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Recently, a novel kind of hybrid atom-optomechanical system, consisting of atoms in a lattice coupled to a
membrane, has been experimentally realized [A. Vochezer et al., Phys. Rev. Lett. 120, 073602 (2018)], which
promises a viable contender in the competitive field of simulating nonequilibrium many-body physics. Here we
are motivated to investigate a spinor Bose gas coupled to a vibrational mode of a nanomembrane, focusing on
analyzing the role of the spinor degrees of freedom therein. Through an adiabatic elimination of the degrees of
freedom of the quantum oscillator, we derive an effective Hamiltonian which reveals a competition between the
force localizing the atoms and the membrane displacement. We analyze the dynamical stability of the steady state
using the Bogoliubov–de Gennes approach and derive the stationary phase diagram in the parameter space. Then,
we investigate the first-order nonequilibrium quantum phase transition (NQPT) from a localized symmetric state
of the atom cloud to a shifted symmetry-broken state, characterized by the occurrence of a hysteresis. Moreover
we present a detailed analysis of the effects of the spin degree of freedom on NQPT. Our work presents a simple
way to study the effects of the spinor degree of freedom on the nonequilibrium nonlinear phenomena that is
complementary to ongoing experiments on the hybrid atom-optomechanical system.
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I. INTRODUCTION

In recent years, the hybrid atom-optomechanical systems
[1–5], where a membrane is coupled to ultracold quantum
gases, have attracted considerable interest as a novel and
versatile alternative to more conventional optomechanical se-
tups. Combining mechanical oscillators and ultracold atoms,
such hybrid systems [1–10] provide opportunities for cool-
ing, detection, and quantum control of mechanical motion,
with applications in precision sensing, quantum-level signal
transduction, as well as for fundamental tests of quantum me-
chanics [11–15]. For example, state-of-the-art optomechanics
is nowadays able to realize optical feedback cooling of the
mechanical oscillator to its quantum-mechanical ground state
[3]. Being intrinsically nonequilibrium, such a hybrid me-
chanical atomic system further provides a natural setting for
nonequilibrium many-body quantum systems [5,16]. Adding
phononic degrees of freedom to the optical lattice toolbox
[17,18], it also opens new routes to mimic the lattice vi-
brations and quantum simulations of phonon dynamics in
realistic solid materials [16].

Building on the above development, further accounts of
the spinor degree of freedom of the atom part [9,19], which
is a key ingredient playing out in modern physics, are ex-
pected to reveal exceptionally rich physics in hybrid atom-
optomechanical systems. In this work, we are motivated to
study a spinor hybrid atom-optomechanical setup that consists
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of a membrane coupled to spinor ultracold quantum gases.
There, the light-mediated coupling between the atoms and the
membrane is nonresonant, allowing for adiabatic elimination
of the degree of freedom of the quantum oscillator. The result-
ing Hamiltonian can be regarded as a nonlinear quantum sys-
tem in periodic potentials. Solving the Bogoliubov–de Gennes
equations, we derive the dynamical stability phase diagram for
this system in the parameter space. As the atom-membrane
coupling is tuned via controlling the laser intensity, a first-
order nonequilibrium quantum phase transition (NQPT), char-
acterized by the occurrence of a hysteresis, is induced between
a localized symmetric state and a symmetry-broken quan-
tum many-body state exhibiting a shifted cloud-membrane
configuration. Finally, we discuss how the stationary-state
phase can be probed through the elementary excitations of
the model system. We believe our model provides a simple
way to study the nonequilibrium nonlinear phenomena that is
complementary to ongoing experiments on the hybrid atom-
optomechanical systems.

The emphasis and value of the present work are to provide
a theoretical model, i.e., an extended two-component Gross-
Pitaevskii equation coupled to a quantum harmonic oscillator
in describing the hybrid mechanical-atomic system, which
at the mean-field level captures the key physics regarding
the interplay of quantum many-body physics, nonequilibrium
nature, and the spinor degree of freedom. Our study builds on
recent progress in engineering the optomechanical coupling λ

in experiments [1,2]. For vanishing intrinsic optomechanical
coupling λ → 0, our model reduces to the equilibrium two-
component condensates which have been intensively explored
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both theoretically and experimentally in the context of ul-
tracold quantum gases [20–22]. Note that our previous work
[16] has obtained the steady-state phase diagram for the one-
component hybrid mechanical-atomic system, which has ex-
tended studies on the steady-state phases from the superfluid
regime [5] into the full parameter regimes. In this work, we
together with Ref. [19] further account for the spinor degree
of freedom of the atom part. These four working together
will provide a complete description of the steady-state phase
diagram of the hybrid mechanical-atomic system experimen-
tally motivated by Refs. [1,2]. We hope the theoretical model
proposed in this work can serve as an alternative model to
study the spinor nonequilibrium nonlinear phenomena in a
highly controllable way.

The paper is organized as follows. In Sec. II, we briefly de-
scribe the model system and corresponding mean-field treat-
ment. In Sec. III, we revisit the dynamical stability analysis of
the stationary state using the Bogoliubov–de Gennes approach
and derive the dynamical stability phase diagram of the model
system in the parameter space. Section IV presents a detailed
analysis of the nonequilibrium quantum phase transition, in
particular, the role of the spinor nature of the atomic gas
on the quantum phase. The hysteresis and Landau expansion
analyses are presented in Sec. V and elementary excitation is
calculated in Sec. VI. Finally, we conclude in Sec. VII.

II. MODEL HAMILTONIAN

In this work, we consider a spinor hybrid mechanical-
atomic system consisting of a membrane in a single-sided
optical cavity, i.e., one mirror of the cavity is designed to
reflect incident light on resonance and forms a standing
wave in front of the cavity, in which a spinor Bose-Einstein
condensate (BEC) can be trapped. Our setup is of immediate
relevance in the context of experiments for the one-component
hybrid mechanical-atomic system [1–4]. Furthermore, the
spin degree of freedom can be encoded by two atomic internal
states or sublattices [20]. Our goal is to find a nonequilibrium
quantum phase transition from a localized symmetric state of
the atom to a shifted symmetry-broken, in particular, focus on
the spin degree of freedom’s effects on the phase transition.

The atom part of our model consists of a two-component
BEC in a spin-dependent optical superlattice [23,24] along
the x direction, whereas the model system is uniform in the
other two directions. To be specific, we choose the internal
states of |F = 1, m = −1〉 and |F = 2, m = −2〉 of the atom
87Rb as a pseudo-spin-1/2 system. The one-dimensional spin-
dependent optical superlattice is formed by superimposing
two optical standing waves, which can be written as V (x) =
V1 sin2 (k1x) + V2 sin2 (k2x + φ). We remark that the spin-
dependent optical superlattice can allow one to coherently
address and manipulate each component of the spinor BEC
independently. Furthermore, we are interested in the scenario
of only one component of a spinor BEC coupling to a
micromechanical membrane. Such kind of coupling mecha-
nism can be understood as follows. The displacement X (t )
of a micromechanical membrane provides a time-dependent
boundary condition for one of the electromagnetic field [7,9]
of E ∼ sin [k(x − X )], but does not affect another electromag-
netic field of creating an optical lattice. Then a displacement

of the membrane by an amplitude X leads to a phase shift
δφ ∼ FX/λL of the reflected light. Here, F stands for the
finesse of the cavity and λL is the wavelength of the laser
light. Due to the phase shift of the standing wave, a single
atom trapped in an optical lattice of V2 sin2 (k2x + φ + δφ) is
expected to experience a force ∝ δφ. Meanwhile, the atoms
trapped in the lattice of V1 sin2 (k1x) are expected to be un-
affected. This suggests that the coupling to the mechanical
motion only affects a single spinor state. For the pure sake
of the simplified calculations, we limit ourselves into the case
of spin-dependent optical superlattice having the same period
by letting k1 = k2. We remark that Ref. [9] has considered the
case of the mechanical motion coupling to both components of
a spinor BEC. At last, the freedom along the y and z directions
decouples from the x direction, leading to the realization of a
quasi-one-dimensional geometry.

Within the mean-field approximation [5,19], the order
parameter for the condensate can be described by a two-
component time-dependent wave function � = [ψ1, ψ2]T ,
in which the dynamics can be well described by the two-
component Gross-Pitaevskii (GP) equations, i.e.,

ih̄
∂

∂t
ψ1 = −h̄ωR∂2

x ψ1 + V sin2(x)ψ1 + h̄	ψ2 + gN |ψ1|2ψ1

+ g12N |ψ2|2ψ1 − 2
√

Nλα1 sin(2x)ψ1, (1)

ih̄
∂

∂t
ψ2 = −h̄ωR∂2

x ψ2 + V sin2(x)ψ2 + h̄	ψ1 + gN |ψ2|2ψ2

+ g12N |ψ1|2ψ2, (2)

with V being lattice potential strength, N the number of the
condensed atoms, h̄ωR is the kinetic energy, 	 denotes Rabi
frequency, and g and g12 label interatomic and intra-atomic
interactions, respectively. Here, the coupling between the
atoms and the membrane labeled by λ can be obtained with a
Born-Markov approximation by adiabatically eliminating the
light field [5,16]. The α1 is referred to the real part of the
complex amplitude α of a coherent state [see Eq. (3)]. Note
that going beyond the GP Eqs. (1) and (2) to fully include
the quantum and thermal fluctuations of the quantum field is
beyond the scope of this work.

The motion of the membrane can be treated as a one-
dimensional quantum oscillator with frequency 	, Hm =
h̄	ma†a [5,16]. Within the mean-field framework, we are
interested in the dynamics of the mean value of the field
operator a under the coherent ansatz 〈a〉 = α. The equation
of motion of α can be written as

i
∂

∂t
α = (	m − iγ )α −

√
Nλ

∫
dx sin(2x)|ψ1|2. (3)

Here the γ represents a phenomenological damping rate and
the membrane is coupled to one component of the two-
component BEC. Note that α = α1 + iα2 in Eq. (3) is a
complex number (α1 and α2 being its real and imaginary part,
respectively) and plays the role of the order parameter for
the membrane. The physical meaning of α can be regarded
as the displacement of the membrane around its equilib-
rium. In more detail, α = 0 denotes an incoherent vibration
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state of the membrane, whereas α �= 0 denotes a coherent
vibration.

The stationary-state phase diagram of the spinor hybrid
atom-optomenchanical system described by Eqs. (1) and (2)
is determined by five parameters: the lattice strength V , the
coupling constant λ between the atom and membrane, the
inter- and intra-atomic interactions g and g12, and the Rabi
frequency 	. Note that there is a quantum phase transition
for λ = 0 in the context of equilibrium ultracold atomic BEC
[25] and dissipative polariton BEC [26]: g12 > g + 2	/n the
system turns from an unpolarized phase to a polarized phase
for order parameter 〈σz〉 = n1 − n2 is zero or nonzero. In what
follows, we address how the nonequilibrium nature of the
model system, i.e., λ �= 0, can affect the above quantum phase
transition.

To motivate our discussion of effects of the spinor degree
of freedom on the phase transition, one notices two important
features with respect to the framework of Ref. [5]: First, the
spinor degree of freedom of our model system is encoded
in the two-component order parameters [ψ1, ψ2]; second, the
membrane is coupled to the superposition of both the density
and spin density of the BEC, which will inevitably couple to
excitations in the density and spin-density fluctuations. This
further justifies our motivation of focusing on the effects of
the spinor degree of freedom on the phase transition.

From Eqs. (1) and (2), the key physical picture behind the
nonequilibrium quantum phase transition can immediately be
stated as follows: there exist two different kinds of periodic
potentials, which dynamically compete with each other, de-
pending on the backaction of the membrane on the atoms, and
thus on the collective behavior of the atoms. We are interested
in the tight-binding limit, where the lattice is so strong that the
BEC system can be considered as a chain of trapped BECs that
are weakly linked.

III. STABILITY OF THE HYBRID
MECHANICAL-ATOMIC SYSTEM

The main goal of this work is to investigate the nonequi-
librium quantum phase transition in a spinor quantum gas in a
lattice coupled to a membrane. Before proceeding, we remark
that the stationary states of a periodically trapped quantum gas
is represented by a Bloch wave [27,28], i.e., a plane wave with
periodic modulation of the amplitude. One unique feature in
the system of the quantum gas in optical lattices coupled
to a membrane is dynamical instability [27,29], which does
not exist in the absence of either atomic interaction. In more
detail, some of the Bloch waves can be dynamically unstable
against certain perturbation modes q only when both factors
are present. By dynamical instability, we mean that small
deviations from a state grow exponentially in the course of
time evolution. Therefore, as a first step, it is important to
check whether the Bloch wave itself is stable against weak
perturbations, which is the aim of this section.

We are interested in the parameter regime of strong
lattice strength within the framework of the tight-binding
approximation. Directly following Refs. [30–32], we pro-
ceed to expand the order parameters of [ψ1, ψ2]T in the
Wannier basis and keep only the lowest vibrational states

as follows:

ψ1 =
√

N
∑

m

am(t )φ(x − x1,m), (4)

ψ2 =
√

N
∑

m

bm(t )φ(x − x2,m), (5)

where φ(x − xi,m) is a Wannier function at the m sites and xi,m

represents the central position of the i component at the m site.
In a similar way, Eq. (3) can be rewritten as under the tight-

binding approximation,

i
∂

∂t
α = (	m − iγ )α − Q

∑
n

|am|2, (6)

with

Q = λN3/2
∫

dx sin(2x)|φ(x − x1,m)|2. (7)

We focus on the stationary of the membrane by letting
∂α/∂t = 0 in Eq. (6). In such, we can obtain the value of
the steady state α0 and then the coupling strength between
BEC and the membrane is connected to the real part of α0. By
substituting the steady state of Eq. (6) into Eq. (1), we arrive
at

ih̄
∂ψ1

∂t
= −ωR∂2

x ψ1 + V sin2(x)ψ1 + gN |ψ1|2ψ1 + 	ψ2

+ g12N |ψ2|2ψ1 − 2
√

NλQ

	m

∑
m

|am|2 sin(2x)ψ1.

(8)

Two properties of the effects of the backaction of the mem-
brane on the quantum gas can immediately be stated based
on Eq. (8): (i) This effective lattice with the renormalized
lattice strength shares the same periodicity; (ii) its lattice site
location is shifted from that of the original lattice, x(0)

m = maL

(m = 0, 1, 2...), to xm = maL + δ by δ. The backaction of the
membrane on the quantum gas is to provide the competition
between the optical lattice, trying to localize the atoms at the
minima, and the membrane displacement which tries to shift
the atoms.

Furthermore, by plugging Eqs. (4) and (5) into Eqs. (8)
and (2), we can obtain the discrete nonlinear Schrödinger
equations as follows:

ih̄
∂

∂t
am = −K1(am−1 + am+1) + 	12bm

+ (ε1,m + U1,m|am|2 + U12|bm|2)am, (9)

ih̄
∂

∂t
bm = −K2(bm−1 + bm+1) + 	12bm

+ (ε2,m + U2,m|bm|2 + U12,m|am|2)bm, (10)

where

Ki = −
∫ [

ωR
∂

∂x
φi,m

∂

∂x
φi,m+1 + V sin2 xφi,mφi,m+1

]
dx

(11)
is the nearest neighbor hopping,

εi,m = 1

2

∫ [
ωR

∣∣∣∣ ∂

∂x
φi,m

∣∣∣∣
2

+ V sin2 x
∣∣φi,m

∣∣2

]
dx (12)
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is the effective potential on every site, U2,m = gN
2

∫ |φ2,m|4dx
is the on-site atomic collisions, U12,m = gN

∫ |φ1,m|2|φ2,m|2dx
and U1,m can be adjusted by α0 and λ with

U1,m = gN

2

∫
|ψ1,m|4dx − 2N2λ2

	m

∫
sin(2x)|φ(x − x1,m)|2dx

×
∫ ∑

m

sin(2x)|φ(x − x1,m)|2dx. (13)

The first term in Eq. (13) comes from the intrinsic interatomic
interaction while the second term can be understood as the
backaction of the shaking membrane on the interaction. It is
expected because the effects of the backaction of the shaking
membrane on the interaction should be weaker than the effects
due to the intrinsic interatomic interaction, i.e., the value of
the first term in Eq. (13) should be bigger than the second one.
Indeed, in our detailed calculation, we always find U1,m > 0.

The condition of the dynamical instabilities of Bloch waves
solution can be determined based on Eqs. (9) and (10) as
follows: We start from the standard decomposition of the wave
functions into the steady-state solution labeled by the Bloch
wave number k and a small fluctuating term with q being also
a kind of Bloch wave number,

am = (ψ10 + u1eiqm−iωt + v∗
1e−iqm+iωt )eikm−iμt , (14)

bm = (ψ20 + u2eiqm−iωt + v∗
2e−iqm+iωt )eikm−iμt , (15)

with ψ10 = ψ20 = √
n0/2 and considering one site with

U12,m = U12, U2,m = U , and U1,m = Um. Substituting
Eqs. (14) and (15) into Eqs. (9) and (10) and retaining
only first-order terms of fluctuation, we obtain at each
momentum k the Bogoliubov–de Gennes (BdG) equation
MkUk = h̄ωkUk with Uk = (u1, v1, u2, v2)T . Here the Mk in
the matrix form reads as

M =

⎛
⎜⎜⎜⎝

h1 Umn0 U12n0 + 	12 U12n0

−Umn0 −h1 −U12n0 −U12n0 − 	12

U12n0 + 	12 U12n0 h2 Un0

−U12n0 −U12n0 − 	12 −Un0 −h2

⎞
⎟⎟⎟⎠. (16)

Here, ha and hb are diagonal terms of the matrix, reading

hi = 2Ki[cos(k + q) + cos(k)] + n0Ui − 	12. (17)

In some parameter regions, the imaginary parts of the eigen-
values of Eq. (16) are positive and the condensate wave
functions with the form of Bloch waves come to be dynam-
ically unstable, i.e., the density modulations grow in time
exponentially. Stability phase diagrams of the spinor quantum
gas in a lattice coupled to a membrane in the tight-binding
limit are plotted in Fig. 1. In the white-color regions of Fig. 1,
the imaginary parts of the dispersion spectrum for excitations
of a Bloch wave are positive, suggesting dynamical instability
of the condensate. These regimes correspond to effectively
attractive nonlinearity of two-component GP equations as ex-
plained in Refs. [26,33]. Consequently, the growth of the spa-
tial density modulations is supposed to lead to the formation
of steady states with modulated density, which goes beyond
the scope of current work. In what follows, we restrict our
consideration to the dynamics of nonlinear waves propagating
on a dynamically stable condensate background. Therefore we
make sure that the parameters of the system always satisfy the
dynamical stability condition.

IV. NONEQUILIBRIUM QUANTUM PHASE TRANSITION

The goal of this section is to investigate the nonequilibrium
quantum phase transition based on Eqs. (1)–(3). At the heart
of our solution of nonequilibrium dynamics of the spinor
hybrid mechanical-atomic system is (i) an elimination of
the degrees of freedom for the membrane, leading to an
effective Lagrangian where the parameters are significantly
renormalized by the atom-membrane coupling; (ii) the order
parameters of the phases are calculated based on a Gaussian
condensate profile.

We plan to develop a variational technique to analyze
the nonequilibrium quantum phase transition. The basic idea
behind the variational method is to take a trial function with a
fixed shape, but with some free (time-dependent) parameters.
Using a variational principle, we find a set of Newton-like
ordinary differential equations for these parameters which
characterize the solution. This technique has been used to
study the nonequilibrium quantum phase transition of a hybrid
atom-optomechanical system based on the one-component
Gross-Pitaevskii equation coupled to a quantum oscillator [5].

The Lagrangian density of the hybrid system can be di-
rectly inferred from the effective Hamiltonian, reading

L = 1

V

[
ih̄

2
(∂tαα∗ − α∂tα

∗) − h̄	mα∗α
]

+ ih̄

2
(�†∂t� − ∂t�

†�)

− N

4
[(g + g12)�†�†�� + (g − g12)�†�†σz��]

− [ωR|∂x�|2 + V sin2(x)�†�

− 2
√

Nλα1 sin(2x)|ψ1|2 + h̄	�†σx�]. (18)

Because the lattice potential can be approximately treated
as a harmonic potential in each well, we are motivated to write
the order parameters of the model system as Gaussian profile,

ψ1 = cos θ (t )

[
1

πσ (t )2

]1/4

e− (x−ζ1 (t ))

2σ (t )2
−iκ (t )x−iβ(t )x2

, (19)

ψ2 = sin θ (t )

[
1

πσ (t )2

]1/4

e− (x−ζ2 (t ))

2σ (t )2
−iκ (t )x−iβ(t )x2

. (20)

In this work, we are limited to the following cases: (i) two
Gaussian wave packets have the same width σ (t ) with the
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FIG. 1. Dynamical instability of a spinor quantum gas in a lattice
coupled to a membrane. In the black-color regions, imaginary parts
of dispersion spectrum for excitations of a Bloch wave are zero
or negative, representing dynamical stability regions; while in the
white-color regions, imaginary parts of dispersion spectrum for exci-
tations of a Bloch wave are positive, suggesting dynamical instability
of the condensate. Parameters are chosen as K1 = K2 = 1, and (a1) k
= π/4, q = 0, U12/U = 1; (a2) k = π/4, q = 0, 	12/Un0 = 0; (b1)
U12/U = 1, 	/Un0 = 0.5, Um/U = 1.2; (b2) U12/U = 1, 	/Un0 =
0.5, Um/U = 1.0; (c1) U12/U = 1, 	/Un0=0.5, Um/U = 0.8; and
(c2) U12/U = 1, 	/Un0 = 2, Um/U = 0.8.

corresponding phases β(t ) and κ (t ), suggesting that both
condensate components oscillate in the phase; (ii) the centered
positions of the two Gaussian wave packets are different, la-
beled ζ1(t ) and ζ2(t ), respectively. Note that all the parameters
of θ , ζ , σ , κ , and β are all time-dependent variables. Our
strategy of determining these parameters is as follows. First,
we write down the equations of motion of ζ , σ , κ , and β

with the help of the Euler-Lagrange equation. Second, we
obtain the energy functional of the model system [see Eq. (26)
below], which are a function of time-dependent parameters of
θ , σ , and ζ . Finally, all these time-dependent parameters are
numerically determined by minimizing the energy functional
(26) below.

With the help of the trial functions of Eqs. (19) and
(20), we can proceed to obtain the Lagrangian of the model
system given by L = ∫

Ldx. Then, using the Euler-Lagrange
equation, ∂

∂t
∂L
∂ξ ′ − ∂L

∂ξ
= 0 for the different parameter ξ , we can

arrive at the equations of motion for the different parameters

β and κ as follows:

ζ ′
i = 2ωR(κ + 2βζi )(i = 1, 2), (21)

σ ′ = 4ωRβσ. (22)

Next, we can proceed to obtain the equations of motion for
real number α1 and the imaginary number α2, respectively,

	mα1 − λ
√

N cos2(θ )e−σ 2
sin(2ζ1) + α′

2 = 0, (23)

	mα2 − α′
1 = 0. (24)

By substituting Eq. (24) into Eq. (23), we can obtain the
equation of motion of α1 as follows:

α′′
1 + 2γα′

1

	m
= λ

√
N cos2 θe−σ (t )2

sin(2ζ1) − 	mα1. (25)

Inspired by Ref. [5], we calculate the effective energy
functional of the atom part as follows:

E = 	̃mα2
1 − 2λ

√
N cos2(θ )α1e−σ 2

sin(X0 + X1)

− Ve−σ 2
(cos X0 cos X1 − cos(2θ ) sin X0 sin X1)

2

+ ωR

2σ 2
+ 	 sin(2θ )e− X2

1
4σ2 + V/2

+ Ng(cos(4θ ) + 3) + 2Ng12 sin2(2θ )e− X2
1

2σ2

8
√

2πσ
. (26)

Note that two-component BECs have different positions; we
can use centered position X0 = ζ1 + ζ2 and relative position
X1 = ζ1 − ζ2. In the similar way of Ref. [5], the equations of
motion related to the condensate can be written as

X ′′
0

2ωR
= −∂X0 E , (27)

X ′′
1

2ωR
= −∂X1 E , (28)

σ ′′

4ωR
= −∂σ E . (29)

In determining the stationary-state phase diagram and the
corresponding nonequilibrium phase transition of the energy
functional (26), our strategy is based on the existence of
four order parameters: the center-of-mass coordinate X0, the
relative coordinate X1, the width of the wave packet σ ,
and the longitudinal spin polarization 〈σz〉. Depending on
the interplay among the three order parameters, we iden-
tify two phases in the stationary-state phase diagram as
follows.

Phase I is the localized symmetric phase, where both
the center-of-mass coordinate X0 and the relative coordinate
X1 are equal to zero and the longitudinal spin polarization
〈σz〉 = 0. The stationary state is the superposition of two same
Gaussian functions centered in the lattice wells.

Phase II is the localized symmetry-broken phase, where
both the center-of-mass coordinate X0 and the relative co-
ordinate X1 are equal to nonzero and the longitudinal spin
polarization 〈σz〉 �= 0. The stationary state is the superposition
of two of the same Gaussian functions with a shifted atom
configuration in the lattice wells.

Below we drive the complete stationary-state phase dia-
gram by numerically minimizing the energy functional (26).
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FIG. 2. Different parameters as a function of coupling strength (a1)–(a4) and Rabi frequency (b1)–(b4). Values of (a1) and (b1) centered
positions of two wave packets; (a2) and (b2) relative position; (a3) and (b3) condensate width; and (a4) and (b4) 〈σz〉 = n1 − n2 transform from
zero to nonzero. The following parameters are used: 	m/ωR=100, gN/	m=0.3, V/	m=2, γR/ωR=20; (a1)–(a4) g12N/	m=0.2; and (b1)–(b4)
λN1/2/	m=1.2.

After the ansatz of Eqs. (19) and (20) are determined, we
accordingly calculate the center-of-mass coordinate X0, the
relative coordinate X1, the width σ , and the longitudinal spin
polarization 〈σz〉 �= 0. To comprehensively reveal the effects
of the system’s parameters, including the λ and 	, on the
nonequilibrium quantum phase transition from a localized
symmetric state of atom cloud to a shifted symmetry-broken
state, we have considered two cases for numerical analysis.
(i) As is shown in Figs. 2(a1)–2(a4) the two-component
hybrid system also has phase transition along with increasing
coupling strength λ

√
N , centered position X0 and polarized

parameter 〈σz〉 turn from zero to nonzero, and relative po-
sition turns from zero to nonzero and then to zero. (ii) In
Figs. 2(b1)–2(b4) when the coupling strength is fixed, Rabi
frequency can control the phase transition, which brings a
method to cool the membrane. Parameters have a jump at the
critical point, which indicates the first-order transition because
two-component condensates are nonequal and this progress
happens discontinuously. If Rabi frequency is zero, the second
component will vanish; for this reason in Figs. 1(b1)–1(b4)
we ignore this case. For two components that have a
different role, when adjusting 	 the phase transition is
asymmetric.

V. HYSTERESIS AND LANDAU EXPANSION

In the previous section, we have found a NQPT of the
hybrid atom-optomechanical systems. In this section, directly
following Ref. [19], we plan to use the concepts of hysteresis

and Landau expansion to check whether such a NQPT studied
in this work is the first-order one. Our strategy is as follows:
Every order parameter of a first-order NQPT must have a jump
at the critical point; therefore the occurrence of the hysteresis
and the position of minimums of the Landau expansion can be
treated as the characteristic features of the first-order quantum
phase transition.

There will exist a hysteresis in the first-order quantum
phase transition when the system Hamiltonian changes adi-
abatically. In this paper, we will focus on how the atom-
membrane coupling of λ and Rabi frequency 	 can induce a
first-order NQPT by monitoring the existence of a hysteresis.
In this end, we take the time-dependent X1(t ) as the order
parameter and monitor how the values of X1(t ) vary with
the adiabatical change of the atom-membrane coupling of
λ and Rabi frequency 	 by numerically solving Eqs. (27)–
(29). As a comparison, we are also interested in the value of
X1(∞) = limt→∞X1(t ) which becomes time independent. In
more detail, we plot the hysteresis of the order parameter of
X1(t = 0) as the functions of λ and 	 in Figs. 3(a1) and 3(a2),
respectively. It is clear that the forward path of the hysteresis is
different from the backward one as is expected. The existence
of the hysteresis curves suggests that the NQPT studied in
this work is a first-order quantum phase transition, which can
further be explained by the following results of the Landau
expansion.

In order to understand the the hysteresis curves of X1 as
the functions of λ and 	 in Figs. 3(a1) and 3(a2), we take
the energy functional of E (X1) in Eqs. (27)–(29) as the Taylor
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FIG. 3. Hysteresis curves of the first-order phase transition are shown as a function of the coupling parameter λ in (a1) and a function of
Rabi frequency in (a2). (b1) and (b2) Curves of the effective energy difference �E (X1) = E (X1) − E (X10) are shown for a coupling strength
and Rabi frequencies below and above the critical points. The following parameters are used: 	m/ωR=100, gN/	m=0.3, V/ωm=2,γR/ωR=20;
(a1) g12N/	m=0.2, 	/	m=−0.8; and (a2) g12N/	m=0.8, λN1/2/	m=1.2. The coefficients of ai (i = 0, 1, 2, ...) of Eq. (30) are shown in
Appendix B.

expansion of X1 as follows:

E (X1) = a0 +
∑
n�2

anX n
1 . (30)

As pointed out by Ref. [19], in general, the coefficients an

in Eq. (30) can also allow odd orders in n besides even
orders in n. Here, θ , σ , X0, and X1 are independent, so we
cannot just use one parameter to clarify the phase transition.
However, we can assume these parameters are around their
steady state θ0, σ0, X00, and X10. Meanwhile, we will change
the value of X1 and fix the other parameters to investigate the
dynamical instability. Finally, we will just use the numerical
method of curve fitting to get the coefficients of the expansion
coefficients of the Landau expansion of Eq. (30).

In Figs. 3(b1) and 3(b2), we find the system has the mini-
mum at X1=0 and the energy function of E (X1) is symmetry
as a function of X1 as shown in Eqs. (B1) and (B3) in Ap-
pendix B when the membrane-atom coupling strength is small
or the Rabi frequency is large enough. Along with the increase
of membrane-atom coupling strength and the decrease of the
Rabi frequencies, the odd orders of expanding coefficients
turn from zero to nonzero as shown in Eqs. (B2) and (B4) in
Appendix B, which indicates X1 = 0 points become unstable
and asymmetric [see insets in Figs. 3(b1) and 3(b2)].

VI. ELEMENTARY EXCITATION

In this section, we proceed to discuss how the stationary-
state phase can be revealed in elementary excitations by
solving Eqs. (25)–(29) with the framework of the linear
perturbation theory [28,34–36]. After obtaining the stationary
states of (α10, X00, X10, σ0) in Eqs. (25)–(29), we proceed to
calculate the collective spectrum by considering derivations
from the stationary states in the form of α10 + δα10(t ), X00 +
δX00(t ), X10 + δX10(t ), σ0 + δσ (t ). Then we substitute the
solutions to motion equations and rewrite differential equa-
tions in the form of vector-matrix multiplications v̇ = Mv

with v = (δα10, δX00, δX10, δσ ). With defining the following
useful constants,

ω1 = λ
√

Ne−σ 2
0 cos(X10 + X00), (31)

ω2 = λ
√

Ne−σ 2
0 sin(X10 + X00), (32)

ωa1 = e−σ 2
0 V cos(X00) cos(X10), (33)

ωa2 = e−σ 2
0 V cos(X00) sin(X10), (34)

ωb1 = e−σ 2
0 V sin(X00) sin(X10), (35)

ωb2 = e−σ 2
0 V sin(X00) cos(X10), (36)
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FIG. 4. Collective excitations of a spinor quantum gas in a lattice coupled to a membrane. (a1) and (b1) Real and (a2) and (b2) imaginary
parts of excitations, respectively. (a1) and (a2) Elementary excitation energy as a function of coupling strength λ; (b1)–(b2) elementary
excitation energy as a function of Rabi frequency 	. The following parameters are used: 	m/	R = 100, gN/	m = 0.3, g12N/	m = 0.2, V/	m

= 2, γ /ωR = 20; (a1) and (a2) 	/	m = −0.3; (b1) and (b2) λ
√

N/	m = 1.2.

we finally obtain the matrix corresponding to the Bogoliubov–de Gennes [28,36] equation, reading

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−γ 2 − 	2

m −2γ ω1 cos2(θ )	m 0 ω1 cos2(θ )	m 0 −2σ0ω2 cos2(θ )	m 0
0 0 0 1 0 0 0 0

8ω1ωR 0 −4ωR(2α10ω2 + ωa) 0 ωx01 0 ωx02 0
0 0 0 0 0 1 0 0

8ω1ωR 0 4ωR(ωb − 2α10ω2) 0 ωx11 0 ωx12 0
0 0 0 0 0 0 0 1

−16ω2σ0 cos2(θ )ωR 0 ωσ1 0 ωσ2 0 ωσ3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

The real and imaginary parts of eigenvalues of the matrix (37)
define the eigenfrequencies and the decay rates, respectively.
In order to understand the effects of the system’s parameters,
including the λ and 	, on the nonequilibrium quantum phase
transition in terms of the collective excitations, we consider
the following two cases: (i) We first fix the values of 	 and
check how the collective excitations change with varying the
values of λ. As shown in Figs. 4(a1) and 4(a2), the elementary
excitations develop a jump at a critical point which is cor-
responding to the nonequilibrium quantum phase transition.
(ii) As shown in Figs. 4(b1) and 4(b2), similar jumps of
the excitations occur when the 	 can induce nonequilibrium
quantum phase transition. As pointed out in Ref. [5], such
kinds of jumps in excitation can be used to probe the nonequi-
librium quantum phase transition experimentally.

VII. CONCLUSION

Summarizing, motivated by the experimental work [1–3],
in which a novel kind of hybrid atom-optomechanical sys-
tem has been realized by coupling atoms in a lattice to a
membrane, we have further taken into account the effects
of the spinor degree of freedom of the atom part on the
nonequilibrium phases of the hybrid atom-optomechanical
system. In more detail, a nonequilibrium quantum phase
transition from a localized symmetric state of the atom cloud
to a shifted symmetry-broken state, in particular, the effects
of spinor degree of freedom on the nonequilibrium quantum
phase transition are analyzed. The experimental realization of
our scenario amounts to controlling two parameters whose in-
terplay underlies the physics of this work: the lattice strength
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V and the effective atom-membrane coupling λ. With the
state-of-the-art technology [2], the variation of V and λ can
be reached by adjusting the laser power and cavity finesse.
Moreover, one can adjust the value of λ independent on V by
applying a second laser which is slightly misaligned with the
first one generating an optical lattice of the same periodicity
but shifted by π/2.

We remark that our theoretical framework of studying the
nonequilibrium quantum phase transitions in this work is lim-
ited in the zero temperature. It is supposed that the backaction
of the membrane vibration on the atoms may induce the
possible temperature effect. In more detail, the vibration of
the membrane will lead to the shaking of the lattice by being
mediated by the exchange of sideband photons of the lattice
laser; as a result, the temperature of the atoms will increase.
As estimated in our previous work [16] with the typical exper-
imental parameters, the heating effect induced by the backac-
tion of the membrane vibration on the atoms can be safely
ignored by estimating the ratio between the energy scale of
the backaction of the membrane vibration on the atoms and
chemical potential of the optically trapped quantum gas as
h̄λ/μ ∝ 10−2 [1,7]. We hope our work may induce the further
experimental interests of quantum gases in a lattice coupled to
a membrane with emphasis on the effects of the spinor degree
of freedom. We emphasize here that the mean-field treat-
ment of the hybrid atom-optomechanical system is limited
to the Born-Markovian approximation of coupling between
a membrane and the atoms at the zero temperature. For fur-
ther investigations at the finite temperature or beyond Born-
Markovian approximation, the path-integral Monte Carlo sim-
ulation should be a reliable theoretical framework.
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APPENDIX A: THE MATRIX ELEMENTS IN EQ. (37)

caps per style. The matrix elements in Eq. (37) are given as
follows:

ωx01/ωR

=
√

2
π

g12N cos(2θ )e
− X2

10
2σ2

0
(
X 2

10 − σ 2
0

)
σ 5

0

+ 4(ωb− 2α10ω2)

+ 2	 cot(2θ )e
− X2

10
4σ2

0
(
X 2

10 − 2σ 2
0

)
σ 4

0

, (A1)

ωx02/ωR = −
√

2
π

g12N cos(2θ )e
− X2

10
2σ2

0 X10
(
X 2

10 − 3σ 2
0

)
σ 6

0

+8 σ0(ωb2 − 2α10ω1)

− 2	 cot(2θ )e
− X2

10
4σ2

0 X10
(
X 2

10 − 4σ 2
0

)
σ 5

0

, (A2)

ωx11/ωR =
√

2
π

g12Ne
− X2

10
2σ2

0
(
σ 2

0 − X 2
10

)
σ 5

0

− 4(2α10ω2) + (ωa)

+ 	 csc(θ ) sec(θ )e
− X2

10
4σ2

0
(
2σ 2

0 − X 2
10

)
σ 4

0

, (A3)

ωx12/ωR =
√

2
π

g12N cos(2θ )e
− X2

10
2σ2

0 X10
(
X 2

10 − 3σ 2
0

)
σ 6

0

+ 8σ0(ωa2 − 2α10ω1)

+ 	 csc θ sec θe
− X2

10
4σ2

0 X10
(
X 2

10 − 4σ 2
0

)
σ 5

0

, (A4)

ωσ1/ωR = 4σ0(−4α10 cos2(θ )ω1 + cos(2θ )ωa2 + ωb2),

(A5)

ωσ2/ωR = 4g12N sin2(θ ) cos2(θ )e
− X2

10
2σ2

0 X10
(
X 2

10 − 3σ 2
0

)
√

2πσ 6
0

+ 4σ0(−4α10 cos2(θ )ω1 + cos(2θ )ωb2 + ωa2)

+ 	 sin(2θ )e
− X2

10
4σ2

0 X10
(
X 2

10 − 4σ 2
0

)
σ 5

0

, (A6)

ωσ3/ωR = −
√

2
π

gN (cos(4θ ) + 3)

2σ 3
0

+ g12N (cos(4θ ) − 1)e
− X2

10
2σ2

0
(
2σ 4

0 + X 4
10 − 5σ 2

0 X 2
10

)
2
√

2πσ 7
0

+ 4
(
2σ 2

0 − 1
)
(4α10 cos2(θ )ω2 − cos(2θ )ωb + ωa)

− 12ωR

σ 4
0

− 	 sin(2θ )e
− X2

10
4σ2

0 X 2
10

(
X 2

10 − 6σ 2
0

)
σ 6

0

. (A7)

APPENDIX B: LANDAU EXPANSION
COEFFICIENTS IN FIG. 3

We use the numerical method of data fitting to obtain the
coefficients of an in Eq. (30). For the symmetry-unbroken
phase in Fig. 3(b1), the coefficients of the fitting curve poly-
nomial function are

a0 = 1.143, a2 = 2.71.1, a4 = −238.1, a6 = 114.4,

a8 = −20.38, a3 = a5 = a7 = 0. (B1)

For the symmetry-broken phase in Fig. 3(b2), the coefficients
of the fitting curve polynomial function are

a0 = 3.645, a2 = 412, a3 = 45.87, a4 = −348.5,

a5 = 16.19, a6 = 146.2, a7 = −10.1, a8 = −25.19.

(B2)
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For the symmetry-unbroken phase in Fig. 3(b2), the coeffi-
cients of the fitting curve polynomial function are

a0 = −0.2783, a2 = 144.2,

a4 = −68.15, a6 = 114.4,

a8 = −20.38, a3 = a5,= a7 = 0. (B3)

For the symmetry-broken phase in Fig. 3(b2), the coefficients
of the fitting curve polynomial function are

a0 = 0.7595, a2 = 164.8, a3 = 56.68, a4 = −86,

a5 = 4.558, a6 = 21.75,

a7 = −7.016, a8 = −2.531. (B4)
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