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Damping of the Anderson-Bogolyubov mode in Fermi mixtures by spin and mass imbalance
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We study the temporally nonlocal contributions to the gradient expansion of the pair fluctuation propagator
for spin- and mass-imbalanced Fermi mixtures. These terms are related to the damping processes of soundlike
(Anderson-Bogolyubov) collective modes and are relevant for the structure of the complex pole of the pair
fluctuation propagator. We derive conditions under which damping occurs even at zero temperature for a large
enough mismatch of the Fermi surfaces. We compare our analytical results with numerically computed damping
rates of the Anderson-Bogolyubov mode.
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I. INTRODUCTION

Progress in manipulating ultracold atomic setups [1–4]
opens opportunities to experimentally study many-body prob-
lems hardly accessible in conventional solid-state systems. In
particular, the ability to engineer fermionic mixtures with dif-
ferent particle masses [5–8] and populations [9–13] motivates
detailed studies of the influence of imbalance on superfluidity.
For instance, exotic superfluid phases such as the interior gap
(Sarma-Liu-Wilczek) superfluids [14,15] or the nonuniform
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [16,17] are
theoretically possible to realize in two-component mixtures
with different spin populations and masses of particles. Of
substantial interest is also the imbalance-induced phase tran-
sition between the uniform superfluid and normal phases. By
manipulating the mass imbalance, the tricritical point may
be shifted [18–20] or even expelled from the phase diagram,
giving rise to a stable quantum critical point (QCP) [21,22].
Another aspect concerns the possible quantum phase transi-
tion to the FFLO state [23,24].

In addition to the thermodynamic properties, the excitation
spectra of such superfluid systems and their evolution upon
increasing imbalance are highly interesting. Generally one
expects the occurrence of a gapless (Anderson-Bogolyubov)
soundlike branch (discussed in the present paper) as well
as a gapped amplitude mode. Note, however, that additional
interesting features arise, for example, in two-band superflu-
ids [25–28], or systems involving spin-orbit coupling [29–33].

One particularly interesting and generic problem concerns
the properties of Anderson-Bogolyubov (AB) modes [34,35],
also known as Nambu-Goldstone modes [36,37] in the low-
momentum limit. According to the Goldstone theorem [38],
the spontaneous breaking of continuous U(1) symmetry for
the Fermi gas results in low-energy soundlike collective ex-
citations. These modes have been successfully observed in
several experiments [39–43] and studied extensively in nu-
merous theoretical papers [44–53] in the last 20 years. How-
ever, most of these works pay relatively little attention to the
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spin- and mass-imbalance influence on the excitation spectra
and their damping in particular. The dominant mechanism of
damping in such systems is related to the inelastic scattering
of the Goldstone phonon from thermally excited fermionic
quasiparticles [54]. The damping rate vanishes in the limit
T → 0 [54,55] because of the disappearance of the thermal
cloud of quasiparticles [56]. This picture is consistent with the
detailed analysis performed by Kurkjian and Tempere [57],
which shows that the process of absorption and emission of
the AB phonon by fermionic quasiparticles leads to exponen-
tially suppressed damping at low temperatures in the presence
of a gap. This temperature dependence is an essential char-
acteristic of the so-called Landau damping [58] for gapped
modes. However [59], large enough spin polarization of the
Fermi gas leads to an enhancement of the damping factor
even for relatively low temperatures. This suggests a relation
between a mismatch of Fermi surfaces corresponding to the
two-particle species forming the mixture and the mechanism
of the damping process.

It is therefore worth taking a closer look at the problem
of the impact of spin and mass imbalance on the Landau
damping. The present paper contributes to an analytical under-
standing of the damping process by considering the structure
of the Gaussian pair fluctuation (GPF) propagator in the low-
momentum limit (q → 0). We derive an inequality involving
parameters of the system, giving a necessary condition to
obtain a nonzero damping rate of the AB mode in a uniform
s-wave superfluid in the presence of both spin and mass
imbalance. Our central result indicates that for a large enough
mismatch of the Fermi surfaces, the AB modes are damped
even at T = 0. We formulate an intuitive interpretation of this
result and relate it to the mechanism of Landau damping.
We subsequently compare the conclusions drawn from the
analytical results with numerically obtained complex poles
(zq = ωq − i�q/2) of the GPF propagator, where the disper-
sion relation of the collective mode and its damping rate are
given, respectively, by the real and imaginary part of zq.

The paper is organized as follows. In Sec. II, we introduce
the considered model using the path-integral formalism and
discuss the structure of the GPF propagator. In Sec. III, we
employ the gradient expansion to extract the leading terms of
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the GPF propagator responsible for damping. We formulate
conditions under which Landau damping is active even for
T = 0 and present an intuitive interpretation of this result.
Section IV contains a numerical study of the poles of the
GPF propagator. We discuss the obtained dispersion relations
and damping rates of the AB modes for different realizations
of spin and mass imbalance and compare the results with
analytical expressions from Sec. III. We summarize the paper
and give a perspective for future studies in Sec. V.

II. PAIR FLUCTUATION PROPAGATOR

We consider a two-component spin-polarized Fermi mix-
ture with unequal masses in thermodynamic equilibrium.
Particles with opposite spins interact via an attractive con-
tact potential V (x, y) = gδ(x − y), where g < 0. Utilizing the
path-integral formalism [60], we obtain the grand-canonical
partition function represented as a functional integral over the
Grassmann fields {ψ̄σ

x , ψσ
x },

Z =
∫

D
[
ψ̄σ

x , ψσ
x

]
exp(−Sψ ), (1)

where

Sψ =
∫

x

{∑
σ

ψ̄σ
x [∂τ + K̂σ ]ψσ

x + gψ̄+
x ψ̄−

x ψ−
x ψ+

x

}
(2)

is the fermionic action. Throughout the paper we put h̄ = 1
and kB = 1. In the above equations, we use the following
notation: x = (τ, x),

∫
x(·) = ∫ β

0 dτ
∫

dd x(·), β = 1/T , and
K̂σ = −∇2

x/2mσ − μσ , where mσ and μσ are the mass and
chemical potential of a particle with spin σ ∈ {+,−}, re-
spectively. The presence of two distinct Fermi surfaces in
this problem makes it convenient to introduce the imbalance
parameters. We define ζ = r−1

r+1 , where r = m−/m+. We also
use h = (μ+ − μ−)/2 as the “Zeeman” field, which measures
the spin polarization and μ = (μ+ + μ−)/2 as the average
chemical potential.

The standard procedure to analyze the Gaussian fluctua-
tions is to integrate out the Grassmann fields ψσ

x by intro-
ducing an auxiliary field ηx via the Hubbard-Stratonovich
transformation [44,48], which decouples the interaction term
in Eq. (2) into the Cooper channel [60]. Afterwards, we
expand ηq (in reciprocal space) around the mean-field value of
the superfluid gap � in such a way that ηq = √

βV �δq,0 +
φq, where V is the volume of the system and φq describes
fluctuations of the order parameter. Thus, the expansion to
the quadratic order in φq leads to a Gaussian action. For
a comprehensive discussion of this procedure, we refer to
the paper by Iskin and Sá de Melo [48]. Alternatively, the
same result can be obtained using diagrammatic theory by a
resummation of the infinite subclass of ladder diagrams (the
random phase approximation) [61,62].

As a result, we obtain the partition function within the GPF
approximation, which is given by

Z = ZMF

∫
D[φ] exp

(
−βV

2

∫
q
�∗

qF
−1
q �q

)
, (3)

where ZMF is the mean-field part of the partition function,
�∗

q = [φ∗
q , φ−q], �q = [φq, φ

∗
−q]T , and Fq is the GPF prop-

agator matrix. In Eq. (3), q = (iqm, q) collects a bosonic

Matsubara frequency [qm = 2πm/β (m ∈ Z)] and the (d-
dimensional) wave vector q. We also introduce the fermionic
analog k = (ikn, k), where kn = 2π (n + 1

2 )/β (n ∈ Z). We

use the shorthand notation
∫

q(·) = 1
β

∑
qm

∫ dd q
(2π )d (·). Matrix

elements of the inverse GPF propagator are expressed by
normal (G σ

k ) and anomalous (Fk) components of the Green’s-
function matrix [63],[

F−1
q

]
1,1 ≡ M1,1(q) = 1

g
−

∫
k
G +

k+qG
−
−k, (4)

[
F−1

q

]
1,2 ≡ M1,2(q) =

∫
k
Fk+qF−k, (5)

where M1,1(q) = M2,2(−q), M1,2(q) = M∗
2,1(q), while the

BCS-like Green’s functions are given by

G +
k = u2

k

ikn − E+
k

+ v2
k

ikn − E−
k

, (6)

−G −
−k = v2

k

ikn − E+
k

+ u2
k

ikn − E−
k

, (7)

Fk = ukv
∗
k

(
1

ikn − E−
k

− 1

ikn − E+
k

)
. (8)

Here, we use the BCS coherence factors given by u2
k = (1 +

ξk/Ek )/2 and v2
k = 1 − u2

k , where ξk = k2/2m − μ, Ek =√
ξ 2

k + |�|2, and m = 2r
r+1 m+. Eσ

k is an excitation energy of
quasiparticle branches in the superfluid phase,

Eσ
k = ζ ξk − (h − ζμ) + σEk . (9)

It is worth noting that h = ζμ corresponds to a situation
where the two Fermi surfaces coincide. Therefore, h − ζμ

measures the mismatch of Fermi spheres due to spin and mass
imbalance. For a further discussion of the matrix elements of
F−1

q , see Appendix A.
In order to obtain the mean-field value of the superfluid

gap �, we consider the contribution �MF = −T ln ZMF to the
grand-canonical potential. This is given by [22]

�MF = V min
�

{
−|�|2

g
+ T

∫
k

∑
σ

ln f
(−Eσ

k

)}
, (10)

where
∫

k(·) = ∫
dd k

(2π )d (·) and f (x) = 1/[exp(βx) + 1]. The
order parameter minimizing the grand-canonical potential for
a given set of parameters is identified as the expectation value
of the superfluid gap �.

III. DAMPING OF COLLECTIVE MODES

We now set out to analyze the complex pole of the GPF
propagator. For this purpose, we expand the matrix elements
of F−1

q in the low-momentum limit and extract the relevant
nonlocal terms, which are related to the damping process.
An analogous strategy is applied to derive the Hertz-Millis-
Moriya action in the context of quantum phase transitions in
itinerant electron systems [64–67]. In this case, the nonlocal
term |qm|/γq appearing in the Gaussian action after the ex-
pansion for small |q| and |qm|/|q| is related to the Landau
damping of collective spin fluctuations by particle-hole ex-
citations [66]. This term is responsible for the occurrence of
the complex pole of the propagator of paramagnons and γq is
its damping rate [64]. The noticeable structural resemblance
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between the Hertz approach and our problem encouraged us
to exploit this procedure to investigate the Landau damping
of the AB mode in the spin- and mass-imbalanced Fermi
mixture.

We begin with a brief discussion of the gradient ex-
pansion along the line of Refs. [50,51]. We obtain a low-
momentum and low-frequency expansion of the matrix ele-
ments Mj,l (iqm; q) [see Eq. (A1) and (A2)] up to the second
order in powers of qm and q,

M1,1(iqm; q) = M1,1(0; 0) + Aq2 + iBqm + Cq2
m, (11)

M1,2(iqm; q) = M1,2(0; 0) + Dq2 + Eq2
m. (12)

The expressions for the coefficients of the gradient expansion
are presented in Appendix B. This procedure neglects terms
proportional to |qm|/|q|, which are crucial in the description
of damping. To identify them, we analyze the full expression
for M1,1(iqm; q) − M1,1(0, q). Using the notation described in
detail in Appendix A, we start from the following form,

M1,1(iqm; q) − M1,1(0; q)

= −
∫

k

∑
σ,σ ′

Cσ,σ ′
k,q

f σ,σ ′
k,q

q2
m + (

Eσ,σ ′
k,q

)2

(
iqm − q2

m

Eσ,σ ′
k,q

)
. (13)

The leading contribution involving both small frequency and
momentum [and therefore not included in the expansion of
Eq. (11)] comes from the second term in the parentheses in
Eq. (13) for the elements with σ = σ ′ and is given by

−
∫

k
u2

kv
2
k

∑
σ

f ′(Eσ
k

) q2
m

a2
σ (|k|) cos2 θ |q|2 + q2

m

, (14)

where cos θ = k·q
|k||q| , f ′(x) = − β

4 cosh−2(βx/2), and

aσ (|k|) = ( ζ

m + σ
ξk

mEk
)|k|. All the other contributions (as

long as |�| > 0) in the expansion of Eq. (13) are either of
higher order or included in Eq. (11).

In the next step we perform integration over the angular
variable θ , considering separately the cases d = 2 and d = 3.
We assume that the ratio |qm|/|q| is small [64,65]. Note that
this is possible only if the mode in question is gapless [50].
In Eq. (14) we make the change of variables, |k| → ε =
k2/2m � 0, and carry out the integration. This yields

−|qm|
|q|

∫
dε cd Dd (ε)u2

εv
2
ε

∑
σ

f ′(Eσ
ε

)
|aσ (ε)| = |qm|

γq
, (15)

where cd is equal 1 for d = 2 and π/2 for d = 3. We
also introduce the density of states per spin Dd (ε), where

D2(ε) = m/2π and D3(ε) =
√

2m3

2π2 ε1/2. Equation (15) defines
the quantity γq. An analogous procedure performed for the
matrix element M1,2(iqm, q) results in the same expression as
in Eq. (15). We conclude that relations (11) and (12) should
be supplemented by the nonlocal contributions obtained in
Eq. (15).

We now consider the form of γ −1
q in the zero-temperature

limit. Using f ′(Eσ
ε ) → −δ(−Eσ

ε ) for T → 0, we obtain

γ −1
q = 1

|q|
∫

dε cd Dd (ε)u2
εv

2
ε

∑
σ

δ
(−Eσ

ε

)
|aσ (ε)| . (16)

Taking advantage of the identity

δ[h(x)] =
∑

i

δ(x − xi )

|h′(xi )| , (17)

where xi are roots of h(x), we further simplify Eq. (16). The
equation Eσ

ε = 0 has two solutions, which are identical for
σ = + and σ = − and given by

ε1,2 = μ − ζh ±
√

(h − ζμ)2 − �2(1 − ζ 2)

1 − ζ 2
. (18)

Since ε = k2/2m is non-negative, we pick only roots fulfilling
εi � 0. Making use of Eq. (17), we integrate over ε, which
leads to

γ −1
q = 1

|q|
∑
i=1,2;
if εi�0

cd Dd (εi )u
2
�i
v2

�i

∑
σ

L−1
σ (εi ), (19)

where �i = √
2mεi and Lσ (ε) = √

m/2ε|aσ (�)|2. We now
discuss the implications of Eq. (19). First of all, we observe
that γ −1

q ∼ u2
kv

2
k = �2/4E2

k . Therefore, γ −1
q vanishes in the

limit � → 0. Moreover, u2
kv

2
k takes a maximal value for

k = √
2mμ.

As we mentioned above, εi in Eq. (19) should be non-
negative. This leads to the necessary condition for the occur-
rence of Landau damping. Indeed, when the requirement

|h − ζμ| > �
√

1 − ζ 2 (20)

is met, there are two real roots of Eσ
ε = 0. In particular, when-

ever the two Fermi spheres coincide (h = ζμ) we see that
γ −1

q = 0 for T = 0 and the Goldstone mode is not damped.
Nonetheless, compliance with the condition in Eq. (20) does
not guarantee fulfillment of εi � 0. For simplicity, let us now
focus on the situation, where h − ζμ � 0 and then consider
ε � 0. This leads to⎧⎨

⎩
h − ζμ � �

√
1 − ζ 2 for μ � ζ�√

1−ζ 2
,

h �
√

μ2 + �2 for μ <
ζ�√
1−ζ 2

.
(21)

The first inequality, in the above condition, assures the exis-
tence of at least one positive zero of E+

ε (see Fig. 1) and the
second one corresponds to exactly one zero (see Fig. 2).

We can now interpret the obtained results in the context of
the mechanism of Landau damping. Let us for now assume
that r ∈ [1,∞[ so that ζ ∈ [0, 1[. The quasiparticle spectrum
has two branches [see Eq. (9)]. If the two Fermi spheres
coincide (h − ζμ = 0), then the lower branch E−

ε is filled,
and the upper one E+

ε is empty [56]. In this case, the Landau
damping is present only at nonzero temperatures (and is ex-
ponentially suppressed). The Goldstone phonon inelastically
scatters thermally excited quasiparticles in the upper branch of
the spectrum. Cranking up the mismatch of the Fermi surfaces
leads to nonzero occupancy of fermions on E+

ε even at T = 0.
Therefore, the Landau damping is present also at T = 0. We
depicted this situation in Figs. 1 and 2. The position of the
minimum of E+

ε is given by εmin = μ − ζ�/
√

1 − ζ 2 and
at that point E+

ε is equal to �
√

1 − ζ 2. Whenever εmin � 0,
the minimal mismatch of the Fermi spheres, which leads to
nonzero occupancy of quasiparticles in the upper branch, is
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FIG. 1. Schematic illustration of the fermionic quasiparticle
spectrum Eσ

k [see Eq. (9)] as a function of ξk = ε − μ, when the
minimum of E+

k is located in the physical region (ε � 0). The red star
indicates the minimum of E+

k and in the shaded area we have ε < 0.
(a) In this case, the two Fermi spheres coincide (h − ζμ = 0). The
lower branch of the quasiparticle spectrum is fully occupied while the
upper branch is empty. In this case, the Landau damping involves the
inelastic scattering of the Goldstone phonon from thermally excited
quasiparticles and becomes inactive for T → 0. (b) The mismatch
of the Fermi surfaces leads to nonzero occupation of the upper
branch, whenever the condition h − ζμ � �

√
1 − ζ 2 is fulfilled. In

this case, the damping process occurs also at zero temperature.

given by �
√

1 − ζ 2 (see Fig. 1). If εmin < 0, the minimal
mismatch leading to nonzero occupancy in E+

ε is given by a
value of E+

ε for ε = 0 (see Fig. 2). This provides an interpre-
tation of Eq. (21). We see that in the limit r → ∞ the obtained
condition is independent of ζ and is given by h �

√
μ2 + �2,

whereas for r = 1 the considered condition is given by h � �,
which is consistent with the results of Ref. [59]. We emphasize
that the above results require the presence of a superfluid gap
(� > 0). As we show in the next section for experimentally
motivated choices of the mass-imbalance parameter r, the
inequality (21) becomes fulfilled for h substantially lower than
the critical value hc, such that damping is present in a broad
region of the phase diagram within the superfluid phase. We
also note that the occurrence of damping is not interrelated
with the order of the phase transition to the normal phase.

FIG. 2. The fermionic quasiparticle spectrum Eσ
k [see Eq. (9)] as

a function of ξk = ε − μ, when the minimum of E+
k is located in

the unphysical region (ε < 0). The red star indicates the minimum of
E+

k , the blue dot corresponds to ε = 0, and in the shaded area we have
ε < 0. (a) In this case, the Fermi spheres coincide (h − ζμ = 0). The
upper branch of the quasiparticle spectrum is empty (the lower one
is fully occupied), therefore the Landau damping is possible only
due to the presence of thermal excitations from E−

ε to E+
ε . (b) The

mismatch of the Fermi surfaces leads to the nonzero occupation of
the upper branch, when the condition h − ζμ �

√
μ2 + �2 − ζμ is

met. In this case, Landau damping is active even at T = 0.

We close this section by considering the Landau damping
in the proximity of a QCP [21,22], which can be generated for
a wide range of system parameters. At the mean-field level, in
the limit h → h−

c (hc is the critical value of h), the superfluid
gap � goes continuously to 0. In the vicinity of the QCP, the
condition ε1 � 0 yields

h + μ − 1 + ζ

2(h − ζμ)
�2 + O(�4) � 0. (22)

According to Ref. [22], the above condition is always fulfilled
for r > 3.01 and h > μ � 0. Therefore, in situations where
the quantum phase transition is continuous, the Landau damp-
ing is unavoidably present in the proximity of the QCP.

IV. NUMERICAL RESULTS

In this section we numerically study the damping of the
collective mode by analyzing the complex pole of the GPF
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propagator. This amounts to finding complex roots of the
following equation [44,53,59],

det F−1(iqm �→ zq; q) = 0, (23)

where zq = ωq − i�q/2, ωq is the dispersion relation, and
�q is the damping rate. The matrix elements Mj,l (zq, q) of F−1

q
have a branch cut along the real axis [53]. We should perform
the analytic continuation of Mj,l (zq, q) from the upper to the
lower complex half plane, which results in a transition to
another Riemann sheet. We proceed along the way described
by Nozières [68]. We consider the quantity Aj,l (ω; q),

Aj,l (ω; q) = − 1

π
Im M (R)

j,l (ω; q), (24)

where the index (R) means that we take the retarded matrix
element Mj,l (iqm �→ ω + i0+; q). Then the matrix elements
M̃ j,l analytically continued to the lower half plane are given
by [53,59]

M̃ (A)
j,l (ω; q) = M (A)

j,l (ω; q) − 2π iA j,l (ω; q), (25)

where the index (A) denotes the advanced counterpart of
the matrix element (iqm �→ ω − i0+). M̃ j,l thus obtained can
be extended in such a way that ω �→ z = ω − i�/2, where
� > 0.

Using the procedure specified above (see Refs. [53,59,68])
we discuss the numerically obtained dispersion relations ωq

and damping rates �q for r = 1.0 and r = 6.67, varying the
Zeeman field h at T → 0. We consider the three-dimensional
case (d = 3). We a posteriori check the fulfillment of the
condition vs = lim|q|→0 ωq/|q| < 1 (compare Sec. III). This
condition ensures that the assumptions made in derivation
of Eq. (16) are justified. We begin with the mass-balanced
case (r = 1). The phase transition between the normal and
superfluid phases is generically discontinuous for r < 3.01
and T → 0 at the mean-field level [22]. Therefore, we expect
that for r = 1 the change of � as a function of h should be
modest up to the occurrence of the phase transition. In this
case, the frequencies and damping factors of the Goldstone
mode as a function of momentum |q| are shown in Fig. 3. The
results are not affected by varying h between 0.0 and 0.4164,
where the discontinuous phase transition takes place. The
reason for this is a negligible change of � upon approaching
the transition point. For all values of h considered in Fig. 3 the
ratio T/� < 0.01, which means that the thermal excitations
should be negligible. For r = 1 (ζ = 0) we always obtain μ >

ζ�/
√

1 − ζ 2 = 0. Therefore, the condition in Eq. (21) takes
the form h � �, which is never fulfilled for the discussed
situation. That implies that the Landau damping is absent in
the limit T → 0 in compliance with the numerical results
shown in Fig. 3 (the numerically obtained damping rates,
in this case, are of the order of 10−11). These results are
consistent with Refs. [51,53].

We now examine the mass-imbalanced case, fixing the
mass ratio r = 6.67 corresponding to a 6Li and 40K mix-
ture [48]. We choose the parameters so that the system hosts
a QCP in its phase diagram. Note, however, that this is of no
relevance for the occurrence of Landau damping. In this case,
the QCP at the mean-field level is located at hc = 1.9706. The
corresponding dispersion relations and damping rates of the

FIG. 3. (a) Dispersion relations ωq of Goldstone modes (in units
of μ) as a function of momentum for r = 1 and several values of
h. For small enough values of |q|/√2mμ, we have ωq = vs|q| +
O(|q|3). (b) Analogous figure for damping rates �q (in units of μ).
All the curves coincide because of the weak dependence of the gap �

on h. The damping factors are negligibly small. The plot parameters
are m+ = 1, r = 1, μ = 0.5, T = 0.005, g = −2.0, and � = 10,
where � is the upper momentum cutoff.

Goldstone phonons are shown in Fig. 4 for a few values of
h < hc. Since T/� < 0.04 for all h in Fig. 4, we can reliably
neglect thermal excitations. Furthermore, it turns out that for
all the considered values of the Zeeman field we can apply
the criterion h �

√
μ2 + �2 for the occurrence of the Landau

damping [see Eq. (21)]. First, we observe that for h = 1.4
the above condition is not met. Thus, the upper branch of the
quasiparticle spectrum is not populated, which means that the
damping mechanism discussed in Sec. III is inactive. This is
in agreement with the numerical results, which show that the
damping rate is of the order of 10−10. Second, for h = 1.6 we
observe that h �

√
μ2 + �2 = 1.59. The obtained numerical

values of �q/μ are of the order of 10−5, which is way larger
than the value obtained for h = 1.4. In the remaining cases,
the considered condition is fulfilled. In consequence, the

053622-5



PIOTR ZDYBEL AND PAWEL JAKUBCZYK PHYSICAL REVIEW A 100, 053622 (2019)

FIG. 4. (a) Dispersion relations ωq of Goldstone modes (in units
of μ) as a function of momentum for r = 6.67 and several values
of h. For small enough values of |q|/√2mμ, we have that ωq =
vs|q| + O(|q|3). (b) Analogous figure for damping rates �q (in units
of μ). Landau damping becomes active above h ≈ 1.59, which
is substantially lower than the critical value hc ≈ 1.97. The plot
parameters are m+ = 1, r = 6.67, μ = 0.1, T = 0.04, g = −1.4, and
� = 10.

upper branch of the excitation spectrum is partially occu-
pied by quasiparticles even for T → 0. Therefore, Goldstone
modes can be absorbed by fermionic excitations and the Lan-
dau damping is present. As we see in Fig. 4, this prediction is
consistent with numerical results. Moreover, the dependence
�q/μ on h is shown in Fig. 5 for |q|/√2mμ = 4.24 × 10−3.
We see that the activation of damping occurs precisely for the
predicted value of h.

The choice of parameters discussed above corresponds to
a situation where the phase transition between the normal
and superfluid states is continuous. The obtained conclusion
is, however, not sensitive to the order of the transition. To
demonstrate this explicitly, we now fix the system parame-
ters such that the phase diagram features a first-order phase

FIG. 5. Damping rates �q of Goldstone modes (in units of
μ and with a logarithmic scale) as a function of the Zeeman
field for r = 6.67 and |q|/√2mμ = 4.24 × 10−3. Damping is ac-
tive for h �

√
�2 + μ2. Moreover, for values of h corresponding

to the vicinity of the phase transition (h ∈ [1.88, 1.95]), damping
becomes significantly stronger. The plot parameters are m+ = 1,
r = 6.67, μ = 0.1, T = 0.04, g = −1.4, and � = 10. A continuous
phase transition between the superfluid and normal phase occurs at
hc = 1.9706.

transition at low T . We set r = 3.47, μ = 0.1, and g = −1.4.
In this case a first-order quantum phase transition is located
at hI = 0.591 06 (at the mean-field level). The numerically
obtained dependence of �q/μ on h is shown in Fig. 6 for
|q|/√2mμ = 0.0179. According to the results of Sec. III,
damping is expected to occur for h �

√
�2 + μ2 = 0.563,

which very well agrees with the numerical data of Fig. 6.

FIG. 6. Damping rates �q of Goldstone modes (in units of μ

and with a logarithmic scale) as a function of the Zeeman field
for r = 3.47 and |q|/√2mμ = 0.0179. Damping is active for h �√

�2 + μ2. In this case, the phase diagram hosts a first-order phase
transition for hI = 0.591 06. The plot parameters are m+ = 1, r =
3.47, μ = 0.1, T = 0.002, g = −1.4, and � = 10.
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V. CONCLUSION AND OUTLOOK

We have studied the damping process of the Goldstone
mode for spin- and mass-imbalanced Fermi mixtures by in-
specting the structure of the pair fluctuation propagator. A
detailed analysis based on the gradient expansion reveals the
presence of a temporally nonlocal contribution in its matrix
elements, giving rise to Landau damping. We have demon-
strated that the Landau damping is activated by increasing
the imbalance even for T → 0 and is present for a large
enough mismatch of the Fermi surfaces. We have derived an
analytical criterion for its occurrence [see Eq. (21)]. We also
provided an intuitive interpretation of the obtained analytical
results. Finally, going beyond the gradient expansion, we have
shown that our analytical predictions are in full agreement
with the damping rates obtained numerically from complex
roots of the analytically continued determinant of the inverse
pair fluctuation propagator.

There are several interesting avenues for further research in
this direction. The present analysis is performed at the Gaus-
sian level (equivalent to the random-phase approximation),
under the assumption of the presence of fully developed long-
ranged order. It might be very interesting to investigate the
evolution of the obtained physical picture after accounting for
fluctuation effects. These should be of substantial relevance,
in particular, in low dimensions, where the long-ranged or-
dered state becomes downgraded to the algebraic (Kosterlitz-
Thouless) phase. Another question concerns the influence
of the competing FFLO phase (characterized by a nonzero
ordering wave vector) on the excitation spectra. Even though
theoretical results [69–73] suggest that, in case of the neutral
Fermi superfluids, these pair density wave states are unstable
at T > 0, they are presumably still present as ground states.
We finally note the interesting question concerning the impact
of imbalance on damping of the amplitude mode, whose
existence was recently experimentally established [43,74–77].
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APPENDIX A: MATRIX ELEMENTS OF F−1
q

In this Appendix, we present the explicit form of the matrix
elements of F−1

q [see Eqs. (4) and (5)]. We assume without
loss of generality that �, uk and vk ∈ R. The considered
matrix elements are given by

M1,1(iqm; q) = 1

g
+

∫
k

∑
σ,σ ′

Cσ,σ ′
k,q

f σ,σ ′
k,q

iqm − Eσ,σ ′
k,q

, (A1)

M1,2(iqm; q) =
∫

k

∑
σ,σ ′

Dσ,σ ′
k,q

f σ,σ ′
k,q

iqm − Eσ,σ ′
k,q

, (A2)

where Eσ,σ ′
k,q = −(Eσ

−k − Eσ ′
k+q ), f σ,σ ′

k,q = f (Eσ
−k ) − f (Eσ ′

k+q),

Dσ,σ ′
k,q = σ · σ ′ · u−kv−kuk+qvk+q, and

Cσ,σ ′
k,q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u2
k+qv

2
−k, σ = +, σ ′ = +,

u2
k+qu2

−k, σ = −, σ ′ = +,

v2
k+qv

2
−k, σ = +, σ ′ = −,

v2
k+qu2

−k, σ = −, σ ′ = −.

In the above expressions, we performed a summation over
fermionic Matsubara frequencies using standard textbook
techniques [58,60,63].

APPENDIX B: GRADIENT EXPANSION OF F−1
q

In this Appendix, we present the coefficients of the gradient
expansion, which appears in Eqs. (11) and (12). They are
given by

A =
∫

k

1

24E3
k

[ − 4E3
k u2

k

(
3 f ′′(E−

k )
{
akα

−
k − δ−

k v2
k

}
+ 6bk f ′(E−

k ) − (α−
k )2 f (3)(E−

k )v2
k

)
+ 4E3

k v2
k

(
3 f ′′(E+

k )
{
akα

+
k + δ+

k u2
k

}
+ 6bk f ′(E+

k ) + (α+
k )2 f (3)(E+

k )u2
k

)
+ 3u2

k

(
[ f (E+

k ) − f (E−
k )]

{ − 2α+
k akEk

+ 4bkE2
k − u2

k (2δ+
k Ek − (α+

k )2)
}

+ 2α+
k f ′(E+

k )Ek
{
2akEk − α+

k u2
k

}
+ 2E2

k u2
k{α2

+ f ′′(E+
k ) + 2δ+

k f ′(E+
k )})

+ 3v2
k

(
[ f (E−

k ) − f (E+
k )]

{
2α−

k akEk + 4bkE2
k

− v2
k ((α−

k )2 + 2δ−
k Ek )

}
+ 2α−

k f ′(E−
k )Ek

{
2akEk − α−

k v2
k

}
− 2E2

k v2
k {(α−

k )2 f ′′(E−
k ) + 2δ−

k f ′(E−
k )})],

B =
∫

k
[ f (E+

k ) − f (E−
k )]

u4
k − v4

k

4E2
k

,

C =
∫

k
[ f (E−

k ) − f (E+
k )]

u4
k + v4

k

8E3
k

,

D =
∫

k

ukvk

6

[
− 3α−

k dk f ′′(E−
k ) − 3α+

k dk f ′′(E+
k )

− 3

4E3
k

(
2α−

k f ′(E−
k )Ek{2dkEk − α−

k ukvk}

+ [ f (E−
k ) − f (E+

k )]
{
2α−

k dkEk + 4E2
k gk

− ukvk{(α−
k )2 + 2δ−

k Ek}
}

− 2E2
k ukvk{(α−

k )2 f ′′(E−
k ) + 2δ−

k f ′(E−
k )})

+ 3

4E3
k

(
2α+

k f ′(E+
k )Ek{2dkEk + α+

k ukvk}

053622-7



PIOTR ZDYBEL AND PAWEL JAKUBCZYK PHYSICAL REVIEW A 100, 053622 (2019)

+ [ f (E−
k ) − f (E+

k )]
{
2α+

k dkEk − 4E2
k gk

− ukvk{2Ekδ
+
k − (α+

k )2}}
− 2E2

k ukvk{(α+
k )2 f ′′(E+

k ) + 2δ+
k f ′(E+

k )})
+ 3ukvk{δ−

k f ′′(E−
k ) + δ+

k f ′′(E+
k )}

+ ukvk{(α−
k )2 f (3)(E−

k ) + (α+
k )2 f (3)(E+

k )}

− 6gk{ f ′(E−
k ) − f ′(E+

k )}
]
,

and

E =
∫

k
[ f (E+

k ) − f (E−
k )]

u2
kv

2
k

4E3
k

.

In the above equations we use the following abbrevi-
ations: αk=ξk|k| cos θ/mEk , δk=ξk�

2/2mE3
k +ξ 3

k /2mE3
k+ �2|k|2 cos2 θ/2mE3

k , ασ
k = ζ |k| cos θ/m + σαk, δσ

k =
ζ/2m + σδk , ak = �2|k| cos θ/2mE3

k , bk = �4/4mE5
k +

�2ξ 2
k /4mE5

k −3�2ξk|k|2 cos2 θ/4m2E5
k , dk=�ξk|k| cos θ

/2mE3
k , and gk = �(m�2ξk + mξ 3

k + �2|k|2 cos2 θ −
2|k|2ξ 2

k cos2 θ )/4m2E5
k .
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