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Bosonic fractional quantum Hall states in driven optical lattices

Ana Hudomal,1 Nicolas Regnault,2,3 and Ivana Vasić 1
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Strong synthetic magnetic fields have been successfully implemented in periodically driven optical lattices.
However, the interplay of the driving and interactions introduces detrimental heating, and for this reason it is
still challenging to reach a fractional quantum Hall state in cold-atom setup. By performing a numerical study,
we investigate stability of a bosonic Laughlin state in a small atomic sample exposed to driving. We identify
an optimal regime of microscopic parameters, in particular interaction strength U and the driving frequency
ω, such that the stroboscopic dynamics supports the basic ν = 1/2 Laughlin state. Moreover, we explore slow
ramping of a driving term and show that the considered protocol allows for the preparation of the Laughlin state
on experimentally realistic time-scales.
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I. INTRODUCTION

Cold atoms in optical lattices provide a highly tunable
platform for quantum simulations of relevant many-body
Hamiltonians [1,2]. Since early experiments with quantum
gases, there has been a strong interest in the realization of
fractional quantum Hall (FQH) states in these setups [3–17].
Despite numerous experimental achievements and a variety of
theoretical proposals, FQH physics has still not been reached
in cold-atom experiments.

A milestone in the field has been recently achieved by the
realization of artificial gauge potentials [18–28]. In particular,
the topological index of a resulting energy band of an optical
lattice featuring a strong synthetic magnetic field has been
directly probed [22]. At first glance, both key requirements for
the emergence of FQH states—atomic interactions and strong
synthetic magnetic fields—are now experimentally available.
However, there are several specific details in the implemen-
tation of strong synthetic magnetic fields for cold atoms that
make the realization of FQH states still challenging.

The most advanced recent realizations of artificial gauge
potentials exploit periodically driven optical lattices [19–28].
Using Floquet theory, the stroboscopic dynamics of a nonin-
teracting driven system can be related to an effective time-
independent Hamiltonian [29–32]. This approach, Floquet
engineering, enriches the set of quantum models that can be
simulated in cold-atom experiments. However, general argu-
ments and numerical studies [33–35] suggest that the interplay
of interactions and driving in a thermodynamically large
system introduces heating, leading to a featureless infinite-
temperature state in the long-time limit.

Although this general result might sound discouraging,
the heating process can be very slow in some driven sys-
tems for specific regime of microscopic parameters. There,
the system can be described by a physically interesting

“prethermal” Floquet state on experimentally relevant time-
scales [36–42]. Moreover, the onset of thermalization in a
finite-size interacting system may exhibit unexpected features,
not found in the thermodynamic limit [43,44]. Heating rates
and resulting instabilities have been recently investigated both
theoretically and experimentally for the driven Bose-Hubbard
model in the weakly interacting regime [38,45–47]. Moreover,
experimental studies of the driven Fermi-Hubbard model in a
honeycomb lattice have established a timescale of the order of
100 tunneling times for the regime where the effective-model
description applies [48,49].

In this paper, we consider small systems of several inter-
acting bosonic atoms in a periodically driven optical lattice
featuring synthetic magnetic flux. The focus of our study is
on finding optimal microscopic parameters that would allow
to prepare and probe the basic bosonic Laughlin state in this
setup. To this end, we employ exact numerical simulations of
the driven Bose-Hubbard model [50] for small system sizes.

From one point of view, it is expected that a small driven
system exhibits low heating rates for a driving frequency set
above a finite bandwidth of an effective model [33]. However,
driving a system with such a high frequency may lead to
undesirable effects, such as coupling of the lowest band to
higher bands of the underlying optical lattice, thus making the
initial description based on the lowest-band Hubbard model
inapplicable. These effects have been addressed in a recent
study [51] where an optimal intermediate frequency window
for Floquet engineering has been established.

In our study, we go a step further in the search for the
optimal regime that might allow for the bosonic Laughlin
states under driving. In particular, for a realistic, intermediate
value of a driving frequency, the interaction term complicates
the effective model by introducing several higher-order terms.
Their effect on the topological states has been addressed only
recently [52,53] and it has been found that typically these
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terms work against the topological state. For this reason,
the stability of the Laughlin state at intermediate driving
frequency requires a separate study, that we perform here.
Moreover, we numerically investigate an experimentally rel-
evant preparation protocol for the Laughlin state in a driven
system [54]. For a reference, we note that a simpler but closely
related question concerning the static (undriven systems) has
gained lot of attention [6,7,15,55].

The paper is organized as follows: in Sec. II we introduce
the model under study and briefly review key features of
the particle-entanglement spectra that we will exploit in the
identification of the Laughlin-like state. Then, in Sec. III A we
investigate general heating effects of interacting bosons ex-
posed to the driving. By extending this approach, in Sec. III B
we construct the stroboscopic time-evolution operator and
inspect its eigenstates in order to identify possible FQH states.
Finally, in Sec. IV we address the possibility of accessing
these states in an experiment through a slow ramp of the
driving term.

II. MODEL AND METHOD

In this section we first introduce the driven model and
explain the basis of Floquet engineering. Then we summarize
several key features of the particle-entanglement spectra that
we use to characterize the bosonic Laughlin states.

A. Driven model

Properties of bosonic atoms in a deep optical lattice can
be realistically described within the framework of the Bose-
Hubbard model [1]. We consider a basic driving scheme
[50] that introduces a uniform, synthetic magnetic flux into
a square optical lattice here spanned by the two vectors ex
and ey. The corresponding Hamiltonian is given by the driven
Bose-Hubbard model

Ĥ (t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ

2

∑
m,n

sin [ω t − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (1)

where operators âm,n (â†
m,n) annihilate (create) a boson at

lattice position (m, n), and local density operators are n̂m,n =
â†

m,nâm,n. Jx and Jy are tunneling amplitudes and U is the
on-site local repulsive interaction. We use the units where
h̄ = 1 and the lattice constant a = 1. The driving scheme is
defined by the driving frequency ω, the driving amplitude
κ and by a phase φ. In the following we set φ = π/2 and
κ/ω = 0.5. These values were recently used in an experi-
mental realization of the Harper-Hofstadter model [22]. The
derivation of this model is briefly reviewed in Appendix. We
assume periodic boundary conditions implemented using the
vectors R1 = 4 ex, R2 = −ex + ey, as presented in Fig. 1. This
choice is compatible with the driving term and it allows us
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FIG. 1. Lattice geometry used throughout the paper. The paral-
lelogram gives the exemplary lattice size (Lx, Ly ) = (4, 8). The color
scale is defined by mod (m + n, 4), in accordance with the driving
term from Eq. (1). The vectors R1 = 4 ex, R2 = −ex + ey are used to
implement periodic boundary conditions. The small rectangle gives
the magnetic unit cell for the effective model in Eq. (3).

to exploit translational symmetry by working in the fixed
quasimomentum basis.

Formally, by using the Floquet theory [29,30,56], it can be
shown that the full time-evolution operator corresponding to
this model is given by

Û (t, t0) = e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 ), (2)

where K̂ (t ) is a periodic “kick” operator K̂ (t ) = K̂ (t + 2π/ω)
and Ĥeff is a time-independent effective Hamiltonian. The
full-time evolution operator is periodic as well and conse-
quently the (quasi)eigenenergies of Ĥeff are defined up to
modulo ω. The last equation gives formal mapping of a
periodically driven system to an effective model that captures
the stroboscopic time evolution of the model.

In the noninteracting regime, U = 0, there are several well
controlled approximations to obtain the effective Hamilto-
nian. These techniques are the essence of Floquet engineering,
an approach where the driving scheme is implemented in
such a way to yield a sought-after effective model. How-
ever, according to general analytical arguments and numer-
ical insights, the corresponding effective model of a driven
interacting many-body system in the thermodynamic limit
exhibits nonphysical features [33,34]. In particular, the system
thermalizes and in the long-time limit its steady state is
a featureless, infinite-temperature state, independent of the
initial state.

Here we consider small samples of several bosonic atoms.
Due to a finite spectrum bandwidth, we expect the high-
frequency expansion to be relevant for a finite range of the
driving frequency. Within these assumptions, the leading-
order (in 1/ω) effective Hamiltonian is

Ĥeff = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− J ′
y

∑
m,n

(ei(m+n)φ â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (3)
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FIG. 2. (a) The energy spectrum En of the model from Eq. (3) in the kx = 0, ky = 0 sector for Np = 4 and different values of interaction
U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-core bosons). The top part of the spectrum is at ≈(U/Jx )Np(Np − 1)/2. (Not shown for U/Jx = 40.)
For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds to hard-core bosons. (b) The low-lying part of the particle-
entanglement spectrum − ln ξn of the ground-state incoherent superposition, Eq. (6), in the region A momentum sectors kA

y = 0 and kA
y = π/6,

and for Np = 6,U/Jx = 2.5. (c) The particle-entanglement gap � of the incoherent superposition Eq. (6) as a function of interaction strength
U for Np = 4, 5, 6.

The Hamiltonian (3) features complex hopping phases
ei(m+n)φ that result in a uniform synthetic magnetic flux φ per
lattice plaquette. Due to the driving, the renormalized hopping
amplitude along the y direction turns into

J ′
y ≡ κ

2ω
sin(φ/2) Jy. (4)

For the values φ = 2πα, where the flux density α is set to α =
1/4, and κ/ω = 0.5, the tunneling amplitude along y direction
in the effective model is J ′

y ≈ Jy × 0.1768.
In a certain regime of microscopic parameters, the ground

state of the model defined in Eq. (3) is given by the lattice
version of the Laughlin state [7,9,57–59]. The Laughlin state
is stabilized for the filling factor ν = Np/Nφ = 1/2, where
Nφ = αLx × Ly is the total number of fluxes (Nφ being an
integer) and Np is the number of bosons, and for a strong-
enough repulsion U . Another important requirement for the
Laughlin state is to avoid the strong hopping anisotropy and to
keep Jx ≈ J ′

y, so we set Jx = 0.2Jy. We consider system sizes
Np = 4, 5, 6 and the respective lattices sizes (Lx, Ly) = (4, 8),
(4, 10), and (4, 12), see Fig. 1, where we expect the ground
state to correspond to the ν = 1/2 Laughlin state. The Hilbert
space sizes for kx = ky = 0 are dimH = 6564, 108 604, and
1 913 364 respectively. For this choice of microscopic param-
eters, the model ground state of Eq. (3) is approximately
twofold degenerate. The two ground-states are found in the
sectors kx = 0, ky = 0 and kx = 0, ky = π . We denote them
by |ψ0,0

LGH〉 and |ψ0,π
LGH〉.

As we are mainly interested in the driven regime, not only
the ground state, but the full spectrum of the model from
Eq. (3) plays a role. A rough argument is that the system does
not absorb energy provided that the driving frequency ω is set
above the bandwidth of the effective model. Several spectra
of the model from Eq. (3) for kx = 0, ky = 0 are presented
in Fig. 2(a). It can be seen that the ground-state energy is
weakly affected by the value of U � Jx, while the top part of
the spectrum with few states is found at UNp(Np − 1)/2. For
higher values of U the spectrum splits into bands where the
lowest band corresponds to the hard-core bosons and higher
bands include double and higher occupancies.

B. Particle-entanglement spectra

There are several ways to characterize the ground states
of the model from Eq. (3) as the Laughlin states. Usually,
the starting point in this direction is the identification of
the twofold degeneracy expected in the implemented torus
geometry for ν = 1/2. Another relevant quantity is the over-
lap of the numerically obtained state with the Laughlin an-
alytical wave function in the torus geometry [9,59]. More
direct evidence can be obtained through the calculation of the
relevant topological index (Chern number) or the quantized
Hall conductance. An additional convincing approach, that
we pursue here, is based on the analysis of the entanglement
spectra of the relevant states.

In the following we will use the particle-entanglement
spectrum (PES) [59,60] to distinguish possible topologically
nontrivial states. In order to obtain this type of entanglement
spectrum, we partition Np particles into two sets of NA and
NB = Np − NA particles. For a given mixed state ρ, we con-
struct a reduced density matrix ρA = trBρ by performing a
partial trace over NB particles. The resulting PES is given by
− ln ξn, where ξn are eigenvalues of ρA. The related particle-
entanglement entropy is given by [61,62]

SA = −tr(ρA ln ρA). (5)

By partitioning particles, we keep the geometry of the
system unchanged. For this reason, we will inspect the PES
for the different momentum sectors kA

y of the remaining NA

particles. An example of a PES is presented in Fig. 2(b). As
proposed in Refs. [59,60], we have considered the incoherent
superposition of the almost twofold degenerate ground state
of Eq. (3) as the density matrix

ρGS = 1
2

(∣∣ψ0,0
LGH

〉〈
ψ0,0

LGH

∣∣ + ∣∣ψ0,π
LGH

〉〈
ψ0,π

LGH

∣∣). (6)

For simplicity, we only present the PES for the two mo-
menta kA

y = 0 and kA
y = π/6. We observe a clear particle-

entanglement gap �. In addition, the counting of low-lying
modes below this gap (ten modes for kA

y = 0 and nine modes
for kA

y = π/6, at NA = 3, Np = 6) corresponds to the Laugh-
lin state [59,60]. In this way the PES encodes topological
features of the state ρ in the form of well defined number
of excitations per momentum sector kA

y [59,60]. This type of
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TABLE I. Counting of modes NL (kA
y ) in the PES of the Laughlin

state for several system sizes and particle partitions. The last column
lists the NL (kA

y ) values for each momentum sector kA
y = 2π i/Ly, i =

0, . . . , Ly − 1.

Np (Lx, Ly ) NA PES: NL (kA
y )

4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2
5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

analysis is useful as it can identify topological features even
without model states, as done for the case of fractional Chern
insulators [63,64].

In the following we will consider specific particle partitions
NA = 2, Np = 4; NA = 2, Np = 5; and NA = 3, Np = 6. For
these cases the counting of excitations NL(kA

y ) per momentum
sector kA

y is well established and given in Table I. In Fig. 2(c)
we show the particle-entanglement gap of the mixtures,
Eq. (6), obtained at different values of U . Numerical results
for the obtained PES indicate that a reasonably large gap is
found starting at U ∼ 0.5Jx and the characteristic features of
the Laughlin state persist with a further increase in U . We note
that at lower values of the flux density, α < 1/4, the Laughlin
state can be found at even lower values of the repulsion U
[9,59].

By analyzing the effective model from Eq. (1), we have
obtained a guidance for the regime of microscopic parameters
and for the geometry of the small system that can give rise to
Laughlin states. In the next sections our aim is to go beyond
the effective model from Eq. (3) and to identify topological
states supported by the full driven dynamics as captured by
the model given in Eq. (1).

III. DRIVEN DYNAMICS

In this section we discuss the full driven dynamics as
captured by the model given in Eq. (1).

A. Heating

First we address the onset of heating following the standard
procedure discussed in Refs. [42,65]. The initial state of the
system is prepared using the ground state of the effective
model

|ψ (t = 0)〉 = e−iK̂ (t=0)
∣∣ψ0,0

LGH

〉
(7)

and we monitor the stroboscopic time-evolution t = N T ,
T ≡ 2π/ω governed by the full driven model defined in
Eq. (1). In our numerical simulations, we approximate the
micromotion operator K̂ (t = 0) using the leading-order high-
frequency expansion; see Eq. (A12). The quantity of interest
is the expectation value of the effective Hamiltonian (3):

〈Ĥeff(t = NT )〉K = 〈ψ (t )|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|ψ (t )〉. (8)

We expect this quantity to reasonably correspond to the
ground-state energy of the effective model E0 in the regime
of very high frequency. On the other hand, for a “low”
driving frequency we expect the system to quickly reach the

infinite-temperature β → 0 regime defined by

lim
β→0

〈Ĥeff〉 = 1

dimH tr(Ĥeff ). (9)

For this reason we monitor the normalized total energy

Q(t = NT ) = 〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0
(10)

and we present it in Fig. 3(a), for U/Jx = 10. In agreement
with the known results [65], we find that the thermalization is
quick for both a “high” driving frequency ω/Jx � 20 and for
a “low” driving frequency ω/Jx � 10. For the intermediate
values of ω, the heating process is slow [65] and the total
energy exhibits a slow exponential growth captured by Q(t =
NT ) ≈ 1 − b exp(−c t ), t 
 1. An example of this behavior
is given for ω/Jx = 15 in Fig. 3(a). The heating process can
also be monitored through the particle-entanglement entropy
SA as a function of time. In Fig. 3(b) for Np = 5 and low
driving frequency we find that this quantity quickly saturates
to its maximal value. Indeed, for a thermal state at infinite
temperature, SA is given by

Smax
A ≈ ln

(
Lx Ly + NA − 1

NA

)
, (11)

marked by the horizontal, dot-dashed line in Fig. 3(b). Except
for the highest frequency considered (ω/Jx = 50), we find
that, in the process of heating, the particle-entanglement gap
of the initial state quickly closes (not shown in the plots).

Here we briefly discuss finite-size effects by comparing
numerical results for the normalized total energy for Np = 4,
Np = 5, and Np = 6. In line with the known results [33,34,38],
the “high-frequency” regime with low heating rates moves
toward higher ω as the system size increases. However, we
find that the estimates obtained in this section (ω/Jx � 20 for
the high- and ω/Jx � 10 for the low-frequency regime, for
U/Jx = 10) apply to all the three sizes Np = 4, 5, 6, at least
for the time-scales that we consider. A comprehensive study of
the leading finite-size effects in driven systems can be found
in Refs. [33,42,65].

B. The stroboscopic time-evolution operator

In order to better understand the limitations of the effective
model, here we time evolve all relevant basis states for a sin-
gle driving period T = 2π/ω and construct the stroboscopic
time-evolution operator

ÛF ≡ Û (t0 + T, t0 = 0) (12)

such that Û (NT + t0) = Û N
F . In the next step, for a system

size Np = 4, (Lx, Ly) = (4, 8) we fully diagonalize this oper-
ator and inspect its eigenstates |n〉. Following the described
procedure, we obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑

n

|〈n|ψ (t = 0)〉|2〈n|Ĥeff|n〉K , (13)

where we define

〈n|Ĥeff|n〉K = 〈n|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|n〉. (14)

Results for Q(t = NT ) from Eq. (10) obtained in this way
are summarized in Fig. 3(c), where we make a comparison
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FIG. 3. (a) The normalized total energy Q(t = NT ) from Eq. (10), and the (b) particle-entanglement entropy SA(t = NT ), Eq. (5), during
the time evolution governed by Eq. (1) for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters: Np = 5, U/Jx = 10. Note that the
asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one given in Eq. (11), as presented by the horizontal, dot-dashed line. (c) The
long-time limit limN→∞ Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10 and U/Jx = ∞ (hard-core bosons). The lines are only
guides to the eye.

between the long-time energies for the case of hard-core
bosons (U → ∞) and soft-core bosons (finite values of U ).
The obtained results indicate that heating rates of hard-core
bosons are closer to the case of U/Jx = 1 in comparison to
U/Jx = 10, which is expected from the bandwidths shown
in Fig. 2(a). Overall we observe that the “high-frequency
regime” is wider for lower ratios U/Jx.

In Fig. 4, we make a comparison between the exact driven
model captured by ÛF and Ĥeff. In Figs. 4(a) and 4(b) we
inspect the distribution of expectation values 〈n|Ĥeff|n〉K . By
comparing these values to the eigenenergies of the effective
model, Eq. (3), we get an insight into the pertinence of the
effective description [33,34]. In particular, for an interacting
system in the thermodynamic limit, the distribution is flat
and the effective description is useless. We state again that
we consider only small atomic samples. For this reason, it
is expected that for high values of ω the full stroboscopic
description nicely matches to the effective model values. Such
an example is given in Fig. 4(a) for U/Jx = 1 and ω/Jx = 20.
As the value of ω gets lower the distribution becomes flatter,
as can be seen in Fig. 4(b) for U/Jx = 10 by comparing results
for ω/Jx = 50 and ω/Jx = 10.

The intermediate regime of frequencies, e.g., ω/Jx = 20
for U/Jx = 10, is of the main experimental relevance [51].
We now investigate whether the driven stroboscopic dynamics
supports some Laughlin-like states, by calculating the PES of

the mixture

ρF = 1
2 (|n0(0, 0)〉〈n0(0, 0)| + |n0(0, π )〉〈n0(0, π )|), (15)

where |n0(kx, ky)〉 is the state from the kx, ky sector with the
lowest expectation value 〈n|Ĥeff|n〉K . The results are presented
in Fig. 4(c). We find that the states with a well defined gap
and the Laughlin-like PES can be found down to ω/Jx � 10
for U/Jx = 1, and down to ω/Jx � 20 for U/Jx = 10. Having
established existence of these states for small samples of Np =
4 particles, in the next section we discuss dynamical protocol
which can be exploited to prepare these states.

IV. SLOW RAMP

The question about an optimal adiabatic protocol that can
be used to prepare the Laughlin state in a cold-atom setup
has gained lot of attention [6,7,15,55]. The situation becomes
even more complex once the full driving process is taken
into account. A general wisdom is that, by starting from a
topologically trivial state, the topological index of a thermo-
dynamically large system cannot be changed adiabatically.
We consider a small atomic sample and follow the proposal
of Ref. [15]. Our main contribution is that we extend this
protocol to the case of the driven, interacting Bose-Hubbard
model.
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FIG. 4. Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF , Eq. (12), in the kx = 0, ky = 0 sector for Np = 4.
Expectation values 〈n|Ĥeff|n〉K defined in Eq. 14 for (a) U/Jx = 1, ω/Jx = 10, 20 and (b) U/Jx = 10, ω/Jx = 10, 15, 20, 50. The black solid
lines mark eigenenergies of Ĥeff, Eq. (3). Note that in (b) we do not include few states from the top of the spectrum of Ĥeff, Eq. (3), for clarity.
(c) The particle-entanglement gap � of the incoherent superposition ρF , Eq. (15), for U/Jx = 1 and U/Jx = 10, Np = 4. The lines are only
guides to the eye.

053624-5
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FIG. 5. (a) The expectation value E (t ) defined in Eq. (19) and (b) the particle-entanglement gap �(t ) of ρ(t ), Eq. (18), during the time
evolution governed by Eq. (17) for several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx = 10, η/Jx = 0.05. (c) The
overlap tr [ρ(t )ρF ] of the time evolved state with the target eigenstates of ÛF for ω/Jx = 25, 20. Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

A. Model

Following results of Ref. [15], we consider a slow ramp
of the tunneling amplitude along y direction, Jy(t ), as well as
a slow ramp of the driving amplitude κ (t ). Namely, we start
from a series of decoupled wires along the x direction and start
coupling them. More precisely, initial states are selected as the
ground states of Ĥini:

Ĥini = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (16)

For the filling factors that we consider, the ground states of
the Ĥini are simple noninteracting states with the ground state
energy E0,ini = −2JxNp. Out of the several degenerate ground
states, we select those where atoms occupy every second wire.
There are two such states and we label them as |ψ+〉 (even
wires occupied) and |ψ−〉 (odd wires occupied). These states
have finite projections only onto the sectors kx = 0, ky = 0
and kx = 0, ky = π of the driven model from Eq. (1). There-
fore we may expect the two initial states |ψ±(t = 0)〉 to be
transformed into the two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the
tunneling amplitude along the y direction, Jy(t ), and slowly
ramp up the driving amplitude κ (t ). The time-evolution is
governed by

Ĥsr(t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy(t )
∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ (t )

2

∑
m,n

sin [ωt − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (17)

where Jy(t ) = Jy tanh(η t ), κ (t ) = κ tanh(η t ), η being the
ramping rate. In the long-time limit, we recover the original
Hamiltonian from Eq. (1). During the ensuing time evolution
we construct the mixture

ρ(t ) = 1
2 (|ψ+(t )〉〈ψ+(t )| + |ψ−(t )〉〈ψ−(t )|). (18)

We monitor stroboscopically the energy expectation value

E (t ) = tr(ρ(t )Ĥeff ) (19)

and the PES of ρ(t ).

B. Results

In Fig. 5(a) we present the energy expectation value
from Eq. (19) for U/Jx = 10 and several driving frequencies
ω/Jx = 25, 20, 15, 10. Our numerical results indicate that
ramps with the rates up to η/Jx ∼ 0.1 work reasonably well.
Slower ramps give better results, but are less practical [15]. By
construction, the initial state is a noninteracting state with par-
ticles delocalized along the x direction and therefore the initial
energy is E (t = 0) = −2 Np Jx. During the ramp with the rate
η/Jx = 0.05, for the regime of high driving frequencies, down
to approximately ω/Jx = 20, we find that the energy initially
decreases and reaches an almost constant value at around
tJx ∼ 20. On the other hand, for ω/Jx = 15, the system slowly
heats up during the ramping process, and for ω/Jx = 10 the
system quickly reaches the infinite-temperature state.

One of our main results is summarized in Fig. 5(b), where
we plot the particle-entanglement gap of ρ(t ), from Eq. (18),
as a function of time. In the high-frequency regime ω/Jx �
20, starting around tJx ∼ 20 we find a persistent particle-
entanglement gap, marking the onset of a topologically non-
trivial state. It is even more interesting that, even for ω/Jx ∼
15, the state seems to exhibit a finite gap on intermediate
time-scales. This is not the case for ω/Jx � 10, where the
gap quickly vanishes. In Fig. 5(c), we present the value of
the overlap tr [ρ(t )ρF ], of the time-evolved mixed state with
the relevant state from Eq. (15) for Np = 4. Clearly, the slow
ramp of the type given in Eq. (17) allows for the preparation
of the relevant eigenstates of ÛF with high fidelity (better than
1%).

In Figs. 6(a) and 6(b) we show the time evolution of the
PES in the two momentum sectors kA

y = 0 and kA
y = π/6 for

Np = 6, U/Jx = 5, and η/Jx = 0.05. The PES of the initial
state is easy to understand. As the Ly/2 wires are occupied
by single atoms, the reduced density matrix is proportional
to the identity matrix with the proportionality factor yielding
− ln ξn = ln (2

(Ly/2
NA

)
) ≈ 3.69. During the ramp we find that

additional modes in PES are gaining weight and moving down
in the spectrum. Finally, the state ρ(t ) reached around t ≈
50T exhibits a well defined gap and the correct counting of the
low-lying modes: there are ten low-lying modes for kA

y = 0
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FIG. 6. The low-lying part of the particle-entanglement spectra
− ln ξn of ρ(t ), Eq. (18), during the time evolution governed by
Eq. (17) in the (a) kA

y = 0 and (b) kA
y = π/6 momentum sectors. The

low-lying part of the PES in the sectors (c) kA
y = 0 and (d) kA

y = π/6,
at two instances of time t = 0 and t/T = 100. Parameters: Np =
6, U/Jx = 5, ω/Jx = 15, η/Jx = 0.05.

and nine low-lying modes for kA
y = π/6; see Figs. 6(c) and

6(d) and also Table I.
In Fig. 7 we discuss a satisfactory range of ramping rates

η for a given interaction strength U and a given driving
frequency ω that we fix at ω/Jx = 15. The obtained numerical
results suggest that at weaker interaction strengths U/Jx � 2,
slower ramping rates are needed. One way to explain this
behavior is by using the effective model and arguing that the
gap protecting the Laughlin state is smaller at weaker U . On
the other hand, for stronger interaction strengths U/Jx � 8 the
particle-entanglement gap closes at later stages as the heating
process becomes dominant. Finally, in the intermediate range
U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to the sought-
after state ρ(t ) from Eq. (18), with persistent features in
the PES up to t = 500T . These results indicate that, when
optimizing the ramping protocol in an actual experiment, there
will be a tradeoff between the unfavorable heating and a faster
ramping into the desired state, as both of these processes are
promoted by interactions.

V. CONCLUSIONS

The technique of Floquet engineering has been success-
fully exploited for the implementation of synthetic magnetic
fields in driven optical lattices. Following up on these achieve-
ments and on a long-standing pursuit for the FQH states in
cold-atom setups, in this paper we have addressed possible
realization of the bosonic Laughlin state in a small atomic
sample in a periodically driven optical lattice. While a thermo-
dynamically large interacting system generally heats up into
an infinite-temperature state under driving, the heating pro-
cess can be controlled to some extent in a few-particle system.

We have assumed a realistic driving protocol and finite on-
site interactions, and we have identified the FQH state based
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FIG. 7. The particle-entanglement gap �(t ) as a function of time
during the time evolution governed by Eq. (17), for several inter-
action strengths (a) U/Jx = 1.25 (b) U/Jx = 5 and (c) U/Jx = 10,
and several ramping rates η/Jx = 0.025, 0.05, 0.1. Other parameters:
Np = 5, ω/Jx = 15.

on analysis of its particle-entanglement spectra. Results of our
numerical simulations show that the stroboscopic dynamics
of Np = 4, 5, 6 particles supports the topological ν = 1/2
Laughlin state down to ω/Jx = 20 for U/Jx = 10, and down
to ω/Jx = 15 for U/Jx = 1, for the driving amplitude κ/ω =
0.5. These results are in reasonable agreement with the recent
estimates of the optimal heating times [51] that take into
account the contribution of the higher bands of the under-
lying optical lattice. In addition, we have investigated slow
ramping of the driving term and found that it allows for the
preparation of the Laughlin state on experimentally realistic
time-scales of the order of 20 h̄/Jx, where h̄/Jx is the tunneling
time. Interestingly, we find that some topological features per-
sist during an intermediate stage even in the regime where the
system exhibits a slow transition into the infinite-temperature
state (e.g., ω/Jx = 15 for U/Jx = 10).

In the future, we plan to address the preparation scheme for
the relevant correlated states in a driven honeycomb lattice,
which exhibits lower heating rates in comparison to a cubic
lattice according to the recent experiments [48,49]. Another
highly relevant question, that we have not tackled and that we
postpone to future investigation, concerns suitable experimen-
tal probes of topological features. The recent progress in the
field has led to the development of several detection protocols
specially suited for the cold-atom systems [66–71]. For the
type of systems considered in this paper, the most promising
are results of the recent study [71] showing that fractional
excitations can be probed even in small systems of several
bosons.
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APPENDIX: DRIVEN OPTICAL LATTICES

In this Appendix we review the derivation of the model
given in Eq. (1). The system is described by

Ĥlab(t ) = ĤBH + Ĥdrive(t ) + ω V̂ , (A1)

where we start with the Bose-Hubbard model

ĤBH = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (A2)

and we introduce an offset ωV̂ :

V̂ =
∑
m,n

n n̂m,n. (A3)

This shifted Bose-Hubbard model is exposed to a suitable
resonant driving scheme:

Ĥdrive(t ) = κ

2

∑
m,n

sin

(
ωt − φm,n + φ

2

)
n̂m,n,

φm,n = (m + n) φ. (A4)

We assume periodic boundary conditions compatible with the
driving term (A4) in the laboratory frame. To this purpose
we use vectors R1 = 4 ex and R2 = −ex + ey as presented in
Fig. 1. For simplicity, we work in the rotating frame

|ψrot(t )〉 = eiωtV̂ |ψlab(t )〉 (A5)

and derive the Schrödinger equation

i
d|ψrot(t )〉

dt
= Ĥrot(t )|ψrot(t )〉, (A6)

where

Ĥrot(t ) = (eiωtV̂ Ĥlab(t )e−iωtV̂ − ωV̂ ). (A7)

Now we calculate Ĥrot(t ) explicitly. The only nontrivial action
of this rotation on Ĥlab comes from the nearest-neighbor
hopping along y direction. Indeed, we have

eiωtV̂ â†
m,nâm,n′e−iωtV̂ = eiωt (n−n′ )â†

m,nâm,n′ . (A8)

In total we obtain

Ĥrot(t )=−Jx

∑
m,n

(â†
m+1,nâm,n + H.c.) + U

2

∑
m,n

n̂m,n(n̂m,n−1)

+ eiωt Ĥ1 + e−iωt Ĥ−1 + e−iωt (Ly−1)ĤLy−1

+ eiωt (Ly−1)Ĥ−Ly+1, (A9)

with

Ĥ1 = −Jy

OBC∑
m,n

(
â†

m,n+1âm,n − i

4
κei(−φm,n+ φ

2 )n̂m,n

)
,

Ĥ−1 = Ĥ†
1 , (A10)

Ĥ−Ly+1 = −Jy

∑
m

â†
m,0âm−Ly,Ly−1, ĤLy−1 = Ĥ†

−Ly+1.

(A11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic
boundary conditions along the direction parallel to R2 as im-
posed in the laboratory frame. In order to limit the complexity
of the numerical calculation, we keep translational invariance
and impose the periodic boundary conditions in both direc-
tions in the rotating frame. This implies that we will neglect
“phasors” e−iωt (Ly−1) and eiωt (Ly−1). Under these assumptions,
we can recast Eq. (A9) into the time-dependent Hamiltonian
given in Eq. (1). In practice, this would require engineering
additional non-trivial terms in the laboratory frame.

The leading order of the kick operator is given by

K̂ (t = 0) ≈ − κ

2ω

∑
m,n

cos(φm,n − φ/2)n̂m,n. (A12)
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