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We investigate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and Sarma superfluid states in alkaline-earth-
like 173Yb atomic gases near an orbital Feshbach resonance at zero temperature with population imbalances
in both the open and closed channels. We find that, in uniform space, both the Fulde-Ferrell and Sarma states
are greatly enhanced by the spin-exchange interaction on the Bardeen-Cooper-Schrieffer side of the Feshbach
resonance. While trapped in a harmonic potential, a cloud of long-lived 173Yb atomic gas with small fraction of
electronically excited-state population can stabilize not only the Sarma states with both the one and two Fermi
surfaces but also the Fulde-Ferrell state, and leave detectable structures in the distribution of polarizations of
different bands. As the degenerate 173Yb cloud is readily available and the signatures predicted can be easily
detected in in situ and/or time-of-flight images, our findings are helpful to realize and detect the long-sought
FFLO and Sarma states in experiments.
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I. INTRODUCTION

The pairing between fermions and the resulting superfluid
(SF) phases in the presence of a Zeeman energy (ZE) is one of
the key questions in multidisciplinary fields of physics. Two
well-known prototypes of unconventional SF, the inhomoge-
neous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [1–3]
and the homogenous Sarma (also referred as breached-pair)
state [4,5], have been proposed and extensively studied in
condensed-matter physics [6–9], cold atomic gas [10–23], and
chromodynamics [3,24]. Because the ZE induces mismatch
between Fermi surfaces, pairing can either take place between
fermions near shifted Fermi surfaces to form FFLO states
with Cooper pairs of nonzero center-of-mass momentum, or
involve particles inside the larger Fermi sea to establish Sarma
phase with gapless excitations.

For alkaline-metal atomic gases near a magnetic Feshbach
resonance (MFR), the FFLO phase is predicted to be stable
only within a narrow sliver of parameter space in the Bardeen-
Cooper-Schrieffer (BCS) regime [11,13,20,23], while the
Sarma phase with one Fermi surface (FS) exists only in the
Bose-Einstein-condensate (BEC) regime and the one with
two FSs is always unstable [10,13–16,20]. Although earlier
works suggest that either FFLO or Sarma SF can be realized
with the assistance of various mechanisms, e.g., spin-orbit
coupling [25–27], multiband effect of optical lattices [28–32],

*wzhangl@ruc.edu.cn
†wmliu@iphy.ac.cn

and low dimensionality [18,19], a crystal sharp evidence for
the realization of FFLO and Sarma states is still hindered by
experimental difficulties and technique limitations. Recently,
a new kind of Feshbach resonance, referred to as orbital
Feshbach resonance (OrbFR), was theoretically proposed and
experimentally verified in alkaline-earth-like atomic gases
[33–35]. Comparing to MFR, an OrbFR system involves four
atomic levels [17,36] and hence two independent ZEs in the
open and closed channels, as well as a spin-flip interchannel
interaction. These characteristics bring new aspects to many
physical properties, including the SF transition temperature
[37], collective excitations [38–40], polaron-molecule tran-
sition [41], and topological states with spin-orbit coupling
[42–46]. Specifically, Ref. [40] proposes an emergent Sarma
state in large but equal ZEs (ho = hc) in open and closed chan-
nels with an artificial choice of parameters, while Ref. [47]
studies the pair-breaking effect of finite temperature in a
harmonic trap without ZE.

Here we investigate the pairing states in degenerate 173Yb
gases as the unique OrbFR system to date, at zero temperature
with tunable ZEs using realistic experimental settings and
physical parameters. The atoms are prepared in the lowest two
electronic manifolds |1S0〉 (denoted by orbital |g〉) and |3P0〉
(|e〉) with nuclear spins m↑ (labeled by pseudospin | ↑〉) and
m↓ (| ↓〉). The open channel is composed of |o,↑〉 ≡ |e,↑〉
and |o,↓〉 ≡ |g,↓〉, while the closed channel involves |c,↑〉 ≡
|g,↑〉 and |c,↓〉 ≡ |e,↓〉. The pairing states in the open and
closed channels can in principle be different. For a three-
dimensional (3D) uniform system, we find by employing a
mean-field approach that among all possible combinations
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FIG. 1. Summary of all possible SF phases in the presence of
finite ZEs in the open and closed channels. The combined symbol
XoYc represents that the open (closed) channel is X (Y) phase with
X or Y ≡ BCS, FF, or Sarma. The combinations labeled in black bold
(gray normal) are (not) observed in systems with realistic parameters.

of SF states in different channels, only four of them are
stabilized as listed in Fig. 1. Specifically, at least one of the
two channels (labeled by the subscript o or c) must be in the
BCS phase regardless of the choice of ZEs. In the limiting
case of hc = 0, both FFLO and Sarma states are stabilized in
a rather large regime of the BCS side. We then discuss the
effect of an external harmonic trap under the local-density
approximation and show that both the FFLO and Sarma states
leave sizable signatures of density distributions [15,48] which
can be easily detected by in situ and/or time-of-flight imaging
techniques [49].

II. MODEL

For an OrbFR system, the Hamiltonian in the grand canon-
ical ensemble takes the form

Ĥ =
∑

k

o,c∑
j

↑,↓∑
σ

ξk, j,σ ĉ†
k, j,σ ĉk, j,σ

+
o,c∑
i, j

Ui j

∑
q,k,k′

ĉ†
q−k,i,↓ĉ†

q+k,i,↑ĉq+k′, j,↑ĉq−k′, j,↓, (1)

where ξk, j,σ = εk − μ j + ξσ h j , the kinetic energy εk =
h̄2|k|2/2M with M being the atomic mass, the chemical po-
tentials μo = μ and μc = μ − δ/2. The interchannel detuning
δ = δgμN�m|B| is well controlled by an external magnetic
field B with δg being the nonzero differential Landé g factor
between |g〉 and |e〉, μN being the nuclear Bohr magneton,
and �m = m↑ − m↓. ĉk, j,σ (ĉ†

k, j,σ ) is the annihilation (cre-
ation) operator of atom with momentum k and spin σ in
the channel j, and an effective ZE h j (ξσ = ±1 for spin up
and spin down) is additionally applied by introducing intra-
channel population imbalances that are one-to-one mapping
to the experimentally tunable imbalances in the degree of
nuclear spin and electronic orbit. The intrachannel coupling
strength is symmetric Uoo = Ucc = U0 and the interchannel
spin-exchange interaction Uoc = Uco = U1 with U0 = (U+ +
U−)/2 and U1 = (U+ − U−)/2. Here, U+ and U− are related
to the corresponding s-wave scattering lengths as+ and as− via
the conventional renormalization relation [50]. By increasing
δ from zero (set δ � 0), the effective scattering length as

between particles in the open channel is tuned from the BEC
regime to the resonance point at δres = 4h̄2/M(as+ + as−)2,
and to the deep BCS regime [33]. Notice that it is intrinsic
that the deep BEC regime cannot be reached in OrbFR.

For simplicity, we consider here only the Fulde-Ferrell
(FF) state where all Cooper pairs acquire the same

momentum. Although the Larkin-Ovchinnikov state with two
components of opposite momenta is in principle more stable
than the FF state, they are qualitatively consistent around the
phase boundaries [20,51]. Due to the momentum conserva-
tion, the momentum of Cooper pairs 2h̄Q are the same in both
channels, and the order parameters in different channels can
be written as

�o =
∑

k

(U0〈ĉQ+k,o,↑ĉQ−k,o,↓〉 + U1〈ĉQ+k,c,↑ĉQ−k,c,↓〉),

�c = −
∑

k

(U1〈ĉQ+k,o,↑ĉQ−k,o,↓〉 + U0〈ĉQ+k,c,↑ĉQ−k,c,↓〉).

(2)

Within the mean-field treatment, the order parameters �o

and �c and the wave vector of Cooper pairs |Q| are self-
consistently determined by the saddle-point equations which
extremize the thermodynamical potential δG of Hamiltonian
(1) with respect to the normal phase [20] (Appendix A).
Because δG is an even function for both ZEs, we assume ho/c

are positive definite without loss of generality.
The saddle-point equations have multiple solutions for the

OrbFR system. One is an in-phase solution where the order
parameters �o and �c have the same phase, while the other
one is an out-of-phase solution with a π phase difference.
For 173Yb, the two scattering lengths are positive and satisfy
as+ � as− > 0 (see below). Thus, the absolute ground state is
the in-phase solution which corresponds to a rather trivial SF
phase of deeply bound dimers. The metastable out-of-phase
solution can be tuned through the BEC-BCS crossover [52,53]
and is proved to be both mechanically and dynamically stable
in the case without population imbalance [38]. We focus
on this out-of-phase metastable solution, assuming it is also
stable in the presence of population imbalance, and consider it
as the “ground” state (Appendix A) unless specified. We also
assume without loss of generality that �o � 0 and �c � 0.

In the presence of ZEs, the pairing state in each channel
can be chosen from the BCS, FF, and Sarma states, which are
characterized by |Q| = 0 with no polarization, |Q| 	= 0, and
|Q| = 0 with polarization, respectively. There are hence nine
different combinations as depicted in Fig. 1. However, in a
fairly large parameter regime which is realistic in experiments,
five of these possibilities (gray in Fig. 1) are ruled out from
the ground state as defined above. In particular, the pairing
state in the closed channel is most likely to be in the BCS
phase, except in the limiting case of large hc and small ho

where the Sarma phase (only one FS in most regime except
around δ = 0) is stabilized in the closed channel while the
open channel is a BCS state (i.e., BCSoSarmac). This result
can be understood by noticing that, as the closed channel
is highly detuned, the low-lying states in the open channel
can assist pairing in the closed channel via the spin-exchange
interaction, in return favor the conventional BCS state which
has no modulation or nodal structure. Another consequence of
the interchannel interaction is that the two order parameters
�o and �c approach zero simultaneously with increasing
ZEs, showing that the superfluidity in both channels are
intimately connected with each other, as suggested in a finite-
temperature analysis of the population-balanced case [37].
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The pairing state in the open channel, however, possesses
a rich phase diagram with all three possibilities of BCS,
FF, and Sarma states when hc is weak. Thus, next we focus
on the limiting case of hc = 0 and investigate the phase
diagram by varying ho. The general scenario in the presence
of both ZEs will be discussed in Sec. IV. We remark here
that the ZEs ho and hc in both channels can be independently
tuned by the population imbalances in both channels [Pj =
(Nj,↓ − Nj,↑)/(Nj,↓ + Nj,↑) for j ≡ o, c] or, equivalently, by
the imbalances in the two electronic orbits |g〉 and |e〉,

Pg = Ng,↓ − Ng,↑
Ng,↓ + Ng,↑

= (1 + Po)(1 − Fc) − Fc(1 − Pc)

(1 + Po)(1 − Fc) + Fc(1 − Pc)
, (3)

Pe = Ne,↓ − Ne,↑
Ne,↓ + Ne,↑

= (1 + Pc)Fc − (1 − Po)(1 − Fc)

(1 + Pc)Fc + (1 − Po)(1 − Fc)
. (4)

The fraction of the |e〉 state Fe is related to the fraction of the
closed channel Fc = (Nc,↓ + Nc,↑)/N by

Fe = Ne,↓ + Ne,↑
N

= (1 − Po)(1 − Fc) + (1 + Pc)Fc

2
, (5)

both of them are self-consistently determined by the saddle-
point equations (here N is the total number of atoms).

III. BEC-BCS CROSSOVER AT hc = 0

In the absence of population imbalance, particles in the
closed channel are either in the BCSc phase with finite order
parameters �o and �c, or in the unpolarized normal (vacuum)
state with �o = �c = 0 for δ/2 < μ (δ/2 � μ). Thus, in the
following discussion we focus only on the open channel with-
out mentioning the state of closed channel unless necessary.
To get a clear connection with the case without population
imbalance, we use a dimensionless quantity ĥo ≡ ho/�o(ho =
0, hc = 0) to measure the ZE of the open channel through
rescaling ho by the corresponding order parameter �o when
ho = hc = 0 for given interchannel detuning δ and chemical
potential μ. As a concrete example, we take as+ = 1900a0

and as− = 210a0 [34,35,54] for 173Yb with a0 being the Bohr
radius, and consider a gas in 3D uniform space with mean total
number density n0 = 5.2 × 1015 cm−3, which corresponds
to (kFas+)−1 = 0.062 and (kFas−)−1 = 0.588 with the Fermi
wave vector kF = (3π2n0)1/3.

In Fig. 2(a), we depict the zero-temperature phase diagram
by varying δ and ĥo for a fixed μ = EF. Generally speaking,
the system is in the BCSo state when ĥo is small, becomes
Sarmao or FFo for moderate ĥo depending on the detuning,
and eventually turns into a fully (FPo) or partially (PPo)
polarized normal state for even larger ĥo. In the BEC regime
of δ < δres, the BCS gap �o becomes larger than the chemical
potential μ due to the formation of tightly bound molecules
[53]. As a result, the critical ZE ĥo,1 ≈ 1, beyond which the
Sarmao phase can be stabilized by pairing few atoms around
zero kinetic energy (also paring around the larger FS of the
open channel). Actually, the Sarmao phase possesses two FSs
within the parameter region ĥo < ĥo,6 and features one FS for
ĥo > ĥo,6 (Appendix C). Note that the line of ĥo,6 remains
above ĥo,1 throughout the OrbFR, with a small interval 0.07
at δ = 0. In the BCS regime of δ > δres, the critical ZE ĥo,1

decreases from the limiting value of unity, and the Sarmao
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ĥ
o

δres

BCSo

FFo
Sarm

a
o

FPo

PPo

(a)
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FIG. 2. (a) Zero-temperature phase diagram in the δ-ĥo (ĥo is
dimensionless) plane with hc = 0 and μ = EF (in 3D uniform space).
Three distinctive SF phases of the open channel—BCSo, Sarmao

and FFo—are present while the closed channel remains in the
BCSc phase. PPo (FPo) stands for the partially (fully) polarized
normal state. The thick dotted and solid lines (labeled as ĥo,i for
i = 1, . . . , 5) represent the first- and second-order quantum phase
transition, respectively (Appendix B), which are hinged by tricritical
(green circle) and tetracritical (green pentagram) points. The thin
black dotted line indicates the resonance point δres while the thin cyan
dashed line ĥo,6 stands for the topological transition between Sarmao

states with one and two FSs. (b) Contour plot of the wave vector |Q|
in the FFo regime.

state is gradually replaced by the FFo state with nonzero wave
vector |Q|. In particular, in the BCS limit with δ/(2EF) � 1.7,
the lower (ĥo,1) and upper (ĥo,2) boundaries of FFo saturate
to 1/

√
2 ≈ 0.756, consistent with the results in conventional

MFR [13,40,55].
A distinct feature of the phase diagram Fig. 2(a) is that

both the stable regions of Sarmao and FFo are greatly enlarged
by evolving from the BEC to the unitarity and to the BCS
regime for δ � 2μ. This is in stark contrast to the case of
broad MFR, where the Sarma and FF phases are both hindered
by crossing over from the BEC to the BCS side [11,13,20].
To understand this result, we notice that, when δ < 2μ, both
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FIG. 3. A typical phase diagram in the dimensionless scaled ĥo-
ĥc plane at zero temperature when δ/(2EF ) = 1.03. Other settings
can be found in Fig. 2 and the symbols are explained in the main text.
The inset shows the evolutions along hc line with fixed ĥo = 0.25.

the open and closed channels are populated, such that the
Hamiltonian (1) can be considered as a two-band model with
effectively asymmetric interactions resulting from the finite
detuning δ. Thus, as one enhances the asymmetry between
the two bands with increasing δ, the Sarma and FF states
can be further stabilized by the extra closed channel and the
corresponding interchannel pair tunneling [8,23,28,29,40,52]
induced by spin-exchange interaction [Eq. (A2)]. On the other
hand, when δ � 2μ, the highly detuned closed channel is
essentially frozen and the interchannel pair tunneling is sig-
nificantly reduced. As a result, the system gradually reduces
to an effective single-band model as for a broad MFR [56],
where the Sarma (FFLO) state becomes unstable (fragile).

The crossover from a two-band to a single-band model
can also be observed from the variation of wave vector |Q|
of the FFo state, as shown in Fig. 2(b). In the two-band side
with δ � 2μ, FFo emerges with a small |Q| � 0.05kF. The
increase of δ within this regime can enhance the interchannel
pair tunneling, such that the system can tolerate a much
larger wave vector. After reaching the maximal value of |Q| ≈
0.26kF at δ/2EF ≈ 1.147, the wave vector starts to drop with
δ and approaches zero as one would naturally expect for a
single-band model in the deep-BCS limit [20].

IV. TYPICAL PHASE DIAGRAM WITH
BOTH ZEEMAN ENERGIES

In the case of both finite ZEs in both channels, ho > 0
and hc > 0, a typical phase diagram is shown in the dimen-
sionless scaled ZEs ĥo ≡ ho/|�o(ho = 0, hc = 0)| and ĥc ≡
hc/|�c(ho = 0, hc = 0)| in Fig. 3 with δ/(2EF) = 1.03 and
μ = EF. As one can see, by varying ĥo and ĥc, all four stable
SF phases, including BCSoBCSc, FFoBCSc, SarmaoBCSc, and
BCSoSarmac, are present in the lower-left side of the phase
diagram, while in the upper-right corner with quite large ZEs,
particles in the open channel is in PPo state due to ĥo < ĥo,5

and the closed channel is in vacuum (Vacc) because of μc <

0. This phase diagram suggests a general scenario that the

presence of ZE in one channel would reduce the SF order
parameter of the trivial BCS phase and consequently suppress
pairing in the other channel through interchannel pair tunnel-
ing. We note here that the critical scaled ZE from BCSoBCSc

to BCSoSarmac is very close to unity because the effective gap
of the closed channel �eff,c = [�2

c + μ2
c�(−μc)]1/2 ∼= |�c|.

From the behavior of relevant physical quantities shown in
the insets of Fig. 3, we conclude that all phase transitions
in Fig. 3 labeled by dotted lines are of the first order, except
around the points (labeled by green diamond symbols) in the
upper-left and the lower-right corners with highly asymmetric
ZEs, where the transitions are of the second order.

V. DETECTION

To facilitate the identification of the exotic states dis-
cussed above, we next study the distributions of atoms in
an external 3D isotropic harmonic trap Vext (r) = Mω2r2/2 at
zero temperature under the local-density approximation [48].
Comparing with a broad MFR system, a key characteristic
of the OrbFR is that, with increasing ho, the BCSo core can
be completely suppressed and replaced by the Sarmao or FFo

state, therefore leaving detectable features in the distribution
of polarizations of relevant bands.

One measurable quantity is the distribution of polariza-
tion �no(r) = no,↓(r) − no,↑(r) with no,σ (r) = ∑

k no,σ (k, r)
along the radial axis, which can be obtained either by count-
ing independently the two density distributions no,↓(r) and
no,↑(r), or by directly measuring the density difference be-
tween |g〉 and |e〉 through a phase-contrast imaging technique
[12] working at the antimagic wavelength [57] (when hc = 0).
Four typical distributions of polarization �no(r) and �ne(r)
[58] are displayed in Figs. 4(a)–4(d). When ho is weak, �no(r)
shows clear features with an empty core (up to a critical
radius Rc1), a secondary jump (at position Rc2) and a peak
(at Rp) due to the different polarizations of various SF phases
(Appendix B). The empty core and the secondary jump, cor-
responding respectively to the BCSo and FFo states, disappear
when ho is large enough. The evolution of the shell structures
of a harmonically trapped gas can be seen from the critical
radii shown in Fig. 5(a) and the polarizations �no(r = 0) or
�ne(r = 0) at the trap center, as in Fig. 5(b). In both panels,
clear phase transitions are demonstrated when ho ≈ EF0.

We emphasize that, because ho can suppress the superflu-
idity through interchannel pair tunneling, the excited fraction
Fe and closed channel fraction Fc are both small at large ho,
as in Figs. 5(c) and 5(d). Although the inelastic collisions
between two |e〉 atoms will induce severe atom loss and
heating, thereby preventing a high fraction of the excited state
|e〉, a quasi-two-dimensional cloud of highly polarized but
long-lived 173Yb atomic gas is still available experimentally
with Fe as large as 22% at temperatures as low as 0.14EF

[49]. Our results hence suggest a practical scheme to detect
the FFLO and Sarma signatures in trapped alkaline-earth-like
gases.

Another accessible quantity is the columnar-integrated
density distributions in momentum space for the |e, σ 〉 state
n̄e,σ (kx, ky) = k2

F0/(2π2N )
∫

dkz
∫

drr2ne,σ (k, r) or the polar-
ization �n̄e(kx, ky) = n̄e,↓ − n̄e,↑, which is about angle θ with
the FF wave vector Q and can be easily obtained by a
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FIG. 4. Four typical polarizations in 3D isotopic harmonic trap,
�no(r) and �ne(r), versus the radial radius (the Thomas-Fermi
radius rTF) in panels (a)–(d) as ho varies. The three critical radii of
�no(r) are demonstrated in panel (a). In the plot, we choose a typical
δ/(2EF0) = 1.03 on the BCS side with hc = 0 and the Fermi energy
EF0 corresponding to a total number density n0 = 5.2 × 1015 cm−3.

procedure similar to the in situ imaging. For alkaline-metal
atoms around a broad MFR, the Sarma state keeps stable
only on the BEC side, therefore with one FS, whose signature
can be detected by spin-selective time-of-flight imaging [15]
and the one of FFLO state is usually smeared out by the
robust BCS state in the trap center [11,23]. However, for the
OrbFR system on the BCS side, we identify clear signatures
not only for the Sarma state with one or two FS(s), but also

FIG. 5. Evolutions of several measurable quantities are shown as
ho increases, including (a) the three critical radii, (b) the polarizations
of �no(r = 0) and �ne(r = 0) in the center of trap and (c) the po-
larizations and fractions in the degree of channels and (d) electronic
orbits. All settings are the same as in Fig. 4.

FIG. 6. Columnar-integrated momentum distributions n̄e↑(kx, ky )
along the radial axis in panels (a)–(d) when θ = 0, and �n̄e(kx, ky )
in panels (b1) and (b2) for ho/EF0 = 1.02. Other parameters are the
same as in Fig. 4.

for the anisotropic FF state. In Figs. 6(a)–6(d), we show the
momentum density distribution ne,↑ along the radial momen-
tum corresponding to the scenarios in Figs. 4(a)–4(d), as the
system acquires an axial symmetry when θ = 0. As we can
see, a nonmonotonic valley structure with a double- or single-
peak gradually emerges around the Fermi wave vector kF0,
stemming from the fully empty shell (ball) of |e,↑〉 between
the two FSs (below the one FS) in the Sarmao with two
(one) FSs and the depletion of the BCSo or FFo state, while
the robust core around zero momentum eventually disappears
because it is dominated by the Sarmao state with one FS, as
in Fig. 6(d). The above signatures can be seen more clearly
by measuring the polarization �n̄e(kx, ky) in the |e〉 state
(Appendix D), exemplified as in Figs. 6(b1) and 6(b2) with
ho/EF0 = 1.02. Notice that the fully empty shell or ball of the
Sarma state enhances the anisotropy induced by the FFo state,
which is maximized when θ = π/2 as in Fig. 6(b2).

VI. CONCLUSION

We study exotic pairing phases in ultracold gases of 173Yb
atoms near an orbital Feshbach resonance in the presence of
tunable population imbalances. Using realistic parameters, we
identify the full phase diagram by independently tuning both
ZEs of both channels and find that, with balanced population
of the closed channel, both the FFLO and Sarma superfluid
phases are greatly enhanced on the BCS side by the strong
interchannel pair tunneling induced by spin-exchange interac-
tion. Importantly, because the robust BCS core in a harmonic
trap center can be fully suppressed, not only the Sarma states
with both one and two Fermi surfaces but also the FFLO state
can be detected by measuring the polarization distributions
of relevant band in current experiments. Our results suggest
another route to realize and detect the long-sought Sarma and
FFLO states in alkaline-earth-like atomic gases.
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APPENDIX A: GRAND THERMODYNAMIC POTENTIAL
AND SADDLE-POINT EQUATIONS

In the grand canonical ensemble, the grand thermodynamic
potential (in 3D uniform space) with respect to the normal
state at zero temperature is calculated in standard formalism
and explicitly divided into three parts: the thermodynamic
potential associated with the open (δGo) and closed (δGc)
channels ( j ≡ {o, c} hereafter),

δGj = − M

8π h̄2

(
1

as+
+ 1

as−

)
�2

j −
∑
k,σ

ξk, j,σ �(−ξk, j,σ )

+
∑

k

[
�2

j

2εk
+ ξ̄k, j − Ek, j +

∑
±

Ek, j,±�(−Ek, j,±)

]
,

(A1)

and the interference energy between the two channels,

δGoc = − M

4π h̄2

(
1

as−
− 1

as+

)
�o�c, (A2)

which results in the interchannel pair tunneling [28], h̄ is
the Planck’s constant. The saddle-point equations for the two
superfluid (SF) order parameters and the magnitude of pair
wave vector then read

4π h̄2

M
�oRo =

(
1

as−
+ 1

as+

)
�o +

(
1

as−
− 1

as+

)
�c,

4π h̄2

M
�cRc =

(
1

as−
+ 1

as+

)
�c +

(
1

as−
− 1

as+

)
�o, (A3)

and

|Q|(So + Sc) = To + Tc, (A4)

where three specialized functions in each channel are defined
as

Rj =
∑

k

1

εk
− �(+Ek, j,−) − �(−Ek, j,+)

Ek, j
,

S j =
∑

k

1 − ξ̄k, j

Ek, j
[�(+Ek, j,−) − �(−Ek, j,+)],

Tj =
∑

k

|k| cos(θk)[�(−Ek, j,−) − �(−Ek, j,+)]. (A5)
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ĥo

0

0.5

0

0.5 F
cPo
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FIG. 7. Magnitudes of order parameters �o and �c (orange solid
and dashed lines, respectively), wave vector of the FF state |Q| (blue
dotted lines), polarizations Po and Pc of each channel (brown solid
and dashed lines, respectively), and the fraction of the closed channel
Fc (dark blue dotted lines) versus the dimensionless scaled ZE ĥo as
the energy detuning δ/(2EF ) equals (a) 0.4, (b) 0.9, (c) 1.03, and
(d) 1.25. The crosses in each panel label the critical points of phase
transitions; other notations and settings are the same as in Fig. 2.

In the expressions above, θk is the angle between Q and k,
and �(·) is the Heaviside function. The energy dispersions
of quasiparticles are Ek, j,± = ±(h̄2Q · k/M + h j ) + Ek, j with
Ek, j = (ξ̄ 2

k, j + |� j |2)1/2 and ξ̄k, j = εk + εQ − μ j .

Due to the intrinsic feature of the 173Yb orbital Feshbach
resonance (OrbFR), its ground state must satisfy the following
three constraints simultaneously: (1) It is an out-of-phase
solution of the gap equations (A3) and the saddle-point
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FIG. 8. Dispersions (upper panels) of quasiparticle excitations
Ek, j,± and density distributions (lower panels) of bare atoms nk, j,σ

of the SarmaoBCSc state in momentum space for (a) ĥo = 1.1 and
(b) 1.65. The former (latter) case corresponds to the Sarma state with
two (one) FS(s). The inset in the lower-right panel is a zoom-in plot
around the FS kF,o,+, where kF,o,± is the Fermi wave vector. Here
δ/(2EF ) = 0.9 and k ≡ |k|. Other settings are the same as in Fig. 2.

equation (A4). (2) It gives the lowest energy δG. (3) The
matrix of the second derivatives of δG with respect to �o, �c,
and |Q| possesses only one nonpositive eigenvalue.

APPENDIX B: QUANTUM PHASE TRANSITION

To further characterize various phases and quantum phase
transitions discussed in Sec. III, we present the evolutions of
several physical quantities with the dimensionless scaled ĥo

in Fig. 7 for four typical values of δ. In the BCSo phase with
both |Q| = 0 and Po = 0, we find that the closed channel is

FIG. 9. Polarization of |e〉 state �n̄e(kx, ky ) when the FFo wave
vector Q (if nonzero) is aligned along the z axis, saying θ = 0. Other
parameters are the same as in Fig. 6 of the main text.

occupied macroscopically even in the BCS limit with δ � δres

due to the interchannel pair tunneling, as can be seen from
the closed channel fraction Fc. In the two-band regime of
δ/2μ � 1, the open and closed channels are approximately
equally populated with Fc ∼ 0.5, as shown in Figs. 7(a)–7(c).
However, when δ/2μ � 1, the system crosses over to the
single-band model with Fc significantly reduced from 0.5, as
in Fig. 7(d). In the Sarmao phase with |Q| = 0 and Po 	= 0, a
phase separation in momentum space is clearly observed and
verified by the density distribution (see Appendix C), which
results in detectable signatures of this state as discussed in
the main text and in Appendix D. In the FFo state with both
|Q| 	= 0 and Po 	= 0, the wave vector |Q| increases roughly
linearly with ho [59]. From the behavior of these quantities,
we conclude that, at the mean-field level, the phase transition
from the BCSo or Sarmao to the FFo phase is first order
(thick dotted lines in Fig. 2) [21,22], while the one from
the Sarmao or the FFo to the normal state (FPo or PPo) is
second order (thick solid lines in Fig. 2). It is remarkable
that the polarization Pc = (Nc,↓ − Nc,↑)/(Nc,↓ + Nc,↑) in the
closed channel is always zero in all phases including the FFo

state due to the large energy gap |�c| and hc = 0.

APPENDIX C: MOMENTUM DISTRIBUTIONS
OF SARMA SUPERFLUID

In alkaline-metal atomic gases, both the BCS and Sarma
SF states are homogeneous in spatial space. However, in
contrast with the BCS state, the Sarma state is usually sta-
bilized in the presence of large Zeeman energy (ZE) by
reducing the magnitude of the SF order parameter |�| to
become smaller than the corresponding ZE |h|. As a result,
this state is fully polarized around the chemical potential
and fully paired in the remained momentum space even
at zero temperature. In other words, the Sarma state is a
phase-separation state in momentum space [4,5]. Specifi-
cally, if |�| < h < (μ2 + |�|2)1/2, a fully polarized shell is
formed in momentum space between the two Fermi sur-
faces (FSs) at kF± = {2M[μ ± (h2 − |�|2)1/2]}1/2/h̄ where
quasiparticles are excited. While if h � (μ2 + |�|2)1/2, a
fully polarized ball can be seen below the FS with kF+ =
{2M[μ + (h2 − |�|2)1/2]}1/2/h̄.

In alkaline-earth-like 173Yb atomic gases, depending on
the values of ho and/or hc, the Sarma state can be stabilized in
the open or the closed channel. Here we take the SarmaoBCSc

state as an example with tunable ho and fixed hc = 0. In Fig. 8
we show the typical dispersions of quasiparticle excitations
Ek, j,± and the corresponding momentum distributions of
bare atoms nk, j,σ = 〈ĉ†

k, j,σ ĉk, j,σ 〉 in both channels. Here,

kF,o,+ = {2M[μo + (h2
o − �2

o)1/2]}1/2/h̄ for ho � |�o|,
kF,o,− = {2M[μo − (h2

o − �2
o)1/2]}1/2/h̄ for |�o| < ho <

(μ2
o + �2

o)1/2, and kF,o,− = 0 for ho � (μ2
o + �2

o)1/2.

APPENDIX D: DENSITY DISTRIBUTIONS IN A
HARMONIC TRAP

In the presence of an external 3D isotropic harmonic trap,
the characteristic length of the trap is much larger than other
length scales, thus the local density approximation works
well. By replacing the chemical potential μ j in Eq. (1) in
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Sec. II by the local chemical potential μ j (r) = μ j − Vext (r),
we get the local density

n j,↑↓(k, r) =1

2

[(
1 + ξ̄k, j (r)

Ek, j (r)

)
�(−Ek, j,±(r))

+
(

1 − ξ̄k, j (r)

Ek, j (r)

)
�(+Ek, j,∓(r))

]
. (D1)

The global chemical potential μ is constrained by the total
number of atoms N .

Comparing with the Figs. 6(a)–6(d), here we show the
signatures of the Sarma state in �n̄e(kx, ky) which can be
obtained by spin-selective time-of-flight imaging techniques.
As we can see, the contrast of �n̄e(kx, ky) in Fig. 9 becomes
even larger and more visible than the one of n̄e,↑(kx, ky),
especially around ho ≈ EF0 [Figs. 6(b1), 6(b2), and 9(b)]
where the density distributions between |o,↑〉 (|e,↑〉) and
|c,↓〉 (|e,↓〉) are comparable. Finally, the signature of Sarma
state almost disappears in Fig. 9(d) where it is dominated by
the density of the closed channel.
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