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Spontaneous formation of polar superfluid droplets in a p-wave interacting Bose gas
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We study the quantum fluctuations in the condensates of a mixture of bosonic atoms and molecules with
interspecies p-wave interaction. Our analysis shows that the quantum phase of coexisting atomic and molecular
condensates is unstable at the mean-field level. Unlike the mixture of s-wave interaction, the Lee-Huang-Yang
correction of p-wave interaction is unexpectedly found here to exhibit an opposite sign with respect to its
mean-field term above a critical particle density. This quantum correction to the mean-field energy provides
a remarkable mechanism to self-stabilize the phase. The order parameter of this superfluid phase carries
opposite finite momenta for the two atomic species while the molecular component is a polar condensate.
Such a correlated order spontaneously breaks a rich set of global U(1) gauge, atomic spin, spatial rotation
and translation, and time-reversal symmetries. For potential experimental observation, the phenomenon of
anisotropic polar superfluid droplets is predicted to occur when the particle number is kept finite.
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I. INTRODUCTION

Quantum fluctuation is one of the most intrinsic proper-
ties of quantum mechanics, which is responsible for many
fascinating physical phenomena, such as Casimir effect and
abundant quantum phase transitions. Recently, Petrov showed
that quantum fluctuation reflected by Lee-Huang-Yang (LHY)
correction can prevent a mean-field-unstable Bose gas from
collapsing [1]. The competition between the mean-field at-
traction and LHY repulsion stabilizes the Bose gas into a
self-bound liquidlike droplet state. Subsequently, several ex-
perimental groups reported this novel quantum state with the
prediction of Petrov [2–4]. In order to protrude the action of
LHY correction, which is typically small in the dilute limit,
Petrov suggested to subtly balance the inter- and intraspecies
interactions at the mean-field level. Owing to its unique for-
mation mechanism, the self-bound state shows many interest-
ing features, such as the quantum droplet is self-trapped and
evaporated without external potential [1,5].

The properties of the quantum droplet are linked to the
properties of interaction between particles. It is natural to
ask if quantum droplets can be stabilized with other types of
interaction and what their properties might be. It was also
found that quantum droplets can be stabilized in a dipolar
Bose gas, benefiting from the competition between the dipolar
interaction and s-wave contact interaction [6–9]. The quantum
droplets in a dipolar Bose gas are anisotropic and form a
regular array as a consequence of the dipolar interaction being
anisotropic and long ranged. Moreover, it is also predicted
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quantum droplets can be stabilized with the assistance of
three-body interaction [10,11] and spin-orbit coupling [12].

Here we study the beyond-mean-field ground state of a
p-wave interacting Bose gas, and predict the existence of a
finite-momentum anisotropic self-stabilized quantum droplet.
At the mean-field level, this p-wave interacting Bose gas
typically has three ground-state phases: an atomic superfluid
phase with only the atomic condensate, an atomic-molecular
superfluid phase with both atomic and molecular condensates,
and a molecular superfluid phase with only the molecular
condensate. We find the AMSF phase is unstable and tends
to collapse. Unlike pure s-wave interaction [13], we find the
sign of the LHY correction of p-wave interaction may be dif-
ferent from that of the mean-field term when varying particle
densities. A balance between the mean-field part and LHY
correction exists for certain particle densities, which gives rise
to a self-stabilized (-bound) state without external potential.
It is shown that the self-stabilized state even survives in the
dilute limit estimated with scattering volume. In addition to
the U(1) global phase symmetry, the rotation, translation,
and time-reversal symmetries are found to be spontaneously
broken by the presence of a finite momentum of the order
parameters. The resulting ground state is predicted to be
an anisotropic quantum droplet with finite momentum for a
system with finite particle number.

II. MODEL

Inspired by the experimental observations of p-wave Fes-
hbach resonance in the mixture of 85Rb and 87Rb atoms
[14,15], we consider a mixture of two distinguishable species
of bosonic atoms respectively created by ψ̂

†
1 (r) and ψ̂

†
2 (r)

with interspecies p-wave interaction. The p-wave interaction
arises from a p-wave Feshbach resonance by coupling with
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TABLE I. Symmetry transformation. UN (1): θ ∈ [0, 2π ) is an arbitrary angle. This symmetry corresponds to the total number conservation.
[SU(2)/Uy(1)] with spin-rotation symmetry Uy(1) generated by σy: θx and θz are arbitrary angles. Here σx,y,z are the Pauli matrices. SO(3):
λx,y,z are defined in Eq. (2), and θ x,y,z are arbitrary rotation angles. Tr is the translation symmetry: r′ is an arbitrary displacement vector in a 3D
spatial coordinate. T is time reversal, and we use momentum representation to expand the ψ̂1 and ψ̂2 fields. Due to momentum conservation,
the momentum of the molecule fields is restricted to p1 + p2.

Symmetry ψ̂1(r) ψ̂2(r) φ̂x,y,z(r) ∇
UN (1) eiθ ψ̂1 eiθ ψ̂2 e2iθ φ̂x,y,z −
[SU(2)/Uy(1)] eiθxσx+iθzσz (ψ̂1, ψ̂2)T − −
SO(3) − − ei

∑
i=x,y,z θ iλi φ̂ ei

∑
i=x,y,z θ iλi ∇

Tr ψ̂1(r + r′) ψ̂2(r + r′) φ̂x,y,z(r + r′) −
T

∑
p1

e−ip1·râ1,−p1

∑
p2

e−ip2 ·râ2,−p2 e−i(p1+p2 )·rb̂i,−p1−p2 −

three closed molecular channels denoted by lz = −1, 0, 1.
Here lz h̄ are the magnetic angular momentum carried by
the molecules on the closed channels, which are created by
φ̂

†
lz=−1,0,1(r), respectively. It will be convenient to discuss the

physics with bases φ̂
†
i=x,y,z, which are related with φ̂

†
lz=−1,0,1

through φ
†
±1 = (φ†

x ± iφ†
y )/

√
2, and φ

†
0 = φ†

z . To focus on the
physics arising from p-wave interaction, we will restrict our
attention to the case where the closed channels are degener-
ate and background (nonresonant) interactions are negligible.
The system we consider is characterized by the Hamiltonian
density

H =
∑

σ=1,2

ψ̂†
σ

(
−∇2

2m

)
ψ̂σ +

∑
i=x,y,z

φ̂
†
i

(
−∇2

4m
− ε0

)
φ̂i

+
∑

i=x,y,z

[
g

2
φ̂

†
i (ψ̂1, ψ̂2)σy∂i(ψ̂1, ψ̂2)T + H.c.

]
, (1)

where the atomic masses have been assumed to be the same,
i.e., m1 = m2 = m, ε0 is the detuning of molecule channels,
ḡ represents the strength of p-wave interaction, and σy is the
Pauli matrix. Here the reduced Plank constant h̄ has been set
as 1.

Our model possesses UN (1) × [SU(2)/Uy(1)] × SO(3) ×
Tr × T symmetries, where UN (1) is the global gauge symme-
try, [SU(2)/Uy(1)] the spin-rotation symmetry around the x
and z directions, SO(3) the three-dimensional spatial rotation
symmetry, Tr the translation symmetry in the absence of an
external field, and T the time-reversal symmetry. The sym-
metry transformations are listed in Table I. It is worth noting
that spin-rotation symmetry [SU(2)/Uy(1)] is reduced to a
spin-rotation symmetry Uz(1) generated by σz in the presence
of intraspecies s-wave interaction [16,17]. In SO(3) rotation
symmetry, the atom fields are scalar fields, so they remain
constant under SO(3) transformation. However, molecular
field φ̂ and gradient operator ∇ are all vector fields, and
they are transformed by a 3D spatial rotation. In Table I, the
generators of rotation symmetry λx,y,z are given by

λx =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

λz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (2)

Time-reversal symmetry T is given by reversing the momen-
tum of atomic and molecular field operators, i.e., transform-
ing â1,p1 , â2,p2 , and b̂i,p1+p2 as â1,−p1 , â2,−p2 , and b̂i,−p1−p2 ,
respectively.

The total particle number N and atomic number difference
δN are defined as below:

N1 + N2 + 2NM = N, N1 − N2 = δN, (3)

where we use N1,2 = ∫
d3r〈ψ̂†

1,2ψ̂1,2〉 and NM =∑
i=x,y,z

∫
d3r〈φ̂†

i φ̂i〉 to denote the numbers of atoms and
molecules, respectively. Here 〈· · · 〉 represents the average
over the ground state. N and δN are conserved in our
model, which correspond to the UN (1) and [SU(2)/Uy(1)]
symmetries.

III. MEAN-FIELD INSTABILITY

As the foundation of beyond-mean-field study, we need to
characterize the ground state at the mean-field level first. We
use the mean fields �1 = 〈ψ̂1〉, �2 = 〈ψ̂2〉, and �i = 〈φ̂i〉 to
describe the atomic and molecular condensates. The mean-
field ground state of a p-wave resonant Bose gas including
considerable large intraspecies s-wave interaction has been
systematically discussed before [16,17]. Three mean-field
phases for the ground states: atomic (ASF), atomic-molecular
(AMSF), and molecular (MSF) superfluid, are found. Typ-
ically, the atomic condensates carry finite momentum due
to the p-wave interaction in the AMSF phase. Actually, the
ground-state phase diagram of our model is similar to the case
there. Due to the lack of intraspecies s-wave interaction (or
due to weak intraspecies s-wave interaction) in our model, it
is shown that such previously known types of ground state are
unstable at the mean-field level.

As the typical feature of p-wave interaction, the atomic
condensates generally carry finite momentum due to the shift
of energy minimum in momentum space by the interaction
terms [16,17]. Although a general description of atomic order
parameters should be written as �1 = ∑

Qn
�1,Qn e−iQn·r and

�2 = ∑
Qn

�2,−Qn eiQn·r, where Qn is the set of possible mo-
mentums, it is generally expected that the assumption Qn = Q
is sufficient to capture the qualitative picture of the ground
state. That is, the order parameters can be taken as

�1 = �1,Qe−iQ·r, �2 = �2,−QeiQ·r. (4)
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TABLE II. Ground-state phases. Here we have three phases by setting different detuning. ASF, AMSF, and MSF are the atomic, atomic-
molecular, and molecular condensate phases, respectively.

Phase ε0 nM n1 = n2 Q μ Z E0/V

ASF ε0 < − 1
2 g2mn 0 1

2 n 0 0 0 0

AMSF − 1
2 g2mn < ε0 < 1

2 g2mn 1
4 n + ε0

2g2m
1
4 n − ε0

2g2m
−gm

√
1
4 n + ε0

2g2m
− 1

8 g2mn − 1
4 ε0 0 − 1

16g2m
(g2mn + 2ε0 )2

MSF ε0 > 1
2 g2mn 1

2 n 0 − 1√
2
gm

√
n − 1

4 g2mn 0 − 1
2 ε0n

Correspondingly, the molecular components are space in-
dependent, since the molecular fields only feel a homogeneous
potential by atoms. Considering the symmetries of our model,
we have the following ground-state ansatz:

� = √
nAeiθ ei(θxσx+θzσz )

(
cos χAe−iQ·r

sin χAeiQ·r

)
,

Q = ei
∑

i=x,y,z θ iλi Q0, (5)

� = √
nMei(2θ+θM )ei

∑
i=x,y,z θ iλi

⎛
⎝ cos χM

i sin χM

0

⎞
⎠,

where θ, θM ∈ [0, 2π ) are U(1) phases, θx,z ∈ [0, 2π ) are
[SU(2)/Uy(1)] spin-rotation angles, θ x,y,z are SO(3) rota-
tion angles, χA, χM ∈ [0, 2π ), Q0 = (Q0,x, Q0,y, Q0,z )T is
an arbitrary real three-dimensional vector, and nA = (N1 +
N2)/V, nM = NM/V with system volume V are the total
atomic density and molecular density, respectively.

Furthermore, we derive the free energy density by substi-
tuting the above ansatz (5) to the Hamiltonian density (1):

F/V =
∑

σ=1,2

Q2

2m
nσ − ε0nM − μ(n1 + n2 + 2nM − n)

+ g

2
nA

√
nM sin 2χA[e−iθM (cos χM,−i sin χM, 0)

· Q0 + H.c.] − Z (n1 − n2), (6)

where n1,2 = N1,2/V , and μ and Z are the Lagrange multi-
pliers set for the conservations of the total particle number
and atom-number difference. For simplicity, we only consider
a nonpolarized situation in this paper, i.e., n1 = n2 = nA/2,
and fix the total particle number. The free energy density does
not depend on θ, θx,z, θ x,y,z. To minimize the free energy, we
obtain the optimal values for the parameters: θM = 0, χA =
π/4, χM = 0, Q0,x = |Q|, Q0,y,z = 0, from which we can see
that � is real and parallel to Q by setting θ = 0. To be more
convenient, we set θ y = π/2, θ x,z = 0 so that Q and � are
aligned to the z direction. Without loss of generosity, we
choose g to be negative. (If g > 0, Q will be opposite to �;
however, it gives us the same phases and LHY corrections as
we obtain below). The Gross-Pitaevskii (GP) equations can be
derived from the free-energy-density formula, and we obtain
the optimized solutions to minimize the free energy.

Similar to previous literature [16,17], the ground-state
phase diagram of our model is also divided into three phases
for different detuning ε0, where the ground-state phases are
listed in Table II. Here ASF refers to the atomic superfluid
phase, where only atomic condensates exist. Note that there
is no superfluidity here due to the absence of background

atom-atom interaction, where the name of phase is taken to
be consistent only with previous convention [16,17]. AMSF
refers to the atomic-molecular superfluid phase, where atom
and molecular condensates are present in the same phase.
MSF with only molecular condensate is the molecular super-
fluid phase.

In the ASF phase, the condensate in both atomic species
stays stationary due to vanishing Q and the two condensates
do not interact. The atomic chemical potential remains zero.
In the AMSF phase, the rotation and time-reversal symmetries
are all broken due to the finite-momentum condensates. The
SO(3) rotation symmetry is spontaneously broken into SO(2)
symmetry. In the MSF phase, although the density of the
atomic condensates is zero, we still have nonzero Q. This re-
sults in an MSF excitation spectrum translated in momentum
space by Q, as we will see in Sec. IV.

From Table II, we can also find the total energy E0 is
proportional to particle number N = nV in phases ASF and
MSF, which is due to the lack of background atom-atom and
molecule-molecule interactions in these phases, respectively.
It means the total energy E0 is constant, such that the ground
state is stable, for a system with fixed total particle number.
However, we can find it is energetically favorable to increase
the density n to reach a lower total energy E0 in the AMSF
phase. This implies that in this phase the mean-field ground
state is unstable and tends to collapse into a state with smaller
volume but large particle density when the total particle num-
ber is fixed. The instability of the ground state in the AMSF
phase also manifests itself in the fact that the excitation mode
becomes complex in the long-wavelength limit k → 0 [18].
It will be shown that the ground state collapses into a small
droplet after considering LHY correction [13]. In order to
calculate this correction, we need to analyze the Bogoliubov
excitation spectrum first.

IV. BOGOLIUBOV EXCITATION SPECTRUM

We will study the Bogoliubov excitation spectrum in this
section. Following Bogoliubov’s theory [19,20], we expand
the atomic and molecular fields around the ground-state mean
fields,

ψ̂σ = �σ + δψ̂σ , φ̂i = �i + δφ̂i, (7)

with the fluctuation fields δψ̂σ and δφ̂i. For convenience, we
furthermore expand δψ̂σ and δφ̂i with the Fourier transforma-
tion

δψ̂σ = 1√
V

∑
k

δâσ,ke−ik·r, δφ̂i = 1√
V

∑
k

δb̂i,ke−ik·r,

(8)
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FIG. 1. Schematic plot of dimensionless function f j for � = −0.4 (a, d), � = 0.1 (b, e), and � = 0.4 (c, f), which is inside the ASF,
AMSF, and MSF phases, respectively. We find that the low-energy modes become imaginary in the AMSF phase, which arises from the
instability of the mean-field ground state. Here r̃ = √

x̃2 + ỹ2 + z̃2 represents the distance from the momentum-space origin.

where δâσ,k and δb̂i,k are the corresponding quantum fluctua-
tion fields in momentum space. Substituting Eqs. (7) and (8)
into Eq. (1) and keeping only the second-order terms (the first-
order terms vanish due to the saddle-point solution and higher-
order terms will be neglected), we can derive the Bogoliubov
Hamiltonian. The Bogoliubov excitation spectrum can be
extracted by diagonalizing the Bogoliubov Hamiltonian.

A. ASF phase

This phase has only atomic condensates, i.e., n1 = n2 =
n/2, nM = 0, and the zero atomic condensates momentum
Q = 0. The Bogoliubov Hamiltonian can be written as

Hf = 1

2

∑
k

{ ∑
σ=1,2

εσ,k+Qσ
δâ†

σ,k+Qσ
δâσ,k+Qσ

+
∑

i

ωi,kδb̂†
i,kδb̂i,k

− 2
∑
σ,i

αi,σ ,kδb̂†
i,kδâσ,k+Qσ

+ H.c.

}
, (9)

where σ = 3 − σ, σ = 1, 2, Q1 = −Q2 = Q, and the pa-
rameters are given as

εσ,k = εk = k2

2m
, ωi,k = 1

2
εk + 1

2
g2mn,

αi,σ,k = (−1)σ
1

2
√

2
g
√

nki. (10)

The corresponding Bogoliubov excitation spectrum is given
by

EASF
j = 1

4 g2mn f ASF
j (x̃, ỹ, z̃), j = 1, . . . , 5, (11)

where f ASF
j is a dimensionless function, and the dimension-

less variables x̃ = kx

gm
√

n
, ỹ = ky

gm
√

n
, z̃ = kz

gm
√

n
.

We show f ASF
j along the radial direction in Figs. 1(a)

and 1(d). The spectrum is symmetric in all directions and
has two gapless atomic modes. The quadratic dispersions
of gapless mode are due to the absence of atom-atom
interaction.

B. AMSF phase

In the AMSF phase, particles are condensed into both the
atomic and molecular channels, and the atomic condensates
carry opposite finite momentums. The directions of atomic
momentum Q and the molecular condensates order parameter
� = (�x,�y,�z ) are parallel in the mean-field ground state,
where the direction of � is defined by the three spatial
components. For convenience, we build the coordinate so that
this direction is aligned along the z axis. The Bogoliubov
Hamiltonian is written as

Hf =
∑

k

{ ∑
σ=1,2

1

2
εσ,k+Qσ

δâ†
σ,k+Qσ

δâσ,k+Qσ

+
∑

i

1

2
ωi,kδb̂†

i,kδb̂i,k + tk+Qδâ1,k+Qδâ2,−k−Q

−
∑
σ,i

αi,σ ,kδb̂†
i,kδâσ,k+Qσ

+ H.c.

}
, (12)
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where the parameters are given by

εσ,k = εk + 1

8
g2mn + 1

4
ε0, ωi,k = 1

2
εk + 1

4
g2mn − 1

2
ε0,

tk = −g
∑

i

�∗
i ki, αi,σ ,k = ±g

√
nσ (Qσ,i − ki/2), (13)

with εk = k2

2m , σ = 1, 2 (correspondingly σ̄ = 2, 1), Q1 = Q,
and Q2 = −Q. The Bogoliubov excitation spectrum can be
written as

EAMSF
j = 1

4 g2mn f AMSF
j (x̃, ỹ, z̃,�), j = 1, . . . , 5, (14)

where f AMSF
j is a dimensionless function and � = ε0

2g2mn
is the

dimensionless detuning.
The schematic plots of f AMSF

j are shown in Figs. 1(b) and
1(e) along the z and x directions, respectively. As we can
see from the two figures, the blue-dashed curve shows an
imaginary mode consistent with the instability of the mean-
field ground state [18], which is absent when the ground state
is stable [16,17]. Actually, the true ground state is lost due to
the homogeneous assumption (the system with a finite particle
number will collapse into a droplet shape that breaks the
spatial translation symmetry) and the absence of LHY correc-
tion. On the other hand, the inverse of the largest momentum
carried by imaginary modes is expected to be comparable with
the size of the droplet [18]. The minima on the blue-solid
curve in Fig. 1(b) corresponds to the nonvanishing momentum
2Q in the AMSF phase, where the atomic condensates locate.
That the spectrum softens to zero at kz = 2Q implies our
ansatz correctly captures the feature of the ground state.

C. MSF phase

In this phase, we have nM = n/2 and n1 = n2 = 0. The
Bogoliubov Hamiltonian is given as

Hf =
∑

k

{ ∑
σ=1,2

1

2
εσ,k+Qσ

δâ†
σ,k+Qσ

δâσ,k+Qσ

+ tk+Qδâ1,k+Qδâ2,−k−Q

+
∑

i

1

2
ωi,kδâ†

i,kδâi,k + H.c.

}
, (15)

where εσ,k = εk + 1
4 g2mn, ωi,k = 1

2εk , and tk =
−g

∑
i �

∗
i ki.

Fortunately, we can derive analytical formulas for the
excitation modes in this phase, i.e.,

EMSF
1,2,3 = 1

8 g2mnr̃2,

EMSF
4 = 1

4 g2mn
√(

r̃2 + 2�− 1
2

)(
r̃2−2

√
2r̃ cos γ+2�+ 3

2

)
,

EMSF
5 = 1

4 g2mn
√(

r̃2+2�− 1
2

)(
r̃2+2

√
2r̃ cos γ+2�+ 3

2

)
,

(16)

where r̃2 = (k2
x + k2

y + k2
z )/g2m2n, and γ is the angle between

the z axis and unit vector k̂ as we have aligned Q̂ along z.
Similar to what we defined in the ASF and AMSF phases, we

rewrite the excitation modes in this formula

EMSF
j = 1

4 g2mn f MSF
j (x̃, ỹ, z̃,�), j = 1, . . . , 5. (17)

Figures 1(c) and 1(f) are the corresponding f MSF
j along the z

and x directions. In Fig. 1(c), the red dotted and green dashed
curves are the two atom modes, respectively, and the minima
on green dashed curve corresponds to the nonvanishing mo-
mentum 2Q. The blue curve denotes the triply degenerated
molecule modes. In Fig. 1(f), the red curve denotes the doubly
degenerated atom modes, and the blue curve denotes the triply
degenerated molecule modes.

V. LHY CORRECTION

The LHY correction is the leading-order correction of
quantum fluctuation. It is composed of Bogoliubov excitation
energies, commutation energies which appear due to the com-
mutation relations of the Nambu basis, and energy correction
due to the interaction renormalization. Here the interaction
renormalization is employed to remove the energy divergence
arising in collecting the energy of quantum fluctuation [13].
Let us review the renormalization procedure before going
ahead.

To remove the divergence that appears in the calculation
of LHY correction, we need to renormalize the interaction
parameter g and detuning ε0 [13,18]. The two-body T matrix
for p-wave interaction is given by [21]

−iT (lz )
k,k′ (k) = D(0)(k)(−ig)2k2Y1,lz (k̂)Y ∗

1,lz (k̂
′)

+ D(0)2(k)(−ig)42�lz (k)k2Y1,lz (k̂)Y ∗
1,lz (k̂

′) + · · ·
= D(k)(−ig)2k2Y1,lz (k̂)Y ∗

1,lz (k̂
′), (18)

where the index lz denotes different interacting channels lz =
−1, 0, 1. Y1,lz (k̂) is the lzth channel of the first-order spherical
harmonics. D(0)(k) is the p-wave scattering propagator, and
�lz (k) is the polarization bubble for channel lz, which are
given by

D(0)(k) = i

k2/m + ε0 + i0+ (19)

and

�lz (k) =
∫

d3 p

(2π )3

ip2|Y1,lz (p̂)|2
k2/m − p2/m + i0+ . (20)

Using Eq. (18), we yield

D−1(k) = [D(0)(k)]−1 − (−ig)2�lz (k). (21)

Comparing the k0 term and k2 term on both sides of Eq. (21),
we obtain the renormalization relations [22]

ε̃0

g̃
2 = ε0

g2 +
∫

d3 p

(2π )3
m

∣∣Y1,lz (p̂)
∣∣2

(22)

and

1

g̃
2 = 1

g2 −
∫

d3 p

(2π )3
m2

∣∣Y1,lz (p̂)
∣∣2

p2
, (23)

where ε̃0 and g̃ are the renormalized detuning and p-wave
interacting strength, respectively.
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Applying these renormalization relations into the ground-
state energy in different phases, one obtains the renormalized
mean-field ground-state energies

EASF
0,r /V = 0, (24)

EAMSF
0,r /V =

∫
d3k

(2π )3

(
1

12
g2mn + 1

6
ε0 + g4m2n2 − 4ε2

0

72k2

)
,

(25)

and

EMSF
0,r /V =

∫
d3k

(2π )3

(
1

6
g2mn + g2mn − 2ε0

12k2

)
. (26)

From the analysis of the Bogoliubov spectrum and interac-
tion renormalization, we obtain the LHY correction densities
in different phases,

EASF
LHY/V = −g5m4n2.5

∫
d3r̃

(2π )3

⎛
⎝ 5∑

j=1

1

4
f ASF

j − 7

8
r̃2 + 3�

⎞
⎠,

(27)

EAMSF
LHY /V = −g5m4n2.5

∫
d3r̃

(2π )3

⎛
⎝ 5∑

j=1

1

4
f AMSF

j

− 7

8
r̃2 − 13

24
+ 5

6
� + 1 − 16�2

72r̃2

)
, (28)

and

EMSF
LHY /V = −g5m4n2.5

∫
d3r̃

(2π )3

⎛
⎝ 5∑

j=1

1

4
f MSF

j

− 7

8
r̃2 − 1

3
+ 1 − 4�

12r̃2

)
. (29)

Unlike the AMSF and MSF phases, there is no particle-
hole coupling as presented in Eq. (9) in the ASF phase, which
results in the cancellation between the total excitation energies
and the commutation energies in LHY calculation. As a proof
to this inference, we find Eq. (27) shows result EASF

LHY = 0
numerically. Combining the mean-field ground-state energy
densities and LHY-corrected energy densities yields the total
ground-state energy density Eg/V = E0/V + ELHY/V for dif-
ferent phases as follows:

EASF
g /V = 0, (30)

EAMSF
g /V = −g5m4n2.5F (�) − 1

16
g2mn2

− 1

4
ε0n − 1

4

ε2
0

g2m
, (31)

and

EMSF
g /V = −g5m4n2.5F (�) − 1

2 nε0, (32)

where F (�) is depicted in Fig. 2 numerically.
We plot the total energy density versus particle density

for different detuning in Fig. 3. As we can see, for ε0 > 0,
the minimum energy density is well defined and lies in the

FIG. 2. Schematic plot of F (�). The blue solid line is a lin-
earized approximation for the regime with a stabilized particle num-
ber density.

AMSF phase. It implies that there exists a self-stabilized state
at around the minimum. If the particle number is finite, it
forms a quantum droplet [1]. We also depict the dependence
between the particle density of the self-stabilized state ns and
the detuning ε0 in Fig. 4. It is shown that the stabilized density
is almost linearly proportional to ε0. However, if ε0 < 0, the
energy density is degenerated inside the ASF phase, but it can
be broken by introducing an atom-atom s-wave interaction.
Typically, the atom-atom s-wave interaction is repulsive and
the corresponding LHY correction is also positive [13]. There-
fore, the lowest energy density lies at n = 0 inside ASF phase.
For this reason, we do not expect a self-stabilized state when
the detuning ε0 < 0.

The diluteness of p-wave interacting gas can be char-
acterized by the product between the particle density and
the scattering volume vp [22,23], i.e., nvp = g2mn/(16π2ε0).
Therefore, we can rewrite the ground-state energy given by
mean-field theory (MFT) and the LHY correction in terms of
the diluteness as

EMFT
AMSF/V = − ε2

0

64g2m
(32π2nvp + 4)2, (33)

EMFT
MSF /V = − ε2

0

4g2m
32π2nvp, (34)

and

ELHY/V = m1.5(ε0/2)2.5(32π2nvp)2.5F

(
1

32π2nvp

)
. (35)

The diluteness of the self-stabilized state with respect to
detuning is shown in Fig. 5. As detuning approaches zero, the
diluteness tends to diverge, which may indicate that higher-
order corrections besides MFT and LHY are needed. But for a
large detuning regime, the mixture is dilute, so it is reasonable
to characterize our model with only first-order beyond-mean-
field calculation.

VI. QUANTUM DROPLETS

According to the above analysis, we find the mean-field
collapsing state becomes self-stabilized after considering
beyond-mean-field correction. This self-stabilized state forms
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FIG. 3. Total ground-state energy density vs total number density for different detuning: ε0ma2
res = 0.5 (a), 1 (b), 2 (c), 5 (d), −0.5 (e),

−1 (f), −2 (g), and −5 (h). In subfigures with ε0 > 0, the yellow circle (red square) dots represent the energies in MSF (AMSF) phase. The
minimum energy density is presented with a finite number density after we introduce the LHY correction and lies in the AMSF phase. In
subfigures with ε0 < 0, the yellow circle (red square) dots represent the energies in ASF (AMSF) phase. To emphasize the dominance of
p-wave interaction, we choose ares = 103a0 with the Bohr radius a0 as the unit of length, which is typically far larger than the background
scattering length. We set the Planck constant h̄ as 1 for convenience.

a quantum droplet when the particle number is finite [1]. To
figure out the density distribution of the quantum droplet,
we will derive an effective theory to characterize the density
profile. Here we employ the function ξ (r) to characterize
the droplet density profile. If the system size is infinite, we
have the solution ξ (r) = 1, as it should be a uniform gas.
However, if the system size is finite, the density profile will
be inhomogeneous.

As a qualitative analysis, we will take the local density
approximation (LDA). With this approximation, the order
parameters can be rewritten as [18]

�1 = �1,Qe−iQ·r, �2 = �2,−QeiQ·r, (36)

and � = √
ns,Mξ (r)ẑ, where

�1,Q = √
ns,1ξ (r), �2,−Q = √

ns,2ξ (r). (37)

un
its

 o
f

un
its

 o
f

FIG. 4. The stabilized density ns vs detuning ε0. The stabilized
density ns is almost proportional to detuning ε0 linearly. As ε0

becomes larger, �s = ε0
2g2mns

converges to ∼0.08.

ns,{1,2,M} are the densities that correspond to the minimum of
Eg/V as shown in Fig. 3. Here we have chosen the ẑ direction
due to the spontaneous breaking of the SO(3) rotation sym-
metry by Q = −gm

√
ns,Mξ (r)ẑ.

To access the analytical form of effective Hamiltonian, an
approximative form of F (�) at around the stable point is
considered. For ε0 > 0, we find a linearized formula for F (�)
which captures its behavior at around the minimum energy
density inside the AMSF phase (0 < � <≈0.08) [see Fig. 2].
It is written as

F (�) ≈ −0.460 333� + 0.016 248 07. (38)

FIG. 5. Relation between diluteness and the detuning. As de-
tuning approaches zero, the diluteness tends to diverge, which may
indicate that higher-order corrections besides MFT and LHY are
needed. But for a large detuning regime, the mixture is dilute, so it
is reasonable to characterize our model with only first-order beyond-
mean-field calculation. The inset shows the energy comparison for
different diluteness, as we set ε0ma2

res = 5. The lowest total energy is
ensured to appear in the dilute regime.
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According to Eq. (31), the approximated total ground-state
energy in the AMSF phase is given by

EAMSF
g /V = − 1

16
g2mn2

s − 1

4
ε0ns − 1

4

ε2
0

g2m

− 0.016 25g5m4n2.5
s + 0.2302ε0g3m3n1.5

s . (39)

Furthermore, by substituting Eqs. (36) and (37) to Eq. (39)
along with the kinetic energy, we derive the effective
Hamiltonian

Heff = g2mn2
s

{[
1

g2m2ns

(
3

4
�− 5

16

)
+

(
�2− 1

16

)
z2ξ 2

]
ξ∇2ξ

−
(

2�2 + 1

2
�

)
ξ 2 + 0.460 333�g3m3√nsξ

3

+
(

�2 − 1

16

)
ξ 4 − 0.016 25g3m3√nsξ

5

}
(40)

The chemical potential μ̃ is fixed by the normalization con-
dition

∫
d3r|ξ |2 = N/ns, where N is the total number of

particles and ns is the stabilized total density. The profile
function ξ (r) is determined by the GP equation

μ̃ξ 2 = g2mn2
s

{[
1

g2m2ns

(
3

4
�− 5

16

)
+2

(
�2− 1

16

)
z2ξ 2

]
ξ∇2ξ

−
(

2�2 + 1

2
�

)
ξ 2 + 0.690 501�g3m3√nsξ

3

+ 2

(
�2 − 1

16

)
ξ 4 − 0.046 020 2g3m3√nsξ

5

}
, (41)

FIG. 6. Density profile of the droplet. The background color
represents ξ = √

n(r)/ns, where n(r) is density at different locations
and ns is the stabilized density. The x axis and y axis for each
subfigure label the x direction and z direction in real space. The de-
tunings from the top row to the bottom row are ε0ma2

res = 0.5, 5, 50,
respectively. The normalization factors for ξ from the left column to
the right column are N/(nsa3

res ) = 104, 105, 106, respectively. When
the particle number grows large enough with ns fixed, it clearly
breaks SO(3) symmetry. As the detuning grows smaller and deep
inside the AMSF phase, the droplet is more and more reduced along
the z axis.

FIG. 7. Density profile on the centered lines along the x and
z directions inside the droplet under condition ε0ma2

res = 0.5 and
N/(nsa3

res ) = 106. The red dashed curve is the centered line along the
x direction and the blue solid curve is along the z direction. The value
on the plateau is almost constant and close to 1.025. If the system size
is increased, the height of the plateau will be closer to 1.

which is derived by minimizing the effective Hamiltonian.
The above GP equation is solved numerically by using

the imaginary time evolution method. The solutions for dif-
ferent detuning and particle numbers are shown in Fig. 6.
We can find that the quantum droplet is typically suppressed
in the z direction. The degrees of suppression decrease for
a larger ε0. Hence the droplet looks like a pancake when
N/ns is large enough but ε0 is small (see the upper-right
subfigure of Fig. 6). We also show the section of the solution
where ε0ma2

res = 0.5, N/(nsa3
res) = 106 in Fig. 7. The density

is found to suddenly fall to zero in the horizontal directions
(x or y directions) while gently decreasing to zero in the z
direction. Except for the boundary regime, the profile varies
smoothly everywhere, which implies that LDA could qual-
itatively catch the features of the quantum droplet here. In
fact, the anisotropy of the quantum droplet arises from the
spontaneous breaking of SO(3) rotation symmetry by finite-
momentum atomic condensates. It is intrinsically different
from the anisotropic quantum droplets in the presence of
dipolar interaction [6–9] or spin-orbit coupling [12], where
the anisotropy arises from external fields. As we can see, the
value on the plateau remains almost constant and close to 1,
which will be exactly 1 when the system size goes to infinity.
Another special feature of the quantum droplet here is that
the atomic components carry finite momentums due to the
breaking of time-reversal symmetry.

VII. BACKGROUND S-WAVE INTERACTIONS

Previously we mainly focused on the case without back-
ground interactions. In the presence of the background s-wave
interactions, which are characterized by

V̂bg = g1ψ̂
†
1 ψ̂

†
1 ψ̂1ψ̂1 + g2ψ̂

†
2 ψ̂

†
2 ψ̂2ψ̂2 + g12ψ̂

†
1 ψ̂

†
2 ψ̂2ψ̂1

+ g(1)
mm

∑
i, j=x,y,z

φ̂
†
i φ̂

†
j φ̂ j φ̂i + g(2)

mm

∑
i, j=x,y,z

φ̂
†
i φ̂

†
i φ̂ j φ̂ j

+ gam

∑
σ=1,2

∑
i=x,y,z

ψ̂†
σ φ̂

†
i φ̂iψ̂σ , (42)
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where g1, g2, and g12 (g(1)
mm and g(2)

mm) are the atom-atom
(molecule-molecule) interaction coefficients and gam is the
atom-molecule interaction coefficient, the mean-field ground-
state energy in the AMSF phase (taking the polar molecular
state [16,17] as example) takes the form

E0

V
= [−4ε2

0 (gaa − 3gam + 2gmm + g2m)

− 4ε0n(2gaa − 2gam + g2m)

× (gaa − 3gam + 2gmm + g2m)

+ (
4g2

aagam + (3gam − 2gmm − g2m)(−2gam + g2m)2

− gaa
(
12g2

am − 4g2
mm − 8gamg2m + g4m2))n2]

/ [16(gaa − 2gam + gmm + g2m)2]. (43)

Here gaa = g1 + g2 + g12 and gmm = g(1)
mm + g(2)

mm. In order to
capture the profile of a quantum droplet with finite particle
number, we consider the ground-state energy with the canon-
ical condition in this paper instead of the grand-canonical
condition in Refs. [16,17], while we would like to empha-
size that the statistic condition does not affect the stability
mechanism of the quantum droplet, which is mainly deter-
mined by intra-atomic interaction. When the p-wave inter-
action strength is far larger than the background-interaction
strengths, i.e., the effective p-wave interaction strength
gp = mḡ2 � gaa, gam, gmm, we have E0/V = − (2ε0+g2mn)2

16g2m
+

O(δaa, δam, δmm) with δaa,am,mm = gaa,am,mm/mḡ2, which im-
plies that the mean-field instability should exist in a finite
regime of background-interaction parameters.

On the other hand, since the LHY corrections of s-wave
interactions are typically proportional to (gsn)2.5 with the
s-wave interaction strength gs and average density n [1,13],
and that of p-wave interaction is proportional to (gpn)2.5 [see
Eq. (28)], if the background s-wave interactions are weak
enough with respect to the p-wave interaction, the background
s-wave interactions should also not qualitatively affect the sta-
bilization of the p-wave quantum droplet. Therefore, we can
believe the presence of weak background s-wave interactions
will not qualitatively affect the main conclusions of this paper.
However, we have to point out that, to the best of our knowl-
edge, the complete experimental data for the background
interactions in a p-wave Feshbach resonance (especially the
molecule-molecule interactions) are not available currently,
and further investigations are necessary for judging if the
quantum droplet could emerge under realistic conditions.

VIII. CONCLUSION

In this paper, we study the quantum fluctuation correction
to the ground states of a p-wave interacting Bose gas. Begin-
ning with the mean-field analysis of the ground states, it is
found that the ground states can be divided into three typical
phases for different detunings of the molecule channel, i.e.,
the ASF, AMSF, and MSF phases, where particles are con-
densed into only the atomic, both the molecular and atomic,
and only the molecular channels, respectively. Particularly,
we find the ground state is unstable in the AMSF phase. The
instability of the ground state in the AMSF phase also man-
ifests itself in the emergence of imaginary long-wavelength
Bogoliubov excitation modes. Furthermore, we calculate the
LHY correction with the Bogoliubov excitations. We find the
LHY correction can stabilize the ground state in the mean-
field-unstable regime. That means that the p-wave interacting
Bose gas is self-stabilized at a certain density. Finally, we
construct an effective Hamiltonian to characterize the ground
state of a finite system. By solving the corresponding GP
equation, we find self-stabilized quantum-droplet solutions.
Unlike the s-wave case, the quantum droplet is anisotropic and
carries finite momentums because the spatial rotation and the
time-reversal symmetries are spontaneously broken. Although
only the interspecies p-wave interaction is considered here,
our results could be extended into the case with weak back-
ground s-wave interactions and may be observed in systems
like the 85Rb − 87Rb Bose mixture [14,15].
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