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Non-Hermitian Floquet topological phases in the double-kicked rotor
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Dynamical kicking systems possess rich topological structures. In this work we study Floquet states of matter
in a non-Hermitian extension of the double-kicked rotor model. Under the on-resonance condition, we find
various non-Hermitian Floquet topological phases, each being characterized by a pair of topological winding
numbers. A generalized mean chiral displacement is introduced to detect these winding numbers dynamically in
two symmetric time frames. Furthermore, by mapping the system to a periodically quenched lattice model, we
obtain the topological edge states and unravel the bulk-edge correspondence of the non-Hermitian double-kicked
rotor. These results reveal the richness of Floquet topological states in non-Hermitian dynamical kicking systems.
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I. INTRODUCTION

Floquet topological phases of matter emerge in systems un-
der time-periodic modulations. One class of Floquet systems
that has been shown to possess rich topological properties is
dynamical kicking systems [1]. They were first introduced
in the study of dynamical localization and quantum chaos,
with the kicked rotor (KR) being a prototypical example
[2–7]. Wang and Gong analyzed a modified version of the KR
(called the double-kicked rotor) [8] and discovered its fractal
quasienergy spectrum that mimics the Hofstadter butterfly in
quantum Hall effects [9]. Later, rich Floquet topological states
in the double-kicked rotor (DKR) were characterized and then
employed to achieve quantized acceleration in momentum
space [10]. The topological equivalence between the DKR and
the kicked Harper model [11], another prototypical dynamical
kicking system, has also been proved rigorously [12]. The
introduction of a spin-1/2 degree of freedom to the KR and
DKR further reveals the richness of Floquet topological states
that can appear in dynamical kicking systems [13–15].

In the past decade, Floquet topological phases have at-
tracted a great deal of interest across a broad range of research
areas. This is mainly due to the richness and high-tunability
of their topological properties [16–44], with potential appli-
cations in ultrafast electronics [45], quantum simulation [46],
and quantum computing [47]. The topological classification
of these dynamical states of matter also requires new schemes
[48–50] that go beyond their static cousins. Experimentally,
Floquet topological phases have been realized in cold-atom,
photonic, phononic, and acoustic systems [51–57].

In recent years, the study of Floquet topological phases has
been extended to the non-Hermitian domain [58,59]. There,
gain and loss or nonreciprocal effects were introduced to
make the evolution of Floquet systems nonunitary [60–64].
In quantum walk setups, gain and loss were implemented in
several studies to measure the topological invariants [65–73].
Furthermore, a periodically quenched nonreciprocal lattice
model has been found to possess abundant Floquet topological
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phases with arbitrarily many topological edge states induced
by non-Hermitian effects [74]. In dynamical kicking systems,
a PT -symmetric kicked rotor was proposed [75,76] and its
transport properties were investigated in [77]. However, none
of these works revealed the richness of non-Hermitian Floquet
topological phases in dynamical kicking systems.

In this work we introduce a DKR with complex kicking
strengths and unravel its fruitful non-Hermitian Floquet topo-
logical phases. After introducing our model in Sec. II, we
analyze its spectrum, symmetry, and topological properties
in Sec. III. A pair of integer winding numbers is introduced
to fully characterize the topological phases appearing in the
non-Hermitian DKR. We further extend the definition of mean
chiral displacement (MCD) to nonunitary evolution and use
it as a probe to extract the topological winding numbers of
the non-Hermitian DKR dynamically. By mapping our system
to a periodically kicked lattice model, we also present its
topological edge states under an open boundary condition
(OBC) and demonstrate its bulk-edge correspondence. We
summarize our work and discuss potential future directions
in Sec. IV.

II. MODEL

The DKR model is described by the Hamiltonian Ĥ =
p̂2

2 + κ1 cos(x̂ + β )
∑

�∈Z δ(t − �T ) + κ2 cos(x̂)
∑

�∈Z δ(t −
�T − τ ). It can be realized by cold atoms subject to
counterpropagating laser pulses in an optical lattice [78–80],
where x̂ and p̂ are position and momentum operators of cold
atoms. In a driving period T , the system is first kicked by a
lattice potential of strength κ1. Then it is evolved freely over
a time duration τ ∈ (0, T ), kicked by another lattice potential
of strength κ2, and then evolved freely over another time
duration T − τ . In addition, β is a controllable phase shift
between the two kicking potentials. The Floquet operator of
the DKR, obtained by integrating the Schrödinger equation
ih̄∂t |ψ〉 = Ĥ |ψ〉 over a complete driving period, e.g., from
t = �T − 0+ to t = (� + 1)T − 0+, is given by

Û = e−i(T −τ )( p̂2/2h̄)e−i(κ2/h̄) cos(x̂)e−iτ ( p̂2/2h̄)e−i(κ1/h̄) cos(x̂+β ).

(1)
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In the Floquet operator, the spatial periodicity of kicking
potentials allows the momentum p̂ to take eigenvalues p =
(n + η)h̄, where n ∈ Z and η ∈ (0, 1) are the conserved quasi-
momenta. For a Bose-Einstein condensate of large coherence
width, one can choose η = 0 [81,82]. The momentum p̂
is then quantized as p̂ = n̂h̄, i.e., integer multiples of the
effective Planck constant h̄. Furthermore, under the condition
h̄T = 4π [81–83], we obtain the on-resonance DKR (OR-
DKR) model, whose Floquet operator takes the form

Û = e+i(h̄τ/2)n̂2
e−iK2 cos(x̂)e−i(h̄τ/2)n̂2

e−iK1 cos(x̂+β ). (2)

Here K1 = κ1/h̄ and K2 = κ2/h̄ represent dimensionless kick-
ing strengths. It has been shown that this ORDKR model
possesses rich topological properties, including the Hofstadter
butterflylike Floquet spectrum [8], quasienergy bands with
large Chern numbers, and quantized Thouless pumping in
momentum space [10].

In this work we further investigate the Floquet topological
phases of the ORDKR in the non-Hermitian regime. More
specifically, we focus on the two-band situation by choosing
the time delay τ between the two kicks such that h̄τ = π . The
resulting non-Hermitian (NH) ORDKR model is described by
the Floquet operator

Û = ei(π/2)n̂2
e−iK2 cos(x̂)e−i(π/2)n̂2

e−iK1 cos(x̂+β ), (3)

where the kicking strengths

Kj = u j + iv j, j = 1, 2, (4)

now take complex values, with {u1, v1, u2, v2} ∈ R. For an
optical lattice, the imaginary parts of kicking strengths cor-
respond to particle losses, which may be generated by using
a resonant optical beam to kick the atoms out of the trap.
They may also be realized by applying a radio-frequency
pulse to excite atoms to an irrelevant state, leading to an
effective decay when atoms in that state experience a loss
by applying an antitrap [84]. In photonic systems, a complex
kicking strength corresponds to a complex refractive index,
whose imaginary part represents either loss or gain. This kind
of potential has interesting engineering applications, such as
realizing unidirectional transport of light [85] and other types
of laser devices [63]. In the following, we will unravel rich
Floquet topological phases in the NH ORDKR induced by
complex kicking lattice potentials.

III. FLOQUET TOPOLOGICAL PHASES
IN THE NH ORDKR

In this section we first analysis the Floquet operator of
the NH ORDKR in Eq. (3) and discuss the symmetry that
protects its topological properties. Next we investigate the
quasienergy spectrum and the conditions of topological phase
transitions in the NH ORDKR. A pair of integer topological
winding numbers is introduced to characterize each of its
Floquet topological phases. To detect these winding numbers
and distinguish different Floquet topological phases in the NH
ORDKR experimentally, we suggest the measurement of the
MCD of a wave packet in the optical lattice. Finally, we map
the Floquet operator of the NH ORDKR to a kicked lattice
model in the position representation and uncover its Floquet
edge states and bulk-edge correspondence under an OBC.

A. Floquet operator and chiral symmetry

The Floquet operator of the NH ORDKR, as defined in
Eq. (3), is translationally invariant over two sites, i.e., n̂ →
n̂ + 2, in the momentum lattice. By introducing a bipartite
lattice basis in momentum space and taking the periodic
boundary condition, we could express the Floquet operator of
the NH ORDKR as Û = ∑

θ U (θ )|θ〉〈θ |, where

U (θ ) = e+i(π/4)σz e−iK2[cos (θ/2)σx+sin (θ/2)σy]

× e−i(π/4)σz e+iK1[cos (θ/2)σx+sin (θ/2)σy], (5)

with

K1 ≡ K1 sin
θ

2
, K2 ≡ K2 cos

θ

2
, (6)

θ ∈ [−π, π ) being the conserved quasiposition due to trans-
lational symmetry in momentum space, and σx,y,z being Pauli
matrices in their usual representation [see Appendix A for
derivation details of Eq. (5)]. We have also set the phase delay
between two kicks to be β = π

2 , which allows U (θ ) to possess
nontrivial topological phases when K1,2 takes real values [10].

To characterize the symmetry and topological properties
of U (θ ), we introduce a pair of symmetric time frames by
resetting the start time of the evolution. In these time frames,
U (θ ) takes the form

U1(θ ) = e−i(K2/2)[cos (θ/2)σx+sin (θ/2)σy]e−iK1[sin (θ/2)σx−cos (θ/2)σy]

× e−i(K2/2)[cos (θ/2)σx+sin (θ/2)σy], (7)

U2(θ ) = e+i(K1/2)[cos (θ/2)σx+sin (θ/2)σy]e−iK2[sin (θ/2)σx−cos (θ/2)σy]

× e+i(K1/2)[cos (θ/2)σx+sin (θ/2)σy]. (8)

Note that both U1(θ ) and U2(θ ) are similar to U (θ ) (see
Appendix A for more details). Therefore, they share the same
Floquet spectrum with U (θ ) even if K1 and K2 are complex
numbers. Furthermore, under the unitary transformation  =
σz, we have

Uα (θ ) = U −1
α (θ ), α = 1, 2, (9)

which means that U1(θ ) and U2(θ ) have the chiral (sublattice)
symmetry . According to the symmetry classification of
chiral symmetric Floquet systems in one dimension [39] and
its extension to non-Hermitian systems [74], each topological
phase of U (θ ) can be described by a pair of integer winding
numbers extracted from U1(θ ) and U2(θ ). We will analyze
the spectrum and topological properties of the NH ORDKR
in detail in the following sections.

B. Quasienergy dispersion, topological invariants,
and phase diagram

Expanding U1(θ ) and U2(θ ) by the Euler formula and
recombining the resulting terms, we can express Eqs. (7) and
(8) in a compact form as

Uα (θ ) = e−iE (θ )(nαxσx+nαyσy ), (10)

where α = 1, 2 and

E (θ ) = arccos(cosK1 cosK2) (11)
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gives the quasienergy dispersion relation ±E (θ ). Since the
real part of E (θ ) is only defined modulus 2π , the quasienergy
spectral gap closes when ImE (θ ) = 0 and ReE (θ ) = 0 or
±π . When the spectrum becomes gapless, a topological
phase transition may happen. Furthermore, (nαx, nαy ) forms
a complex-valued vector with n2

αx + n2
αy = 1 for α = 1, 2 (see

Appendix B for more details). Using these vectors, we can
define a winding number for Uα (θ ) as

να =
∫ π

−π

dθ

2π
(nα × ∂θnα )z, α = 1, 2. (12)

It is not hard to see that να take real values, as the imaginary
part of nα ≡ (nαx, nαy ) has no winding in the Brillouin zone
[74]. Then, following the description of chiral symmetric
non-Hermitian Floquet systems [74], the topological phases
of U (θ ) can be characterized by a pair of integer winding
numbers, given by1

ν0 = ν1 + ν2

2
, νπ = ν1 − ν2

2
. (13)

In the Hermitian limit (imaginary parts of the two kicking
strengths v1 = v2 = 0), ν0 and νπ also predict the number
of topological edge modes at quasienergy zero and π in the
ORDKR model [10].

In the following, we will analyze the spectrum and topo-
logical phases of ORDKR under three representative non-
Hermitian kicking potentials: (i) v1 �= 0 and v2 = 0 or vice
versa, (ii) v1 = v2 = v �= 0, and (iii) v1 �= v2 with v1, v2 �= 0.
In each case, we give the condition of topological phase tran-
sition, computing winding numbers for each of the topological
phases and constructing the corresponding topological phase
diagram.

1. Case (i)

We first consider the case when only one of the kicking
strengths (K1 or K2) in Eq. (4) is complex. Under the gapless
condition cos[E (θ )] = ±1, it can be shown that if v1 �= 0 and
v2 = 0, u1, u2, and v1 in Eq. (4) satisfy the equation (see
Appendix C for derivation details)

v1 = u1

nπ
arccosh

⎡
⎣ ±1

cos
(
u2

√
1 − n2π2

u2
1

)
⎤
⎦, n ∈ Z. (14)

Similarly, if v2 �= 0 and v1 = 0, the gapless condition yields

v2 = u2

nπ
arccosh

⎡
⎣ ±1

cos
(
u1

√
1 − n2π2

u2
2

)
⎤
⎦, n ∈ Z. (15)

Note that Eqs. (14) and (15) are symmetric under the exchange
of subindices 1 ↔ 2. So we can focus on the non-Hermitian
Floquet topological phases and phase transitions related to
only one of them without loss of generality.

1In calculations, we take absolute values on the right-hand side of
Eq. (13) to compute (ν0, νπ ). In a topological sense, ν0 = ±1 do not
distinguish two different topological phases. The sign of the winding
number could depend on the choice of conventions.

FIG. 1. Evolution of the winding numbers ν0 (blue solid line) and
νπ (red dashed line) vs the imaginary part of the kicking strength
K2 = u2 + iv2. The system parameters are chosen as u1 = 0.5π ,
u2 = 5.5π , and v1 = 0. The numerical values of p1, p2, p3, p4, and
p5 along the v axis are obtained analytically from Eq. (15) with
n = 1, 2, 3, 4, 5.

To check whether a nonvanishing imaginary part of K1 or
K2 could induce new topological phases in the NH ORDKR,
we need to investigate the behavior of winding numbers (12)
versus this imaginary part. A representative example is shown
in Fig. 1, where we choose u1 = 0.5π and u2 = 5.5π for the
real parts of kicking strengths. According to Ref. [10], this
choice leads to a Floquet topological phase with (ν0, νπ ) =
(2, 3) in the Hermitian limit. In Fig. 1 we observe that with the
increase of imaginary kicking strength v2, a series of topologi-
cal phase transitions happens at v2 = pn, with n = 1, . . . , 5 in
Eq. (15). Each transition is accompanied by the vanishing of
a spectral gap, together with the quantized change of winding
number ν0 (blue solid line) or νπ (red dashed line) by 1. In the
limit v2 → ∞, the system ends in a topologically trivial phase
with ν0 = νπ = 0.

Therefore, we conclude that a nonvanishing imaginary
part in the kicking strength K1 or K2 of the NH ORDKR
could indeed induce topological phase transitions and create
non-Hermitian Floquet topological phases, with each char-
acterized by a pair of integer quantized winding numbers
(ν0, νπ ). In more general situations, analytical solutions for
the gap closing conditions like Eqs. (14) and (15) may not be
available. We will consider these cases in the following.

2. Case (ii)

In this case, both kicking strengths K1 and K2 take complex
values under the constraint that their imaginary parts are
equal, i.e., v1 = v2 = v. Using the gapless condition (see Ap-
pendix C for more details) and the winding numbers (ν0, νπ ),
we could then numerically characterize the Floquet topologi-
cal phases of the NH ORDKR at different imaginary kicking
strength v. Two representative examples will be discussed as
in the following.
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FIG. 2. Evolution of quasienergy gap functions �0 (red solid
line) and �π (blue dashed line) [see Eqs. (C8) and (C9) for the
definitions] and winding numbers ν0 (red circles) and νπ (blue
stars) vs the imaginary parts of kicking strengths K1 = u1 + iv and
K2 = u2 + iv. The system parameters are chosen as u1 = 6.5π and
u2 = 0.5π . The numerical values of y1, y3, and y5 (y2, y4, and y6)
along the v axis are obtained by searching for the local minimum of
the gap function �0 (�π ) around quasienergy E = 0 (E = π ).

In the first example, we choose u1 = 6.5π and u2 = 0.5π

for the real parts of two kicking strengths. When v = 0,
the system is in a Hermitian Floquet topological phase with
ν0 = νπ = 3. As shown in Fig. 2, increasing the imaginary
kicking strength v yields consecutive Floquet topological
phase transitions. Each transition happens when one of the
gap functions (�0,�π ) [see Eqs. (C8) and (C9)] vanishes,
accompanied by a quantized change of ν0 or νπ by 1. In the
limit v → ∞, the system becomes topologically trivial, with
ν0 = νπ = 0. Similar patterns of topological phase transitions
are observed by exchanging the values of u1 and u2 for the two
kicking strengths.

In the second example, we take u1 = u2 = u, which further
indicates that K1 = K2. Plugging this condition into Eq. (13),
we will always have ν1 = ν2. Therefore, we can obtain the
topological phase diagram of the NH ORDKR versus u and
v, with each phase characterized only by ν0. A representative
portion of the phase diagram is shown in Fig. 3. Interestingly,
we see that the increase of both u and v could induce topolog-
ical phase transitions in the NH ORDKR. This further reveals
the possibility of generating rich Floquet topological states in
the ORDKR by complex kicking potentials.

3. Case (iii)

In this case, we allow both K1 and K2 to be complex,
with no constraint on their imaginary parts. The resulting
topological phase diagrams versus v1 and v2, with (u1, u2) =
(0.5π, 5.5π ) and (u1, u2) = (5.5π, 0.5π ), are shown in
Figs. 4 and 5, respectively. In each phase diagram, panels (a)
and (b) correspond to the values of winding numbers ν0 and
νπ , respectively. A region with a uniform color refers to a
parameter domain in which ν0 [Figs. 4(a) and 5(a)] and νπ

FIG. 3. Topological phase diagram of the NH ORDKR vs real
and imaginary parts of kicking strengths K1 = K2 = u + iv. Each
region with a uniform color corresponds to a Floquet topological
phase of the NH ORDKR, with the numerical value of the winding
number ν0 shown in the figure.

[Figs. 4(b) and 5(b)] take the same value. We see that with
the change of v1 and v2, a couple of non-Hermitian Floquet
topological phases are induced, with each characterized by
the winding numbers (ν0, νπ ). Across the boundary between
two topological phases, a quantized change of ν0 or νπ is
observed, which indicates the existence of a topological phase
transition.

To sum up, we find that topological phase transitions are
generic in the NH ORDKR model and rich non-Hermitian

FIG. 4. Topological phase diagram of the NH ORDKR vs imagi-
nary parts of kicking strengths K1 = u1 + iv1 and K2 = u2 + iv2. The
system parameters are chosen as u1 = 0.5π and u2 = 5.5π . Each
region with a uniform color corresponds to a Floquet topological
phase of the NH ORDKR, with the numerical values of winding
numbers (a) ν0 and (b) νπ shown.
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FIG. 5. Topological phase diagram of the NH ORDKR vs imagi-
nary parts of kicking strengths K1 = u1 + iv1 and K2 = u2 + iv2. The
system parameters are chosen as u1 = 5.5π and u2 = 0.5π . Each
region with a uniform color corresponds to a Floquet topological
phase of the NH ORDKR, with the numerical values of winding
numbers (a) ν0 and (b) νπ shown.

Floquet topological phases could emerge under the effect of
complex kicking potentials. In the following section we intro-
duce a dynamical indicator, the MCD, to detect the winding
numbers of these non-Hermitian Floquet topological phases.

C. MCD and winding numbers

The MCD describes the shift of a localized wave packet in
a bipartite lattice over a long-time duration. It was proposed
as a way to detect the winding numbers of chiral symmet-
ric topological insulators in one dimension [86,87]. In later
studies, the MCD was applied to extract the winding numbers
of Floquet systems [15] and was extended to two-dimensional
systems with higher-order topological states [88]. In this work
we generalize the MCD to non-Hermitian chiral symmetric
Floquet systems and use it as a dynamical probe of the
winding numbers of the NH ORDKR.

For a non-Hermitian Floquet system with chiral symmetry
, we define the chiral displacement as

Cα (t ) ≡ Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

]
, (16)

where α = 1, 2 is the index of a symmetric time frame, t is
the number of driving periods, and n̂ is the unit cell position
operator (or momentum operator if the lattice is in momentum
space). The initial state ρ0 = |0〉〈0|⊗σ0

2 describes a uniform
mixture of sublattice eigenstates |a〉 and |b〉 in the 0’s unit
cell of the lattice. The choice of ρ0 here is different from the
case in the Hermitian limit, in which the initial state occupies
only a single sublattice in the 0’s unit cell. Furthermore, the
Floquet operator ˆ̃Uα is different from Ûα (the Floquet operator
of the system in the α’s time frame), in the sense that if |ψ〉 is
a right eigenvector of Ûα with quasienergy E , then it is a left
eigenvector of ˆ̃Uα with the same quasienergy.

With these definitions and after relatively straightforward
calculations (see Appendix D for more details), the (normal-
ized) MCD in the long-time limit is given by

Cα = lim
t→∞

1

t

t∑
t ′=1

∫ π

−π

dθ

2π

(nα × ∂θnα )z

1 + | cot(Et ′)|2

= να

2
. (17)

Here nα = (nαx, nαy) is the winding vector of the Floquet op-
erator in the α’s time frame (α = 1, 2). For the NH ORDKR,
explicit expressions of (nαx, nαy ) are given by Eqs. (B3)–(B6).
Note that a normalization factor is introduced during the
derivation of Eq. (17), which helps to cancel the effects of gain
or loss on the amplitude of the evolving state. To reach the
second equality of Eq. (17), we note that 1

1+|cot(Et ′ )|2 = 1
2 {1 −

cos[2 Re(E )t ′]/cosh[2 Im(E )t ′]}. When Im(E ) = 0, we have
an oscillating factor 1

2 {1 − cos[2 Re(E )t ′]}, which will be
averaged to 1

2 under limt→∞ 1
t

∑t
t ′=1. When Im(E ) �= 0, the

ratio cos[2 Re(E )t ′]/cosh[2 Im(E )t ′] will approach 0 quickly
at large t ′, leaving only a factor 1

2 in 1
1+|cot(Et ′ )|2 . Therefore,

we have limt→∞ 1
t

∑t
t ′=1

1
1+|cot(Et ′ )|2 → 1

2 and the other terms
under the integral of Eq. (17) give nothing but the winding
number να . The winding numbers (ν0, νπ ) can then be ob-
tained from Cα as

ν0 = |C1 + C2|, νπ = |C1 − C2|. (18)

Importantly, even though the dispersion E (θ ) of the NH
ORDKR is complex valued in general, the MCD as defined in
Eq. (16) could still capture the topological winding numbers
of the system dynamically, which emphasize its generality as
a tool in probing non-Hermitian topological phases with chiral
symmetry.

In Fig. 6 we show the winding numbers ν0 (solid line)
and νπ (dashed line) of the NH ORDKR calculated by the
theoretical equations (12) and (13), together with |C1 + C2|
(C0 in the figure, denoted by circles) and |C1 − C2| (Cπ in
the figure, denoted by triangles) calculated numerically by
Eq. (17). Other system parameters are chosen as u1 = 5.5π ,
u2 = 0.5π , and v2 = 0. It is clear that the theoretical predic-
tions of (ν0, νπ ) and numerical results of MCD are consistent
with each other, which verifies Eq. (18).

In Fig. 7 we give another example of MCD versus wind-
ing numbers, in which the system parameters are u1 = 0.5π

and u2 = 6.5π and the imaginary parts of the two kicking
strengths are equal. In this case, we again observe nice con-
sistency between the MCD and winding numbers of the NH
ORDKR within each of its topological phases. Therefore, we
conclude that the MCD, as defined by Eq. (17), can be used as
a generic probe of the topological winding numbers and topo-
logical phase transitions of one-dimensional non-Hermitian
Floquet systems with chiral symmetry. To detect MCD in
experiments, one may first prepare the mixed state ρ0 with
zero momentum and then evolve it in two different symmetric
time frames and measure the shift of its center over a different
number of driving periods in each time frame. Equations (18)
and (17) can then be used to predict the topological winding
numbers of the corresponding non-Hermitian Floquet system.
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FIG. 6. The MCDs C0 = |C1 + C2| (blue circles) and Cπ =
|C1 − C2| (red triangles) and winding numbers ν0 (yellow solid line)
and νπ (purple dashed line) vs the imaginary part of the kicking
strength K1 = u1 + iv1. The system parameters are set as u1 = 5.5π

and K2 = u2 = 0.5π and the results for C0 and Cπ are averaged over
t = 50 kicking periods. Here v1 = p5 to v1 = p1 correspond to gap
closing points obtained from Eq. (14) with n = 5, 4, 3, 2, 1.

D. Edge states and bulk-edge correspondence

The bulk-edge correspondence relates the number of topo-
logical edge states to the bulk topological invariant of the
considered system. It forms an important recipe in the charac-
terization of topological phases both theoretically and exper-
imentally. The bulk-edge correspondence in non-Hermitian
systems can be more complicated [89,90] due to the existence
of high-order exceptional points [91,92] and the so-called
non-Hermitian skin effect [93]. In an earlier study it was

FIG. 7. The MCDs C0 = |C1 + C2| (blue circles) and Cπ =
|C1 − C2| (red triangles) and winding numbers ν0 (yellow solid
line) and νπ (purple dashed line) vs the imaginary parts of kicking
strengths K1 = u1 + iv and K2 = u2 + iv. The system parameters are
set as u1 = 0.5π and u2 = 6.5π and the results for C0 and Cπ are
averaged over t = 50 kicking periods.

FIG. 8. Floquet spectrum of the NH ORDKR vs v under an
OBC for kicking strengths K1 = 5.5π + iv and K2 = 0.5π + iv. The
number of unit cells is chosen as N = 4000 in the calculation.

shown that the bulk-edge correspondence can be recovered in
non-Hermitian Floquet systems under appropriate conditions
[74]. Below we demonstrate that the bulk-edge correspon-
dence also holds in the NH ORDKR.

For the ORDKR, the lattice is defined in momentum space,
where it is not straightforward to take an OBC and investigate
the properties of edge states. To study the bulk-edge corre-
spondence in the NH ORDKR, we can map its Hamiltonian
to a periodically quenched lattice in position space. The
resulting Floquet operator, according to Eqs. (A8)–(A10), can
be expressed as

Û = exp

(
i
π

4

∑
n

|n〉〈n|σz

)

× exp

(
−i

K2

2

∑
n

(|n〉〈n|σ+ + |n〉〈n + 1|σ− + H.c.)

)

× exp

(
−i

π

4

∑
n

|n〉〈n|σz

)

× exp

(
−i

K1

2

∑
n

i(|n〉〈n|σ+ + |n〉〈n + 1|σ− − H.c.)

)
,

(19)

where n is now interpreted as the unit cell index of a real-space
lattice and the Pauli matrices operate in the space of its sublat-
tices. In this periodically quenched lattice model, the complex
potentials K1 and K2 can be realized by introducing nonre-
ciprocal hoppings and on-site gain or loss inside a unit cell
and among nearest-neighbor unit cells. The implementation of
these effects should be within reach in current photonic-based
experimental setups [94].

The quasienergy spectrum and edge states of Û can now be
obtained by solving the Floquet eigenvalue equation Û |ψ〉 =
e−iE |ψ〉 under the OBC. In Fig. 8 we show the Floquet
spectrum of Û for u1 = 5.5π , u2 = 0.5π , and v1 = v2 = v. In
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FIG. 9. Number of edge states at quasienergies 0 (n0) and ±π

(nπ ) vs the imaginary parts of kicking strengths K1 = u1 + iv1 and
K2 = u2 + iv2 in the NH ORDKR. The system parameters are chosen
as u1 = 5.5π , u2 = 0.5π , and v1 = v2 = v. The number of unit cells
is N = 4000. The bulk Floquet spectrum is gapless at quasienergy 0
or π when v = y1, y2, y3, y4, y5, as obtained from the conditions (C8)
and (C9).

the bottom panel we observe edge states pinned at quasiener-
gies 0 and π in different regimes of the parameter space, with
their numbers changing when the quasienergy gap closes at
E = 0 or E = ±π .

In Fig. 9 we further show the number of topological
edge states n0 at quasienergy 0 (red solid line) and nπ at
quasienergy ±π (blue dashed line) by computing the inverse
participation ratio, with the same parameter choices as in
Fig. 8. Here y1 ∼ y5 along the v axis corresponds to the gap
closing points of the bulk quasienergy spectrum obtained from
Eq. (11). We see that each time the gap closes at quasienergy
0 (π ), n0 (nπ ) will get a quantized change by 2, corresponding
to a topological phase transition with winding number ν0 (νπ )
changing by 1. In other regions, the bulk-edge correspondence
described by the relations

n0 = 2ν0, nπ = 2νπ (20)

holds as in Hermitian Floquet systems, with a small deviation
around y5 due to finite-size effects. Equation (20) has also
been checked numerically in other parameter regimes of the
NH ORDKR, with similar results obtained. Therefore, we
conclude that the bulk-edge correspondence in the NH OR-
DKR, as described by Eq. (20), holds in the same way as in the
Hermitian ORDKR. Experimentally, the non-Hermitian Flo-
quet topological edge states have been observed in photonic
quantum walks [94]. We expect the relation (20) of the NH
ORDKR to be verifiable in similar experimental setups.

IV. CONCLUSION

In this work we investigated Floquet topological phases in
a non-Hermitian extension of the double-kicked rotor, which
is a prototypical example of a dynamical kicking system.
Under the on-resonance condition, the system possesses rich
non-Hermitian Floquet topological phases protected by chiral
symmetry. The topological phase diagram of the NH ORDKR
was obtained, with each of its phase being characterized by
a pair of integer winding numbers. These winding numbers
could be detected dynamically by measuring the mean chiral
displacement in two symmetric time frames. Furthermore, by

mapping our model to a periodically quenched lattice, we
found its topological edge states. The number of these states at
quasienergies 0 and ±π in each topological phase is precisely
counted by the winding numbers of bulk states, revealing the
bulk-edge correspondence of the NH ORDKR.

In future studies, more fruitful topological structures are
expected to appear in non-Hermitian dynamical kicking sys-
tems after introducing spin degrees of freedom and many-
body interactions. Interesting examples include the recently
discovered Floquet non-Hermitian skin effect [95] in momen-
tum space and the non-Hermitian counterpart of Floquet topo-
logical time crystals [47]. New schemes that go beyond the
existing 38-fold way for classification of static non-Hermitian
topological phases [96,97] should be required to achieve a
full characterization of these non-Hermitian Floquet states
[98]. On the application side, the mean chiral displacement
proposed in this work could assist the future experimental
detection of topological invariants in non-Hermitian Floquet
systems. Furthermore, with the promising proposal of Floquet
topological quantum computing [47] and Floquet quantum
state transfer [99], it would be interesting to investigate the
potential of the Floquet topological edge states found in
this work in achieving quantum computing and quantum
information transfer against environmental effects that can be
modeled by non-Hermitian Hamiltonians.
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APPENDIX A: FLOQUET OPERATOR IN
DIFFERENT REPRESENTATIONS

The Floquet operator of the NH ORDKR, as given by
Eq. (3), can be expressed in the momentum lattice representa-
tion as follows. We first write its component terms as

e±(π/2)n̂2 = e±i(π/4) exp

(
± i(π/4)

∑
�

(|2� − 1〉〈2� − 1|

− |2�〉〈2�|)
)

, (A1)

e−iK1 cos(x̂+β ) = exp

(
− i(K1/2)

∑
�

(eiβ |2� − 1〉〈2�|

+ eiβ |2�〉〈2� + 1| + H.c.)

)
, (A2)

e−iK2 cos(x̂) = exp

(
− i(K2/2)

∑
�

(|2� − 1〉〈2�|

+ |2�〉〈2� + 1| + H.c.)

)
, (A3)

where the resolution identity I = ∑
� |�〉〈�| has been inserted

to arrive at the expansions. Since Eq. (3) is invariant under
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the translation over two sites in momentum space, we could
decompose the momentum space lattice into two chains con-
taining only odd and even sites, denoted by sublattice indices
a and b, respectively. A unit cell of the momentum space
lattice now contains two sublattice sites and we can introduce
Pauli matrices in the sublattice representation as

σx = |a〉〈b| + |b〉〈a|, (A4)

σy = i(|b〉〈a| − |a〉〈b|), (A5)

σz = |a〉〈a| − |b〉〈b|. (A6)

The sublattice raising and lower operators can also be ex-
pressed as

σ± = σx + iσy

2
. (A7)

In this bipartite lattice representation, Eqs. (A1)–(A3) can be
written as

e±(π/2)n̂2 = e±i(π/4) exp

(
±i

π

4

∑
n

|n〉〈n|σz

)
, (A8)

e−iK1 cos(x̂+β ) = exp

(
− i

K1

2

∑
n

(eiβ |n〉〈n|σ+

+ eiβ |n〉〈n + 1|σ− + H.c.)

)
, (A9)

e−iK2 cos(x̂)

= exp

(
−i

K2

2

∑
n

(|n〉〈n|σ+ + |n〉〈n + 1|σ− + H.c.)

)
,

(A10)

where n is the unit cell index. Performing the Fourier trans-
forms |n〉 = ∑

θ e−inθ |θ〉 and 〈n| = ∑
θ einθ 〈θ | on Eqs. (A8)–

(A10) and choosing β = π
2 , we arrive at

e±(π/2)n̂2 = e±i(π/4) exp

(
±i

π

4

∑
θ

|θ〉〈θ |σz

)
, (A11)

e−iK1 cos(x̂+β ) = exp

(
−i

K1

2

∑
θ

|θ〉〈θ |(iσ++ieiθσ−+H.c.)

)
,

(A12)

e−iK2 cos(x̂) = exp

(
−i

K2

2

∑
θ

|θ〉〈θ |(σ+ + eiθσ− + H.c.)

)
.

(A13)

Combing these terms in sequential order and using Eq. (A7),
we obtain the Floquet operator of the NH ORDKR in the form
Û = ∑

θ U (θ )|θ〉〈θ |, with

U (θ ) = e+i(π/4)σz e−i(K2/2)[(1+cos θ )σx+sin θσy]

× e−i(π/4)σz e+i(K1/2)[sin θσx+(1−cos θ )σy]. (A14)

Finally, using trigonometric relations sin θ = 2 sin θ
2 cos θ

2
and cos θ = 2 cos2 θ

2 − 1 = 1 − 2 sin2 θ
2 , we arrive at Eq. (5).

Further, U (θ ) can be expressed in the two symmetric time
frames as discussed in the main text. To do so, we first shift the
starting time of the evolution to the start of the second half of

the driving period and split the kick e−i(K2/2)[(1+cos θ )σx+sin θσy]

into two “half kicks” at the start and end of the shifted
evolution. The resulting Floquet operator in this new time
frame is given by

U1(θ ) = e−i(K2/2)[cos (θ/2)σx+sin (θ/2)σy]

× e−i(π/4)σz e+iK1[cos (θ/2)σx+sin (θ/2)σy]e+i(π/4)σz

× e−i(K2/2)[cos (θ/2)σx+sin (θ/2)σy]. (A15)

Similarly, by splitting e+iK1[cos (θ/2)σx+sin (θ/2)σy] into two half
kicks and shifting one of them to the end of the evolution,
U (θ ) in Eq. (A14) becomes

U2(θ ) = e+i(K1/2)[cos (θ/2)σx+sin (θ/2)σy]

× e+i(π/4)σz e−iK2[cos (θ/2)σx+sin (θ/2)σy]e−i(π/4)σz

× e+i(K1/2)[cos (θ/2)σx+sin (θ/2)σy]. (A16)

It is clear that both U1(θ ) and U2(θ ) are related to U (θ ) by
similarity transformations. Finally, using the transformations
e∓i(π/4)σzσxe±i(π/4)σz = ±σy and e∓i(π/4)σzσye±i(π/4)σz = ∓σx,
Eqs. (A15) and (A16) simplify to Eqs. (7) and (8), respec-
tively.

APPENDIX B: EXPLICIT EXPRESSIONS OF THE
FLOQUET OPERATORS

Using the Euler formula eiφn·σ = cos φ + i sin φn · σ, we
can expand each exponential of Eqs. (7) and (8). The resulting
terms can be recombined to give

U1(θ ) = cosK1 cosK2

− i

[
cos

θ

2
cosK1 sinK2 + sin

θ

2
sinK1

]
σx

− i

[
sin

θ

2
cosK1 sinK2 − cos

θ

2
sinK1

]
σy (B1)

and

U2(θ ) = cosK1 cosK2

− i

[
− cos

θ

2
sinK1 cosK2 + sin

θ

2
sinK2

]
σx

− i

[
− sin

θ

2
sinK1 cosK2 − cos

θ

2
sinK2

]
σy.

(B2)

By setting cos[E (θ )] = cosK1 cosK2, it is straightforward
to see that E (θ ) = arccos(cosK1 cosK2), and Eqs. (B1) and
(B2) have the form of Eq. (10), with

n1x =cos θ
2 cosK1 sinK2 + sin θ

2 sinK1

sin E (θ )
, (B3)

n1y = sin θ
2 cosK1 sinK2 − cos θ

2 sinK1

sin E (θ )
, (B4)

n2x =− cos θ
2 sinK1 cosK2 + sin θ

2 sinK2

sin E (θ )
, (B5)

n2y =− sin θ
2 sinK1 cosK2 − cos θ

2 sinK2

sin E (θ )
. (B6)
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APPENDIX C: GAPLESS CONDITIONS

We present derivation details for the gap closing condi-
tions. Using the shorthand notation

u1 ≡ u1 sin
θ

2
, u2 ≡ u2 cos

θ

2
, (C1)

v1 ≡ v1 sin
θ

2
, v2 ≡ v2 cos

θ

2
, (C2)

we can express the gap closing condition as

cos E = cos(u1 + iv1) cos(u2 + iv2) = ±1. (C3)

When v1 �= 0 and v2 = 0, this condition is equivalent to

cos u1 cosh v1 cos u2 = ±1, (C4)

sin u1 sinh v1 cos u2 = 0. (C5)

It is clear that to satisfy both equations, cos u2 cannot be
zero. Furthermore, if sinh v1 = 0, we must have sin θ

2 = 0,
and Eq. (C5) will be satisfied only if cos(u2) = ±1, which
is a very special condition that is irrelevant to the value of
v1. Therefore, Eq. (C5) is generally satisfied if sin u1 = 0,
yielding sin θ

2 = nπ
u1

for nπ � u1 with n ∈ N. Plugging this
relation into Eq. (C4) and regrouping the relevant terms, we
obtain Eq. (14). Equation (15) can be derived in a similar
manner.

In more general situations, the gapless condition can be
extracted numerically. We first separate Eq. (C3) into its real
part f and imaginary part g. Expressed in terms of f and g,
the Floquet spectrum is gapless when

±1 = f = cos u1 cos u2 cosh v1 cosh v2

− sin u1 sin u2 sinh v1 sinh v2 (C6)

and

0 = g = cos u1 sin u2 cosh v1 sinh v2

+ sin u1 cos u2 sinh v1 cosh v2. (C7)

Using f and g, we could further introduce a pair of func-
tions (�0,�π ) to characterize the size of spectral gaps at
quasienergies E = 0 and E = ±π , respectively. Explicitly,
these functions are defined as

�0 =
√

( f − 1)2 + g2, (C8)

�π =
√

( f + 1)2 + g2. (C9)

Therefore, the spectrum becomes gapless at the center (edge)
of the quasienergy Brillouin zone if �0 = 0 (�π = 0).

APPENDIX D: DERIVATION OF THE
MEAN CHIRAL DISPLACEMENT

We provide derivation details for Eq. (17) in this Appendix.
In the definition of chiral displacement by Eq. (16), we can
insert the identity in the lattice representation to yield

Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

]
= 1

2

∑
n

∑
s,s′=a,b

n〈0|〈s| ˆ̃U †t
α |n〉|s′〉〈s′|〈n|Û t

α|0〉|s〉. (D1)

Expressing Ûα and ˆ̃U †
α in the quasiposition (or quasi-

momentum for real-space lattices) representation as Ûα =∑
θ |θ〉Uα (θ )〈θ | and ˆ̃U †

α = ∑
θ |θ〉Ũ †

α (θ )〈θ |, with Uα (θ ) and
Ũ †

α (θ ) being 2 × 2 matrices in the sublattice representation,
we further obtain

Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

] = 1

2

∑
n

∑
θθ ′

n〈0|θ〉〈θ |n〉〈n|θ ′〉〈θ ′|0〉

× Tr
[
Ũ †t

α (θ )Ut
α (θ ′)

]
, (D2)

where the trace is now taken over the sublattice degrees of
freedom. Using the Fourier transform relations

|θ〉 = 1√
N

∑
n

eiθn|n〉,

|n〉 = 1√
N

∑
n

e−iθn|n〉, (D3)

〈n|θ〉 = 1√
N

eiθn,

we can simplify the numerator to

Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

]
= 1

2

∑
n

∑
θθ ′

n
1

N2
ein(θ ′−θ )Tr

[
Ũ †t

α (θ )Ut
α (θ ′)

]
. (D4)

Using the relation
1

N

∑
n

nei(θ ′−θ )n = i∂θ

1

N

∑
n

ei(θ ′−θ )n = i∂θδθθ ′ , (D5)

we find

Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

]
= 1

2

∑
θθ ′

1

N
i∂θδθθ ′Tr

[
Ũ †t

α (θ )Ut
α (θ ′)

]
. (D6)

In the continuous limit (N → ∞), we have δθθ ′ → 2π
N δ(θ −

θ ′) and
∑

θ,θ ′ → N2
∫ π

−π
dθ
2π

∫ π

−π
dθ ′
2π

. Combining this into Eq.
(D6) then leads to

Cα (t ) = Tr
[
ρ0

ˆ̃U †t
α (n̂ ⊗ )Û t

α

]
= 1

2

∫ π

−π

dθ

2π
Tr

[
Ũ †t

α (θ )i∂θUt
α (θ )

]
. (D7)

Inserting the normalization factor 1
2 Tr[Ũ †t

α (θ )Ut
α (θ )] at each θ

(since the evolution will change the normal of the state) and
taking the long-time average limt→∞ 1

t

∑t
t ′=1, we obtain the

expression for MCD as

Cα = lim
t→∞

1

t

t∑
t ′=1

∫ π

−π

dθ

2π

Tr
[
Ũ †t ′

α (θ )i∂θUt ′
α (θ )

]
Tr

[
Ũ †t ′

α (θ )Ut ′
α (θ )

] . (D8)

For the NH ORDKR, we have  = σz, Uα (θ ) = e−iE (nα ·σ),
and Ũ †

α (θ ) = e+iE∗(nα ·σ ). Plugging these into Eq. (D8), the
numerator and denominator become, respectively,

Tr
[
Ũ †t ′

α (θ )Ut ′
α (θ )

] = 2[| cos(Et ′)|2 + | sin(Et ′)|2], (D9)

Tr
[
Ũ †t ′

α (θ )i∂θUt ′
α (θ )

] = 2| sin(Et ′)|2(nα × ∂θnα )z. (D10)

Combining these into Eq. (D8), we finally obtain Eq. (17).
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