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Quantum phases of canted dipolar bosons in a two-dimensional square optical lattice
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We consider a minimal model to describe the quantum phases of ultracold dipolar bosons in two-dimensional
square optical lattices. The model is a variation of the extended Bose-Hubbard model and apt to study the
quantum phases arising from the variation in the tilt angle θ of the dipolar bosons. At low tilt angles, 0◦ �
θ � 25◦, the ground states of the system are phases with checkerboard order, which can be either checkerboard
supersolids or checkerboard density waves. For high tilt angles, 35◦ � θ � 55◦, phases with striped order of the
supersolid or density wave are preferred. In the intermediate domain, 25◦ � θ � 35◦, an emulsion or superfluid
phase intervenes the transition between the checkerboard and the striped phases. The attractive interaction
dominates at θ � 55◦, which renders the system unstable, and there is a density collapse. For our studies
we use Gutzwiller mean-field theory to obtain the quantum phases and the phase boundaries. In addition,
we calculate the phase boundaries between an incompressible and a compressible phase of the system by
considering second-order perturbation analysis of the mean-field theory. The analytical results, where applicable,
are in excellent agreement with the numerical results. In our study, the incompressible phases have an average
occupancy per site ρ � 1, but the compressible phases can have ρ > 1.
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I. INTRODUCTION

In the strongly interacting regime, neutral bosons with
short-range interactions in optical lattices exhibit two quan-
tum phases: Mott insulator (MI) and superfluid (SF) [1–4].
A prototypical model that describes the properties of such
systems is the Bose-Hubbard model (BHM) [1,2,5]. The
model considers nearest-neighbor (NN) hopping and on-site
contact interaction between the bosons. The strength of the
on-site interaction is determined by the s-wave scattering
length, which is a real quantity for bosonic atoms. And it
must be positive to prevent collapse. The BHM is, however,
not suitable to describe quantum phases which have off-site
density-density correlations, such as the density wave (DW)
and supersolid (SS) [6–13]. The emergence of these quantum
phases and their stabilization require long-range interactions.
The interaction can be a dipole-dipole interaction [10,12–15],
a fermion-mediated boson-boson interaction in Bose-Fermi
mixtures [16], etc. The former is realized in dipolar atoms like
Cr [17–19], Dy [20,21], and Er [22,23] and polar molecules
[24–29]. So, an extension of the BHM accounting for the
dipole-dipole interaction can harbor the above phases. But it
is important to note that the on-site interaction in the BHM
for reactive polar molecules has to be treated differently,
as the scattering length is a complex quantity [30,31]. And
a large number of Fano-Feshbach resonances in ultracold
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collisions of nonreactive polar molecules [32–34] modify
the single-channel contact interaction pseudopotential of the
BHM [35–37], which in turn modifies the phase diagram
[38]. In this work, we do not consider these aspects of polar
molecules, which require further investigation. Apart from
quantum phases in optical lattices, dipolar bosons, specifically
polar molecules, offer fast and robust schemes for quan-
tum computation [39–41]. In addition, the long-range and
anisotropic nature of the dipole-dipole interaction can induce
exotic magnetic orders. Thus, these systems are promising
simulators for quantum magnetism [42–45].

The BHM with the nearest-neighbor lattice site interpar-
ticle interaction and its variations is referred to as the ex-
tended Bose-Hubbard model [46,47]. It is a minimal model
which harbors phases with off-site density-density correla-
tions. Based on this model several theoretical studies have
analyzed the equilibrium phases of bosons in optical lattices
and their stability properties [48–54] and the dynamics of
quantum phase transitions by quenching system parameters
[55,56]. In two dimensions this is equivalent to a dipole-dipole
interaction limited to the NN interaction and with the dipoles
aligned perpendicular to the lattice plane. And such systems
exhibit checkerboard order in the DW and SS phases. Thus, a
minimal model to describe quantum phases of dipolar bosons
in optical lattices is to limit the interaction to NNs. This is the
system we consider in the present work. In previous studies,
the quantum phases of lattice bosons with anisotropic dipolar
interaction and their stability have been analyzed [10,12,13].
In addition, the phase diagrams for dipolar bosons in a
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two-dimensional (2D) square optical lattice with staggered
flux in the minimal model have been studied [57]. A recent
work [58] reported the equilibrium phases of hard-core dipo-
lar bosons at half-filling in a 2D optical lattice with variation
of the tilt angle. And it reported a DW phase with checker-
board and striped order. However, the experimental observa-
tions are in the soft-core regime [23]. In this experiment Baier
et al. [23] realized the BHM for strongly magnetic Er atoms
in a 3D optical lattice and observed the NN interaction as a
genuine consequence of the long-range dipolar interactions.
And they also varied the tilt angle of dipolar atoms to examine
the effect of an anisotropic dipole-dipole interaction on the
SF-MI phase transition.

Motivated by the experimental realization, we investigate
the quantum phases of canted soft-core dipolar bosons in
a 2D square optical lattice. Hence, our work addresses a
key research gap in the physics of soft-core dipolar bosons
in a strongly interacting domain. We show that the system
exhibits compressible checkerboard SS (CBSS) and striped
SS (SSS) phases in addition to incompressible checkerboard
DW (CBDW) and striped DW (SDW) phases. It is to be noted
that the SS phases are absent in the hard-core regime [58].
In addition, the dipolar interaction in the soft-core regime
leads to a multitude of DW phases with average occupation
number ρ � 1. This is in contrast to the hard-core regime,
where DW phases have ρ < 1. In this work, the parameters
chosen are such that the incompressible phases have ρ � 1
and this is the most relevant regime for experiments [23]. But
the compressible phases, such as SF and SS, can have ρ � 1.

We have organized the remainder of this article as follows.
In Sec. II we discuss the zero-temperature Hamiltonian of the
minimal model. Section III provides a brief account of the
Gutzwiller mean-field (MF) theory and the quantum phases
of the model. Then we discuss the mean-field decoupling
theory to calculate the compressible-incompressible phase
boundaries analytically. Section IV describes the numerical
procedures adopted to solve the model. The phase diagrams
and key results of our work are discussed in Sec. V. We
conclude in Sec. VI.

II. THEORETICAL MODEL

We consider charge neutral, polarized dipolar bosons
loaded in a 2D square optical lattice with lattice constant a.
At zero temperature, the physics of such a system is well
described by the lowest band BHM with dipolar interaction.
The grand canonical Hamiltonian of the system is [1,10–13]

Ĥ = −J
∑
〈i j〉

(b̂†
i b̂ j + H.c.) −

∑
i

μn̂i + ĤI , (1)

where i ≡ (p, q) and j ≡ (p′, q′) denote the lattice indices,
b̂i (b̂†

i ) and n̂i are the bosonic annihilation (creation) and
occupation number operators, and 〈...〉 denotes the sum over
NN lattice sites. In addition, J and μ are the strength of the
hopping and chemical potentials, respectively. The latter term
is the interatomic interaction Hamiltonian

ĤI =
∑

i

U

2
n̂i(n̂i − 1) + Cdd

2

∑
i j

n̂in̂ j
(1 − 3cos2αi j )

|�r j − �ri|3 , (2)
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FIG. 1. Schematics of dipolar bosons in a two-dimensional
square optical lattice with dipolar interaction among the bosons at
nearest-neighbor lattice sites. We consider the dipoles to be polarized
in the y-z plane and the angle subtended by the direction of the
dipole moments (polarization axis) with the z axis is the tilt angle
θ . The tilt angle is illustrated by the orange-shaded sector. The
angle between the polarization axis and the vector (�r4 − �r1), α14,
is represented by the blue-shaded sector. The dipolar interaction
between bosons at lattice sites (p, q) and (p ± 1, q) is Cdd, whereas
the interaction between bosons at lattice sites (p, q) and (p, q ± 1) is
Udd(θ ) = Cdd(1 − 3 sin2 θ ).

where U and Cdd ∝ d2/a3 are the strengths of the on-site and
dipolar interactions, respectively. Here, d is the magnitude
of the induced dipole moment, and αi j is the angle between
the polarization axis and the vector (�r j − �ri ). In units of
a the position vectors of the lattices �ri ≡ (pêx + qêy ) and
�r j ≡ (p′êx + q′êy).

In our study, for simplicity, we limit the dipolar interaction
to NN sites. Then

ĤI =
∑

i

U

2
n̂i(n̂i − 1) + Cdd

2

∑
〈i j〉

n̂in̂ j (1 − 3cos2αi j ). (3)

This minimal model is apt for studying the quantum phases
of dipolar bosons emerging from the anisotropic nature of
the dipolar interaction. The anisotropy in the NN interaction
arises due to the canting of the polarization axis, which makes
an angle θ and φ with the positive z and x axes, respectively.
The NN interaction is isotropic when θ = 0◦, that is, the
dipoles are aligned along the z axis, and for any value of θ

when φ = 45◦. For all other combinations of θ and φ the NN
interaction is anisotropic. The anisotropy for a given nonzero
θ is maximum when φ = 0◦ or 90◦, that is, the dipoles are
polarized in the xz or yz planes, respectively. In our study,
we consider the dipoles to be polarized in the yz plane as
illustrated in Fig. 1. So, the model can accommodate all
possible phases of the system stemming from the anisotropic
NN interaction. Then by definition θ is the tilt angle. With this
choice, αi j changes as a function of θ , which can be varied
by changing the orientation of the applied magnetic field.
Then the NN interaction along the x axis is always repulsive,
constant, and independent of θ , whereas along the y axis the
NN interaction is Udd(θ ) = Cdd(1 − 3 sin2 θ ). It varies from
Cdd to −2Cdd as θ is tuned from 0◦ to 90◦. And the zero
of Udd(θ ) occurs when θ = θM = sin−1 (1/

√
3) ≈ 35.3◦. This

angle is referred to as the magic angle [59] and at this tilt
angle the interaction arising from the dipolar interaction is
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absent along the y axis. Thus, the interaction along the y axis
is repulsive when θ < 35.3◦ and attractive when θ > 35.3◦.

III. THEORETICAL METHODS

A. Gutzwiller mean-field theory

To solve the model, we consider the site decoupled mean-
field approximation [1,60–64]. For this, the bosonic annihi-
lation operator of site (p, q), b̂p,q, is decomposed to an MF
φp,q and fluctuation operator δb̂p,q as b̂p,q = 〈b̂p,q〉 + δb̂p,q =
φp,q + δb̂p,q. A similar decomposition is applied to b̂†

p,q and
n̂p,q. Henceforth, we adopt the explicit notation (p, q) to
denote a lattice site in two dimensions. To obtain the MF
Hamiltonian, we use the decomposed operators in Ĥ and
neglect the terms which are quadratic in fluctuation operators.
Then the MF Hamiltonian of the system is

ĤMF =
∑
p,q

{
−J[(b̂†

p+1,qφp,q + φ∗
p+1,qb̂p,q − φ∗

p+1,qφp,q)

+ (b̂†
p,q+1φp,q + φ∗

p,q+1b̂p,q

−φ∗
p,q+1φp,q) + H.c.] − μn̂p,q

+ U

2
n̂p,q(n̂p,q−1)+Cdd

2
[(n̂p+1,q〈n̂p,q〉+〈n̂p+1,q〉n̂p,q

−〈n̂p+1,q〉〈n̂p,q〉) + (n̂p−1,q〈n̂p,q〉 + 〈n̂p−1,q〉n̂p,q

−〈n̂p−1,q〉〈n̂p,q〉)] + Udd(θ )

2
[(n̂p,q+1〈n̂p,q〉

+ 〈n̂p,q+1〉n̂p,q − 〈n̂p,q+1〉〈n̂p,q〉)

+ (n̂p,q−1〈n̂p,q〉+〈n̂p,q−1〉n̂p,q−〈n̂p,q−1〉〈n̂p,q〉)]

}
. (4)

This can be written in terms of single-site Hamiltonians as

ĤMF =
∑
p,q

ĥp,q, (5)

where ĥp,q is the single-site Hamiltonian of site (p, q), which
can be expressed as

ĥp,q = −J[(φ∗
p+1,qb̂p,q + φ∗

p,q+1b̂p,q + φ∗
p−1,qb̂p,q

+φ∗
p,q−1b̂p,q ) + H.c.] − μn̂p,q + U

2
n̂p,q(n̂p,q − 1)

+ Cdd

2
n̂p,q(〈n̂p+1,q〉 + 〈n̂p−1,q〉)

+ Udd(θ )

2
n̂p,q(〈n̂p,q+1〉 + 〈n̂p,q−1〉), (6)

where we have dropped the pure MF terms. These terms shift
the ground-state energy and play no role in determining the
ground state or the phase diagrams of the system. We can
solve the model by diagonalizing the single-site Hamilto-
nians coupled through the mean-field φp,q self-consistently.
To obtain the ground state of the system, we consider the
site-dependent Gutzwiller (GW) ansatz

|�GW〉 =
∏
p,q

|ψp,q〉 =
∏
p,q

(Nb−1)∑
n=0

c(p,q)
n |n〉p,q, (7)

where {|n〉p,q} are the occupation number basis states at site
(p, q), Nb is the total number of local Fock states used in
the computation, and c(p,q)

n are complex coefficients of the
ground state |ψp,q〉. The normalization of |�GW〉 is ensured
by considering the sitewise normalization condition

〈ψp,q|ψp,q〉 =
(Nb−1)∑

n=0

∣∣c(p,q)
n

∣∣2 = 1. (8)

Then the mean-field or superfluid order parameter φp,q and the
average occupancy np,q at the lattice site (p, q) are

φp,q = 〈�GW|b̂p,q|�GW〉 =
(Nb−1)∑

n=1

√
nc(p,q)

n−1

∗
c(p,q)

n ,

np,q = 〈�GW|n̂p,q|�GW〉 =
(Nb−1)∑

n=0

n
∣∣c(p,q)

n

∣∣2
. (9)

As the name indicates, φp,q is a nonzero quantity in the SF
phase, and from the definition, it is an indicator of the number
fluctuation. Hence, it is a measure of the long-range phase
coherence in the system. In other words, the SF phase has
off-diagonal long-range order (ODLRO). Another relevant
parameter of a quantum phase is the average occupancy per
lattice site ρ. For a system size of K×L

ρ = 1

K × L

K,L∑
p=1,q=1

np,q. (10)

In the present work we study quantum phases in the hard-core
as well as the soft-core regimes; in these regimes ρ � 1 and
ρ � 1, respectively.

B. Quantum phases and their characterization

In the absence of a dipolar interaction, depending on J/U
there are two ground-state quantum phases of the system:
the superfluid and Mott insulator phases. The key distinction
between these two phases is that φp,q, as mentioned earlier,
is finite in the SF phase. But it is 0 in the MI phase. In a
homogeneous lattice system, the density distribution of these
two phases is uniform. However, this translational symmetry
can be spontaneously broken with a long-range dipole-dipole
interaction. This leads to the emergence of quantum phases
which have periodic density modulations, such as the density
wave and supersolid. In other words, the system can exhibit
diagonal order. Among the two phases the SS phase, in
addition to the diagonal order, has ODLRO. Therefore, the SS
phase has nonzero φp,q, and np,q has a periodic structure. On
the other hand, for the DW phase, as in the MI phase, φp,q is 0
and np,q is an integer. But unlike the MI phase, np,q in the DW
show a spatial pattern. To characterize the diagonal order in
the DW and SS phases, we compute the static structure factor,

S(�k) = 1

N2

∑
i, j

ei�k·(�ri−�r j )〈n̂in̂ j〉, (11)

where �k ≡ (kx, ky) ≡ (kxêx + kyêy) is the reciprocal lattice
vector (measured in units of 1/a), and N is the total number of
bosons in the system. In the present study, depending on the
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TABLE I. Characteristics of different quantum phases of the
considered system.

Quantum phase np,q φp,q S(π, π ) S(π, 0)

Superfluid (SF) Real �= 0 0 0
Mott insulator (MI) Integer 0 0 0
Checkerboard supersolid (CBSS) Real �= 0 �= 0 0
Striped supersolid (SSS) Real �= 0 0 �= 0
Emulsion supersolid Real �= 0 �= 0 �= 0
Checkerboard density wave (CBDW) Integer 0 �= 0 0
Striped density wave (SDW) Integer 0 0 �= 0
Emulsion density wave Integer 0 �= 0 �= 0

tilt angle θ , the system has np,q which is either checkerboard
or striped. The checkerboard order breaks the translational
symmetry along both the x and the y directions and is char-
acterized by a finite value of S(�k) at the reciprocal lattice
site �k = (π, π ). In the phases having a striped pattern, the
translational symmetry is broken only along the x direction.
And S(�k) is nonzero only for �k = (π, 0). Thus, the structure
factors S(π, π ) and S(π, 0) can be used to characterize the
CB and striped phases. Like the MI phase, the DW phase is
an incompressible phase of the system, whereas in the SF and
SS phases, the system is compressible. Table I summarizes the
distinct characteristics of the different possible phases of the
considered system. It is important to note that the system can
harbor a multitude of distinct structured states when the range
of the dipolar interaction is considered beyond NNs [52,65].
Many of these states are nearly degenerate metastable states
which compete with the ground state.

To illustrate the density distribution in the structured
phases, the density distributions in the CBDW (1,0), SDW
(1,0), and emulsion DW (1,0) are shown in Fig. 2. There
the integer pair (n1, n2) denotes the occupancies of two con-
secutive lattice sites along the x direction. As expected, in
Fig. 2(a) the density modulation of the CBDW (1,0) phase
is along both directions. And in Fig. 2(b) for the SDW (1,0)
phase the density modulation is along the x axis. The emulsion
state, as shown in Fig. 2(c), has regions with both types of

5 15 25
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15

25

(a) CBDW (1,0)

5 15 25

(b) SDW (1,0)

5 15 25

(c) Emulsion DW (1,0)

x (units of a)

y
(u

ni
ts

of
a)

FIG. 2. Density pattern of the system in distinct density-wave
phases. Black squares represent lattice sites which are vacant, and
white squares denote singly occupied lattice sites. The states are
illustrated for fixed μ/J = 15 and Cdd/U = 0.8. CBDW (1,0) and
SDW (1,0) states are obtained for J/U = 0.033 at θ = 0◦ and 37◦,
respectively. The emulsion state is obtained for J/U = 0.035 at
θ = 31.5◦.

density modulations. These emulsion states are an admixture
of ground and excited states having checkerboard or striped
order, and they appear near the parameter domain of the
checkerboard-to-striped phase transition. In this regime, states
with checkerboard and striped patterns are nearly degenerate.
So, regions with checkerboard and striped patterns can coexist
in the emulsion states, which is evident upon visual inspection
of the density distribution shown in Fig. 2(c). The size of
these regions depends on the system size and initial guess
states considered in our computations. In general, the region
corresponding to the actual ground state is like a background,
with the excited state occurring as patches. The simultaneous
existence of the two orders is also reflected in the nonzero
values of the structure factors S(π, π ) and S(π, 0). The den-
sity distributions of the checkerboard, striped, and emulsion
SS states are similar to the density pattern in Fig. 2, except
that np,q are real, whereas it is integer in the DW phases. In
addition, the SS phases have φp,q with patterns similar to np,q.
But φp,q is uniform in the SF phase, which is reminiscent of
the uniform density distribution in this phase.

C. Phase boundaries from mean-field decoupling theory

To gain additional insights into the phase transitions be-
tween compressible and incompressible phases we calcu-
late the phase boundaries analytically using the mean-field
decoupling theory [66,67]. A similar analysis can be done
using other methods like strong-coupling expansion [67–69]
or the random phase approximation [70]. For this we use
the decoupling scheme, described earlier, b̂p,q = φp,q + δb̂p,q,
b̂†

p,q = φ∗
p,q + δb̂†

p,q, and n̂p,q = np,q + δn̂p,q. Here, the SF or-
der parameter, φp,q, is nonzero in the SF and SS phases but 0
in the MI and DW phases. We assume that the phase transition
between a compressible (φp,q �= 0) and an incompressible
(φp,q = 0) phase is continuous. Then the energy can be de-
fined as a smooth function of φp,q across the phase boundary
and the perturbation analysis is applicable. With this con-
sideration, the phase boundary between a compressible and
an incompressible phase is marked by a vanishing SF order
parameter φp,q → 0+. In addition, the MI and DW phases
correspond to integer occupancies per lattice site and are the
exact eigenstates of the interaction and chemical potential
part of the MF Hamiltonian in Eq. (4). Thus, the hopping
term in the Hamiltonian can be considered as a perturbation
with φp,q as the perturbation parameter. We can then per-
form a perturbative analysis (details are given in Appendix
A) to obtain the order parameter from the first-order wave
function as

φp,q = Jφp,q

[
np,q + 1

Unp,q − μ̃p,q
− np,q

U (np,q − 1) − μ̃p,q

]
, (12)

where μ̃p,q = μ − V dip
p,q and

φp,q = (φp+1,q + φp−1,q + φp,q+1 + φp,q−1),

V dip
p,q = Cdd

2
(np+1,q + np−1,q ) + Udd(θ )

2
(np,q+1 + np,q−1).

A similar equation is obtained from the Landau procedure for
continuous phase transition. In this case the energy functional
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defined as a function of φp,q is minimized [53,71]. In the MI
phase, the system has integer commensurate filling, say n0,
and in the SF phase it has a uniform SF order parameter ϕ0.
With these considerations,

φp,q ≡ φ = 4ϕ0,

μ̃p,q ≡ μ̃ = μ − [Cdd + Udd(θ )]n0.

Since in the SF phase ϕ0 → 0+ near the phase boundary, then
from Eq. (12) the MI-SF phase boundary can be calculated
from

1

4J
=

[
n0 + 1

Un0 − μ̃
− n0

U (n0 − 1) − μ̃

]
. (13)

The solution of the above equation defines the MI-SF bound-
ary in the μ-J plane corresponding to the MI lobe with n0

filling.
To describe the phase transition from the DW to the SS

phase, we consider a two-sublattice description of the phases.
That is, dipolar-interaction-induced solid order or spatially
periodic modulation can be considered as if the system has
two sublattices, A and B. Each sublattice has different occu-
pancies nA and nB as well as two order parameters, ϕA and ϕB.
In the checkerboard order the periodic modulation is along
both the x and the y directions with a period of 2a, whereas in
the striped order the modulation is along one of the directions.
So, to obtain the phase boundary between the SDW and the
SSS phases from Eq. (12), we consider a striped sublattice
structure. Therefore, we define φp,q = 2(ϕA + ϕB), μ̃A = μ −
[CddnB + Udd(θ )nA] for the (p, q) ∈ A sublattice and φp,q =
2(ϕA + ϕB), μ̃B = μ − [CddnA + Udd(θ )nB] for the (p, q) ∈ B
sublattice. This leads to two coupled equations for ϕA and ϕB:

ϕA = 2(ϕA + ϕB)J

[
nA + 1

UnA − μ̃A
− nA

U (nA − 1) − μ̃A

]
, (14a)

ϕB = 2(ϕA + ϕB)J

[
nB + 1

UnB − μ̃B
− nB

U (nB − 1) − μ̃B

]
. (14b)

We solve these two equations simultaneously. In the SSS
phase {ϕA, ϕB} → 0+ across the SDW-SSS phase bound-
ary. Then the SDW-SSS phase boundary is obtained as the
solution of

1

2J
=

[
nA + 1

UnA − μ̃A
− nA

U (nA − 1) − μ̃A

]

+
[

nB + 1

UnB − μ̃B
− nB

U (nB − 1) − μ̃B

]
. (15)

Following similar reasoning, the CBDW-CBSS phase bound-
ary is obtained as the solution of

1

16J2
=

[
nA + 1

UnA − μ̃A
− nA

U (nA − 1) − μ̃A

]

×
[

nB + 1

UnB − μ̃B
− nB

U (nB − 1) − μ̃B

]
. (16)

For θ = 0◦, this becomes identical to the phase boundary in
two dimensions reported by Iskin [53]. The detailed steps

of derivations to obtain the above equation are discussed in
Appendix B.

It is to be mentioned here that close to θM, the system un-
dergoes a checkerboard-striped transition. So, in this regime
the system can exhibit both orders simultaneously, leading to
emulsion DW states. The parameter domains of such emulsion
DW states can be identified as the regions where Eqs. (15) and
(16) are both applicable.

IV. NUMERICAL METHODS

To obtain the equilibrium phase diagrams of the system,
we diagonalize the single-site Hamiltonian in Eq. (6) [62,63].
For this, we consider a guess solution of the ground state
|�GW〉 to compute the initial values of φp,q and 〈n̂p,q〉. In
general we choose the initial guess state |ψp,q〉 to be the same
for all lattice sites (p, q) and consider c(p,q)

n = 1/
√

Nb. This
corresponds to the uniform distribution of np,q and φp,q. We
then use the initial values of np,q and φp,q in Eq. (6) and diag-
onalize it to obtain a new ground state, |ψp,q〉. Using this new
state we update |�GW〉 and then compute the corresponding
φp,q and 〈n̂p,q〉. We then repeat the same for the next lattice
site. This is repeated till all the lattices sites are covered. One
such step constitutes an iteration, and the iteration is repeated
till φp,q and 〈n̂p,q〉 converge. Around the phase boundary the
convergence is slow and this is remedied by considering a
larger number of iterations. To model a uniform infinite-sized
lattice, we perform the above procedure on the surface of a
torus by considering periodic boundary conditions along the x
and y directions of the finite-sized lattice system. In general,
we have considered a 12×12 lattice system and Nb = 20 to
obtain the phase diagrams. System size and initial guess state
dependence of the phase boundary occurs when there is an
intervening region of emulsion states between two phases. For
these special cases, we supplement the results for a 12×12
lattice with the results obtained for 20×20 and 30×30 lattice
systems. And we corroborate the stability of the obtained
ground states with respect to different initial guess states
having an inhomogeneous distribution in np,q and φp,q. We
have considered initial guess states which have checkerboard,
horizontal and vertical striped, and random density patterns
satisfying the normalization condition in Eq. (8).

V. RESULTS AND DISCUSSION

The model Hamiltonian considered has five independent
parameters, namely, J , U , μ, Cdd, and θ . To examine the phase
diagram of the system in detail we scale the Hamiltonian with
respect to J and set μ/J = 15. This reduces the number of
independent parameters to three: U/J , Cdd/J , and θ . For better
description, we obtain the phase diagrams in the J/U -Cdd/U
plane for different values of θ . This choice is suitable to
probe the interplay between on-site and dipolar interactions
in determining the distinct phases of the system.

A. J/U -Cdd/U phase diagrams

J/U -Cdd/U phase diagrams for different values of θ are
shown in Fig. 3. In the figure, solid lines correspond to phase
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FIG. 3. Phase diagrams in the J/U -Cdd/U plane for different val-
ues of the tilt angle θ . The phase diagrams are obtained for μ/J = 15.
Solid phase boundaries are obtained from the self-consistent numer-
ical diagonalization of the mean-field Hamiltonian of the system,
whereas filled circles represent the phase boundaries between an
incompressible and a compressible phase of the system, which are
obtained analytically considering perturbation analysis of the mean-
field decoupling theory. In (c), the parameter region for the emulsion
DW (1,0) state is shaded gold. In the emulsion state, the system
simultaneously exhibits both orders, checkerboard and striped. The
parameter region shaded pink in (f) represents the emulsion of SDW
(1,0) and SDW (2,0) phases.

boundaries obtained from the Gutzwiller MF theory. Filled
circles represent phase boundaries between an incompressible
and a compressible phase, which are calculated from the MF
decoupling theory. In the figure, it is evident that the mean-
field decoupling theory, when applicable, gives results which
are in good agreement with the Gutzwiller mean-field theory.
For the parameters considered we obtain an MI phase with
unit filling. The MI-SF phase boundary is obtained by solving
Eq. (13) with n0 = 1. The SSS-SDW phase boundaries are
calculated by solving Eq. (15) with nA = 1 and nB = 0 for
the SDW (1,0)–SSS boundary and nA = 2 and nB = 0 for the
SDW (2,0)–SSS boundary. Similarly, the CBSS-CBDW phase
boundaries are calculated by solving Eq. (16) with nA = 1 and
nB = 0 for the CBDW (1,0)–CBSS boundary and nA = 2 and
nB = 0 for the CBDW (2,0)–CBSS boundary.

1. θ = 0◦, 15◦, and 30◦

The phase diagrams for θ = 0◦, 15◦, and 30◦ are shown in
Figs. 3(a), 3(b) and 3(c). These are representative cases for a
tilt angle lower than the magic angle, that is, θ < 35.3◦. For
these θ , Udd is repulsive along both the x and the y directions.
The interaction is isotropic when θ = 0◦, and along the y axis
the interaction strength decreases with an increase in θ . For
lower values of Cdd/U the system is in the DW or SF or MI
phase for all values of θ . Of these, the MI and SF phases do
not have diagonal order. But for higher values of Cdd/U the
system favors phases with diagonal order. And we also get the
CBSS phase in which the system exhibits ODLRO in addition
to diagonal order. In addition, there are domains in the phase
diagram where CBDW phases with different filling exist.

In the DW phases ODLRO is absent and the system has
only diagonal order. By comparing the phase diagrams shown
in Figs. 3(a) to 3(c), we can infer that the domain with
checkerboard order diminishes with an increase in θ . This is
due to the decrease in Udd, which increases the anisotropy
of the dipolar interaction, and checkerboard order becomes
energetically unfavorable. At θ = 30◦, as shown in Fig. 3(c),
we obtain metastable emulsion DW states. The parameter
domain of these states is shaded gold. In an emulsion state,
the checkerboard and striped orders coexist. The emergence
of the emulsion states at this tilt angle implies that Udd is
weak and cannot support checkerboard order. The system has
entered the parameter domain where the striped order has
a lower energy. Indeed, at larger θ we obtain phases with
striped order. In addition, an important aspect of the phase
diagram at θ = 30◦ is the absence of the DW (2,0) phase. It
is to be mentioned here that the phase diagram for θ = 0◦,
shown in Fig. 3(a), is consistent with the results reported in
our previous work [64]. In our previous work, we explored the
phase diagram of the extended BHM model in the J/U -μ/U
plane. And, thus, parts of the phase diagram for specific values
of Cdd/U and μ/J in Fig. 3(a) correspond to horizontal cuts
of the phase diagram reported in Ref. [64].

2. θ = 35.3◦ and 40◦

At the magic angle, that is, θ = θM ≈ 35.3◦, as mentioned
earlier, the dipolar interaction along the y axis vanishes.
But the interaction along the x axis remains positive and
unchanged. Energetically, this favors striped order for phases
with diagonal order. And as shown in Fig. 3(d), the phase
diagram supports SSS and SDW phases. For θ > θM, the
dipolar interaction along the y axis is attractive. This further
enhances the striped phases, and this is discernible from the
phase diagram at θ = 40◦ shown in Fig. 3(e). In this case, the
SSS phase extends up to J/U ≈ 0.2 for Cdd/U ≈ 0.9.

3. θ = 45◦

At higher θ , new striped phases emerge in the phase
diagram, and as an example we examine the phase diagram at
θ = 45◦. As shown in Fig. 3(f), the SDW (2,0) phase is present
in the system when θ = 45◦. However, at lower θ , the stronger
attractive interaction along the y axis results in instability
of the system and ultimately leads to density collapse. The
phase diagram at θ = 45◦ shows two distinct signatures of the
onset of instability: first, the mixing of different phases, SDW
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FIG. 4. Cdd/U value of the tip of the MI lobe as the tilt angle θ

is changed. Filled green circles are obtained from Gutzwiller mean-
field theory and the solid red line is obtained from Eq. (13).

(1,0) and SDW (2,0), in the domain shaded pink and, second,
the merging of different phases, MI, SF, SSS, and SDW. In
contrast, at lower θ the incompressible phases are separated
by an intervening compressible phase. It must be mentioned
here that merging of incompressible phases is also discussed
in previous works on the 2D BHM with a three-body attractive
interaction [72,73]. The presence of emulsion states indicates
that the phase transition between SDW (1,0) and SDW (2,0)
phases is not second-order. A detailed analysis is essential
to understand whether the phase transition is first-order or a
microemulsion phase intervenes the transition [74].

In the phase diagram there is a triple point of MI, SDW
(1,0), and SSS phases at approximately (0.027,0.5). Starting
from the triple point there is a sharp phase boundary between
the MI phase with unit filling and the SDW (1,0) phase in
the range 0.38 � Cdd/U � 0.50 and 0.021 � J/U � 0.027.
Either this phase boundary could be a first-order phase transi-
tion or a thin region of metastable emulsion of the two phases
could exist which is not detectable with the present method.
However, for J/U < 0.021 and Cdd/U < 0.38, we do obtain a
very narrow region of the emulsion states separating these two
phases. In this context, it is important to mention that a phase
transition between MI and DW phases has been observed in a
quantum degenerate gas of 87Rb atoms in a 3D optical lattice
immersed in a cavity [75]. The signature of metastability
across the phase transition has been identified and attributed
to the competition betweenshort-range on-site and long-range
cavity-mediated interactions.

4. MI lobe enhancement

One feature of the MI lobe discernible from the phase
diagrams in Fig. 3 is its enhancement along the Cdd/U axis
with increasing θ . To illustrate this, the θ dependence of the
MI lobe tip, in terms of Cdd/U , is shown in Fig. 4. To analyze
this consider Eq. (13), which defines the MI-SF boundary in
the mean-field decoupling theory, and rewrite it as

U

4J
=

[
n0 + 1

n0 − μ̃/U
− n0

(n0 − 1) − μ̃/U

]
. (17)
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FIG. 5. Phase diagram in the J/U -θ plane for Cdd/U = 0.8 and
μ/J = 15. Solid phase boundaries are obtained from the numerical
computation of the Gutzwiller mean-field theory. Filled circles mark
the phase boundaries between an incompressible and a compressible
phase, which are calculated analytically by performing perturbation
analysis of the mean-field decoupling theory. Parameter domains
shaded silver and gold represent emulsion SS and emulsion DW
(1,0) states, respectively. In these emulsion states, checkerboard and
striped order coexist in the system.

In the absence of the dipolar interaction (Cdd = 0) μ̃ = μ and
we obtain the MI-SF boundary of the BHM. However, the
dipolar interaction reduces the effective chemical potential
to μ̃ = μ − Cdd(2 − 3 sin2 θ ). At θ = 0◦, μ̃ has the smallest
value, μ̃min = μ − 2Cdd, and this can be considered the value
of μ̃ that defines the MI-SF boundary. But when θ > 0◦ the
prefactor (2 − 3 sin2 θ ) decreases, and hence, to maintain the
same value of μ̃ the strength of the dipolar interaction Cdd

has to increase. Thus, there is an enhancement of the MI
lobe along the Cdd/U axis. As the degree of enhancement
depends on the prefactor with sin2 θ , the trend noticeable in
Fig. 4 is indicative of this dependence. This is consistent with
the experimental finding in [23], where the on-site repulsive
dipolar interaction is observed to favor the MI phase due to
stronger pinning of the lattice bosons.

B. Phase diagrams in the J/U -θ plane

From the phase diagrams in Fig. 3, it is evident that the
phase structure is richer with a stronger dipolar interaction
(large Cdd/U ). Most importantly, the checkerboard order of
the system transforms into striped order below a certain value
of θ . This is an example of the structural phase transition.
To examine the phases of the system as a function of θ we
examine the phase diagram in the J/U -θ plane for fixed values
of Cdd/U and μ/J . And as an example the phase diagram in
the case of Cdd/U = 0.8 and μ/J = 15 is shown in Fig. 5.
Consistent with the phase diagrams in Fig. 3, checkerboard
and striped orders are preferred for θ � 25◦ and θ � 35◦,
respectively. For 25◦ � θ � 35◦ emulsion states are preferred
in the strongly interacting domain. The parameter regions of
the emulsion DW and emulsion SS states are shaded gold
and silver, respectively. However, in the weakly interact-
ing domain, J/U � 0.053, the SF phase is the intervening
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phase between checkerboard and striped supersolids. These
are in good agreement with the previous findings on the
phase transition between CBDW (1,0) and SDW (1,0) in the
hard-core limit of the model [58]. The intervening emulsion
and SF phases imply that there is no sharp phase transition
between the two structured phases. And, also, it cannot be
a second-order phase transition in the strongly interacting
domain, J/U � 0.053. In this domain, the phase transition
can be either a first-order or a “Spivak-Kivelson”-type phase
transition in which a microemulsion phase intervenes between
two ordered phases [74]. The fact that the checkerboard order
disappears at θ smaller than the magic angle implies that it is
a delicate phase. It is unstable against large anisotropy of the
interaction potential. At larger θ an attractive NN interaction
along the y direction dominates, which renders the system
unstable. The total NN interaction energy becomes attractive
for θ > sin−1(

√
2/3) ≈ 54.7◦. In our computations, however,

the collapse arising from an attractive interaction occurs when
θ � 55◦. It is important to mention that the competition
between the attractive NN interaction along the y direction
and the repulsive on-site plus NN interaction along the x di-
rection determines the stability against collapse of the system.
Using magnetic Feshbach resonances, the on-site interaction
strength U can be tuned in atomic dipolar gases [22,76–80].
But for the stability of the system, U is required always to
be positive. An attractive on-site interaction, however small,
makes the system unstable and it collapses. However, stable
phases can be obtained in a three-body hard-core constraint
system with an attractive on-site interaction [81,82].

An important observation, manifest in Fig. 5, is the param-
eter domain of the CBDW (2,0) and SDW (2,0) phases. The
former occurs in the domain of large J/U and small θ . The
latter, on the other hand, occurs in the domain with small J/U
and large θ . This is, however, due to the choice of Cdd/U and
μ/J . For a different choice of these two parameters, there
could be an intervening region of emulsion states for the
transition between these two structured phases.

VI. CONCLUSIONS

In conclusion, we have explored the rich phase structure of
soft core dipolar bosons in a 2D optical lattice as a function of
the tilt angle θ . A dipolar interaction in the soft-core regime
induces the supersolid phase in this system and can withstand
density-wave phases having unit or larger filling. The key
point is that the variation of θ modifies the anisotropy of the
dipolar interaction in the plane of the 2D square lattice. And
this leads to the formation of two types of quantum phases
with different diagonal orders: checkerboard and striped. Our
results indicate that the quantum phase transition between
these orders, namely, the checkerboard and striped orders,
occurs through an intervening region of emulsion states.
The striped order phases, both density-wave and supersolid
phases, are preferred at high values of θ when the anisotropy
is large. However, above the magic angle θM ≈ 35.3◦, as
the interaction along the y axis becomes negative, a density
instability manifests in the system. At θ = 45◦, the system can
undergo a quantum phase transition from one incompressible
phase to another without passing through an intermediate
compressible phase. We report such phase transitions between

the unit filling MI phase, (1,0) SDW, and (2,0) SDW phases.
Our results can be experimentally examined since tilting the
dipoles has become a standard tool to understand the physics
of ultracold dipolar bosons and fermions [83–85].
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APPENDIX A: PERTURBATIVE TREATMENT
OF THE SF ORDER PARAMETER

We consider the hopping term in the single-site Hamil-
tonian as the perturbation and the interaction terms along
with the chemical potential as the unperturbed Hamiltonian.
Therefore, the energy of the ground state of the unperturbed
Hamiltonian

E0
np,q

= U

2
np,q(np,q − 1) + Cdd

2
np,q(np+1,q + np−1,q )

+ Udd(θ )

2
np,q(np,q+1 + np,q−1) − μnp,q. (A1)

Then to first order in the SF order parameter, the perturbed
ground state can be written as

|ψp,q〉 = |n〉p,q +
∑
m �=n

p,q〈m|T̂p,q|n〉p,q

E0
np,q

− E0
mp,q

|m〉p,q, (A2)

where, considering the SF order parameter to be a real num-
ber,

T̂p,q = −J (φp+1,q + φp−1,q + φp,q+1 + φp,q−1)(b̂p,q + b̂†
p,q )

= −Jφp,q(b̂p,q + b̂†
p,q). (A3)

Therefore, using Eqs. (A1)–(A3) the ground state can be
calculated as

|ψp,q〉 = |n〉p,q + Jφp,q

[ √
np,q + 1

Unp,q − μ̃p,q
|np,q + 1〉

−
√

np,q

U (np,q − 1) − μ̃p,q
|np,q − 1〉

]
. (A4)

From this state, we obtain the SF order parameter φp,q in the
form mentioned in Eq. (12).

APPENDIX B: CBDW-CBSS PHASE BOUNDARY

To obtain the phase boundaries between the CBDW
and the CBSS phases from Eq. (12), we consider the
checkerboard sublattice structure. Then we define φp,q = 4ϕB
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and μ̃A = μ − [Cdd + Udd(θ )]nB for the (p, q) ∈ A sublattice
and φp,q = 4ϕA, μ̃B = μ− [Cdd + Udd(θ )]nA for the (p, q) ∈ B
sublattice. This leads to two coupled equations:

ϕA = 4JϕB

[
nA + 1

UnA − μ̃A
− nA

U (nA − 1) − μ̃A

]
, (B1a)

ϕB = 4JϕA

[
nB + 1

UnB − μ̃B
− nB

U (nB − 1) − μ̃B

]
. (B1b)

These two equations can be solved simultaneously. In the
CBSS phase {ϕA, ϕB} → 0+ across the CBDW-CBSS phase
boundary. Then the CBDW-CBSS phase boundary is obtained
as in Eq. (16).
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