements of the density matrix ρ from Eq. (9) in
the steady state are plotted as functions of the mechanical damping
rate log10(γm/κ ), where ρ1,1 = 〈g|〈0, 0|ρ|g〉|0, 0〉, ρ2,2 = 〈e|〈0, 0|ρ
|e〉|0, 0〉, ρ3,3 = 〈g|〈0, 1|ρ|g〉|0, 1〉, ρ4,4 = 〈g|〈1, 0|ρ|g〉|1, 0〉, ρ5,5 =
〈g|〈1, 1|ρ|g〉|1, 1〉, ρ1,5 = 〈g|〈0, 0|ρ|g〉|1, 1〉, and ρ2,5 = 〈e|〈0, 0|ρ
|g〉|1, 1〉. We set J = 0.1κ in panel (a) and set J = 100κ in panel (b).
Other used parameters are |�| = J , γc = 10κ , � = κ , and mth = 0.

elements |ρ1,4| and |ρ1,5|) increase first and then decrease
with the mechanical damping rate, corresponding to the
phenomena of photon emission and entanglement enhancing
by increasing the mechanical damping rate when γm < κ .

The thermal effect of the mechanical mode on the statistic
properties of the generated photons and phonons is shown in
Fig. 7. It is clear that the thermal phonons have a significant
effect on the statistic properties of the generated photons and
phonons. As the mean phonon number is much larger in the
strong-coupling regime than the in the weak-coupling regime,
the correlated and entangled single photons and phonons in
the strong-coupling regime are more robust against thermal
noise than those in the weak-coupling regime.

IV. CONCLUSIONS

In summary, we have proposed a scheme to generate single
entangled photon-phonon pairs in a hybrid optomechanical
system via atom-photon-phonon (tripartite) interaction. The
single phonons with low loss can be used for quantum memo-
ries, and single photons are suitable quantum information car-
riers. The generation of single entangled photon-phonon pairs
is the first step to implement entanglement-based quantum
state transfer between quantum memories and optical com-
munication channels, which is essential for building hybrid
quantum networks.

The conditions required to generate single entangled
photon-phonon pairs in a hybrid optomechanical system
are ω0 � {ωc, ωm} � {gac, gam}. One promising candidate
for realizing our proposal is the cavity optomechanics
in the microwave frequency regime involving a
Josephson-junction qubit as shown in Ref. [43], with

FIG. 7. (a, c) The equal-time second-order correlation functions
[g(2)

n (0) and g(2)
m (0)] and cross-correlation function g(2)

nm(0) are plotted
as functions of the mean thermal phonon number log10(mth ). (b, d)
The mean photon (phonon) number [〈n〉 and 〈m〉] and the logarithmic
negativity EN are plotted as functions of the mean thermal phonon
number log10(mth ). We set J = 0.1κ in panels (a) and (b) and set
J = 100κ in panels (c) and (d). Other used parameters are |�| = J ,
γc = γm = 10κ , and � = κ .

ω0/2π  5–10 GHz, ωc/2π  5 GHz, gac/2π 
0–500 MHz, and gam/2π  80–160 MHz, except the
mechanical frequency ωm/2π  65 MHz, which still needs
to be improved by several orders of magnitude for our
proposal. We note that the fabrication of gigahertz-frequency
mechanical oscillators can be achieved with the current state
of the art. For example, a mechanical resonator with frequency
as high as 6 GHz coupled to a superconducting qubit on a
single chip has been applied to measure the quantum state
of the resonator [71]. Thus our proposal should be feasible
for experiments. In addition, the basic mechanism of this
paper can be generalized to a nondegenerate two-photon
Jaynes-Cummings model [72,73], to generate entangled
photon pairs with different frequency, such as entangled
microwave-optical photon pairs [74], and shed new light on
quantum state transfer between electromagnetic modes with
different frequencies.
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FIG. 8. In panels (a) and (d), the equal-time second-order correlation functions [g(2)
n (0) and g(2)

m (0)] and cross-correlation function g(2)
nm(0)

are plotted as functions of the detuning �/κ . In panels (b) and (e), the mean photon (phonon) number 〈n〉 (〈m〉) is plotted as a function of
the detuning �/κ . In panels (c) and (f), the logarithmic negativity EN is plotted as a function of the detuning �/κ . The black solid curves are
obtained by the effective Hamiltonian in Eq. (5), and the other curves (red dashed, blue dotted, and green dash-dotted curves) are obtained
by the Hamiltonian in Eq. (1). We set J = 0.1κ (or gac = 102κ and gam = 103κ) in panels (a) and (b) and set J = 100κ (or gac = 103κ and
gam = 105κ) in panels (d)–(f). Other used parameters are γc = γm = 10κ , � = κ , ωm = 106κ , and mth = 0.

APPENDIX: THE VALIDITY OF THE EFFECTIVE
HAMILTONIAN IN EQ. (5)

In this Appendix, we will check the validity of the effective
Hamiltonian in Eq. (5) numerically. As an example, Fig. 2
is replotted by using the Hamiltonian in Eq. (1) as shown in
Fig. 8. In comparison, the results obtained by the effective
Hamiltonian in Eq. (5) are also shown in Fig. 8 (black solid

curves). The results (black solid curves) corresponding to the
effective Hamiltonian in Eq. (5) agree well with the ones
based on the Hamiltonian in Eq. (1) (red dashed, blue dotted,
and green dash-dotted curves). It is important to empha-
size that the effective Hamiltonian in Eq. (5) is valid under
the conditions ω′

0 = ωc + ωm and ωp ≈ ω′
0 � {ωc, ωm} �

{gac, gam} � �.
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