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Doublon dynamics of Bose-Fermi mixtures in optical lattices
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We study the out-of-equilibrium dynamics of a dilute, lattice-confined Bose-Fermi mixture initialized in a
highly excited state consisting of boson-fermion pairs (doublons) occupying single lattice sites. This system
represents a paradigmatic case for studying relaxation dynamics in strongly correlated systems, and provides a
versatile platform for studying thermalization and localization phenomena. We provide analytical expressions for
the short-time decay of isolated doublons and small doublon clusters due to the competition between tunneling
and interparticle interactions. We also discuss a mechanism for long-time decay that crucially depends on the
quantum statistics of the particles constituting the doublon, namely, the conversion of pairs of neighboring
doublons into an unpaired fermion and a site with a fermion and two bosons. Building on these insights, we
develop a cluster expansion method to describe the dynamics in extended systems and compare it to numerically
exact matrix product state simulations in one dimension. Finally, we discuss how our predictions can be observed
in experiments with ultracold heteronuclear molecules.
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I. INTRODUCTION

Understanding the relaxation dynamics of quantum sys-
tems out of equilibrium is vital to many outstanding problems
in physics. In particular in the case of strongly interacting
many-body systems and in the absence of a quasiparticle con-
text, the study of such relaxation has profound consequences.
Topics of interest range, e.g., from eigenstate thermalization
in quantum statistical physics [1–3] to fundamental ques-
tions in nuclear physics [4] or cosmology [5]. Due to the
many-body nature of the problem, the theoretical analysis is
very challenging and efficient numerical approaches are often
restricted to one-dimensional (1D) systems [6–8]. During
the past decades it has become possible to realize strongly
interacting closed quantum systems under highly controlled
conditions using cold atoms trapped in optical lattices [9–11].
In particular, experiments realizing tunable Fermi [12,13]
and Bose-Hubbard models [14,15] recently revealed a large
range of interesting nonequilibrium phenomena such as many-
body localization, strongly correlated multifermion scattering
processes, or the direct observation of repulsively bound pairs
(see [16] for a recent review).

Hubbard models describing lattice-confined mixtures of
bosons and fermions are less well studied despite the fact
that they also exhibit a rich phenomenology of relaxation
dynamics. The early experimental efforts in trapping Bose-
Fermi mixtures [17–19] fueled theoretical investigations of
equilibrium properties of these mixtures, as well as those
of the resulting dipolar bosonic or fermionic molecules into
which the atom pairs are assembled [20,21]. For example, it
was shown that Bose-Fermi mixtures can be used to stabilize
a supersolid phase and charge density wave order, as well as
quantum phases of composite fermions [22–25]. In addition,

Bose-Fermi mixtures have been of interest in the context of
cold molecule creation, where a number of groups has suc-
cessfully created ultracold heteronuclear molecules [26–30].

Here we study the dynamics in a Bose-Fermi mixture
prepared in an out-of-equilibrium state in which bosons and
fermions are paired into doublons on different sites. The
dynamics of a single doublon after a quench have been stud-
ied extensively theoretically for Bose-Bose [31–37], Fermi-
Fermi [38–41], and Bose-Fermi doublons [42]. However,
many aspects of the few- and many-body physics of the
doublons remain unexplored. We provide a description of the
decay dynamics of isolated and small clusters of doublons
which will be essential for benchmarking the dynamics ob-
served in quantum simulators.

We find that in the case of Bose-Fermi doublons a decay
channel involving the formation of triplons, i.e., sites occupied
by a fermion and two bosons, facilitates the decay of doublons
on neighboring sites—a process which is not present for
fermionic doublons. We study these processes and their im-
portance on various time scales using both analytical and nu-
merical methods. We use our analytical results for small dou-
blon clusters to efficiently calculate the short-time dynamics.
We show that for the experimentally relevant case of strongly
imbalanced tunneling rates the system can be understood in
terms of the dynamics of highly mobile fermions in a lattice
of defects formed by the heavier bosons. In the case where
the interspecies interaction strength UBF is the dominant
energy scale, the coupling between different energy bands
separated by multiples of UBF can be treated perturbatively
as illustrated in Fig. 1(b). In this limit, the decay of adjacent
doublons into singlon-triplon pairs can also be understood
in terms of a perturbative treatment. While the dynamics of
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FIG. 1. (a) Schematic illustration of the cluster expansion
method: the initial state of doublons at random positions is parti-
tioned into connected clusters. (b) Relevant states and parameters in
the one and two doublon case. Both the bosons and the fermions
are in the ground band of the optical lattice. Their tunneling rates
are in general different for different masses and polarizabilities.
(c) Eigenenergies in the single doublon case for JB = 0. The ground
state (bound state) is shown as a black (red, blue) solid line for 1D
(2D, 3D). Both axes have been scaled by half the width of the band
of scattering states (blue shaded area) 2dJF. In 2D and 3D there
is no bound state below a certain critical interaction strength (gray
dotted lines). The black dashed line indicates the “bare” bound-state
energy UBF.

Bose-Fermi mixtures in high dimensional extended geome-
tries is in general numerically intractable, we show that, in
certain parameter regimes and on short time scales, cluster
expansion techniques [see Fig. 1(a)] provide a good approx-
imation to the full solution. We benchmark our approximate
methods with exact t-DMRG simulations [7,43,44] in 1D and
using various analytical and numerical techniques.

The paper is structured as follows. In Sec. II we introduce
our model of Bose-Fermi mixtures in optical lattices. In
Sec. III we present our results on single and few doublon dy-
namics and the cluster expansion model. Section IV provides
conclusions and an outlook on future directions, including a
discussion of realistic experimental parameters for a possible
implementation in a mixture of fermionic potassium and
bosonic rubidium atoms. Details of our analytical calculations
are given in the Appendix.

II. MODEL

In the following we study the nonequilibrium dynamics
of a Bose-Fermi mixture in a d-dimensional cubic lattice of
linear size L. Atomic motion is restricted to the ground band
of the lattice potential. The system is thus described by the

single-band Hamiltonian

HBF = − JB

∑
〈i j〉

a†
i aj − JF

∑
〈i j〉

c†
i cj

− UBF

∑
i

ni,Fni,B + UBB/2
∑

i

ni,B(ni,B − 1), (1)

where ai(a
†
i ) and ci(c

†
i ) are bosonic and fermionic annhilation

(creation) operators for a particle on the d-dimensional lattice
site i, respectively. The notation 〈i j〉 indicates a summation
over all neighboring sites and JF and JB are the tunneling rates
for the fermionic and bosonic species. The occupation number
operator for a particle at site i is given by ni,B = a†

i ai (ni,F =
c†

i ci). UBB denotes the on-site interaction strength between the
bosonic particles, while UBF is the interspecies on-site inter-
action. The individual terms of Hamiltonian (1) are shown
schematically in Fig. 1(b). Inspired by recent experiments
with fermionic 40K and bosonic 87Rb atoms [45], we consider
repulsive intraspecies interactions and attractive interspecies
interactions. We have defined the interspecies interaction term
in the Hamiltonian with a negative sign such that both UBF and
UBB take positive values.

The system is initially prepared in a product state where
each site is either empty or occupied by a doublon, i.e., a
Bose-Fermi pair:

|ψ (t = 0)〉 =
∏

i∈Nocc

a†
i c†

i |vac〉 . (2)

Here Nocc denotes the initially occupied sites and |vac〉 is
the state of the empty lattice. Our main observable is the
normalized fraction of remaining doublons as function of time

P2(t ) = 1

N

∑
i

〈ψ (t )| p2,i |ψ (t )〉 , (3)

where p2,i = a†
i c†

i |vac〉 〈vac| ciai are projection operators
onto local single doublon states. The sum runs over all Ld

sites of the lattice and |ψ (t )〉 = exp(−iHt ) |ψ (0)〉 is the
time-evolved state (h̄ ≡ 1). This choice of initial state and
observable is motivated by recent experiments which have
shown that both the preparation of an initial state of doublons
and the detection of the doublon fraction is possible using
magnetoassociation and dissociation of the doublons into
Feshbach molecules [45]; see also Sec. IV.

In general, dynamics under HBF leads to a decay of P2(t ).
In the following we identify the main processes contributing
to this decay by breaking down the full dynamics into dy-
namics of small clusters with single, two, and three doublons
[Fig. 1(a)].

III. RESULTS

A. Single doublon

The decay dynamics of a heteronuclear doublon are gov-
erned by the relative magnitudes of JB, JF, and UBF, as well
as the dimensionality of the system. Qualitatively, for large
UBF (UBF � JB, JF) doublons are bound and their decay is
suppressed. For smaller UBF the dimensionality of the system
plays an important role. In contrast to 1D systems which
support a bound state for all UBF �= 0, 2D and 3D systems
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FIG. 2. (a) Time evolution of the doublon fraction for a single-
doublon initial state in 1D (UBF/JF = 3, JB = 0). The dotted line
indicates the saturation value Psat. (b) Dependence of the doublon
fraction on the interspecies interaction strength. Dashed lines: an-
alytical prediction for Psat from perturbation theory. Linear system
sizes for the (1D,2D,3D) cases are L = 500, 40, 13, respectively. In
1D (for JB = 0) the predicted saturation value is exact. The vertical
dashed lines indicate the positions of Uc in 2D and 3D, below which
no bound state exists [compare Fig. 1(c)]. Note that this point is
not defined sharply due to the finite system size. (c) Time evolution
of the doublon fraction for initially two doublons on neighboring
sites. The cases of two representative parameter sets are shown. Red
(upper) and black (lower) solid lines are exact numerical results for
these two parameter choices. The dashed lines are results of the
analytical formulas in 1D, i.e., perturbative treatment (red, upper)
and quasicontinuum model (black, lower). (d) Time evolution of
the triplon number. For the analytical results (dashed lines) our
assumptions imply that Ntri (t ) = 1 − P2(t ). We used a 1D lattice of
length L = 14 with the two doublons initially on the two central
sites. Parameters are as follows. Case 1 (black, upper): JB/JF =
0.1, UBF/JF = −10, UBB/JF = 1; case 2 (red, lower): JB/JF = 0.2,
UBF/JF = −30, UBB/JF = 3.

support a bound state only if UBF > Uc, with a critical inter-
action strength Uc, as shown in Fig. 1(c). Hence for higher
dimensional systems the doublon fraction decays to zero for
UBF < Uc and to a constant for larger attractive interactions. In
1D the problem of a single doublon can be solved analytically
using the Green’s function formalism described in [32,42].
In the limit where JB � JF, i.e., when the boson tunneling
is negligible, the problem further simplifies and one can use
a perturbative approach to find a compact expression for the
doublon fraction (see the Appendix for details),

P2(t ) ≈ Psat

[
1 + 4JF

tU 2
BF

J1(2JFt ) cos
(
t
√

4J2
F + U 2

BF

)]
, (4)

where J1(x) is the first Bessel function. It can be seen from
the above expression that after initial oscillations at fre-

quency
√

4J2
F + U 2

BF, the doublon fraction saturates to Psat =
U 2

BF/(U 2
BF + 4J2

F ) after a time tsat ∼ 1/(2JF); see Fig. 2(a).
This means that, for UBF � JF, the doublon fraction saturates
to a nonzero value, while for UBF � 2JF a significant doublon

decay is observed as shown in Fig. 2(b). This is expected
from a spectral analysis of the relevant state space shown in
Fig. 1(c). Dividing the relevant states into bound states with
EB < −2dJF, connected to the initial state in the limit JF → 0,
and scattering states, we expect that these two manifolds
become strongly mixed as soon as the bare bound-state energy
UBF enters the band of scattering states, which happens at
UBF = 2JF in 1D. The expression (4) can be generalized to
the case of finite JB by separating the problem into center-
of-mass and relative motion before applying the perturbative
treatment to the relative motion part; see the Appendix. In
higher dimensions it is not possible to obtain an analytical
expression for P2(t ). However, in the limit JF � UBF, one can
obtain a good approximation for Psat by replacing JF by

√
dJF

in the above expression. The statement that strong doublon
decay occurs as soon as bound and scattering states overlap
energetically (UBF � 2dJF) still holds.

In the regime where JF � JB the short-time behavior
of systems of many doublons will be dominated by single
doublon decay, as we will see when discussing the cluster
expansion approach. This is consistent with the experimen-
tal observations made in [45]. The following analysis goes
beyond this regime and takes into account additional decay
channels that open through interactions between doublons.

B. Two and three doublons

The single doublon decay described in the previous section
occurs at a rate JF and determines the short-time dynamics
of the system. In the case of two doublons the following
two additional processes have to be considered. (i) If two
doublons initially occupy neighboring sites, the tunneling of
the boson results in the production of a triplon (two bosons
and one fermion) and a singlon (lone fermion); cf. Fig. 1(b).
The singlon can subsequently move through the lattice freely.
This process occurs at a rate ∼JB. (ii) Another important
indirect process is doublon tunneling to neighboring sites,
which occurs at an effective tunneling rate JD = 2JFJB/UBF.

In the case that UBF is the largest scale in the problem,
the doublon tunneling is slow compared to all other processes
mentioned so far (see also the discussion below). Moreover,
in the regime JF � UBF, the single doublon process of the
fermion tunneling off the doublon site is strongly suppressed.
Thus the process relevant to the decay of two neighboring
doublons is the formation of the triplon-singlon complex and
the subsequent tunneling of the singlon.

Under these approximations, the dynamics is restricted to
the initial two-doublon state and the singlon-triplon states. In
order to find analytical expressions for the doublon fraction,
we employ the perturbative approach used in the single-
doublon case, supplemented by a quasicontinuum treatment of
the scattering states (see the Appendix for details). Here, the
two-doublon configuration takes the role of the bound state,
while the singlon plus triplon sector represents the scattering
states. The energy splitting and coupling between the two
sectors are given by UBB and JB, respectively [see Fig. 1(b)].
The width of the band of scattering states is 4dJF. Thus, in
analogy with the single-doublon case, doublons are stable
if the two sectors are energetically well separated (UBB �
2dJF) and decay if the bound and scattering states overlap
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(UBB < 2dJF). In the former regime a perturbative treatment
yields saturation value of Psat = U 2

BB/(U 2
BB + 8J2

B) in 1D. In
the latter regime, a quasicontinuum treatment of the scattering
states shows that the doublon fraction decays exponentially
with rate � = 8J2

B/JF

√
1 − [UBB/(2JF)]2 (see the Appendix).

In higher dimensions the behavior is qualitatively the same:
if UBB � 2dJF two doublons on neighboring sites are essen-
tially stable and P2(t ) quickly saturates at a value near unity,
while for UBB < 2dJF, the doublon pair decays exponentially
with a rate � ∝ J2

B/JF. For JB � JF the transition between
both regimes is sharp.

Figures 2(c) and 2(d) show the time evolution of the
doublon and triplon fraction for two sets of parameters in
1D. This confirms that for UBB < 2dJF the doublon fraction
decays quickly while for UBB > 2dJF it saturates. The triplon
number increases in the same way the doublon fraction de-
creases, showing that the doublon decay is indeed caused
by the formation of triplons. It should be noted that in our
perturbative treatment the sum of the doublon fraction and the
triplon fraction is always 1, as a direct result of the Hilbert
space truncation.

In the case of three doublons on neighboring sites we
observe that two among them can form a singlon plus triplon
configuration, which leads to a decay of initially three dou-
blons to one doublon in the regime UBB < 2dJF (see the
Appendix for details).

Having discussed the decay dynamics of a cluster of dou-
blons initially sitting on neighboring sites we now discuss
the case of two doublons separated by an empty site and
JB � JF � UBF. This discussion will justify the use of only
connected clusters in our cluster expansion approach. In the
limit JF � UBF a single doublon is stable (Psat ∼ 1), while
two neighboring doublons may decay by forming a singlon-
triplon configuration at rate �. Since doublon tunneling is
strongly suppressed (JD � UBF), the separated doublon pair
is governed by the single doublon decay and thus stable.
The doublons simply propagate on a time scale given by
J−1

D . This striking dependence on the initial doublon posi-
tions is confirmed in exact calculations shown in Figs. 3(a)
and 3(b).

While one might expect to observe a decay process on a
time scale ∼J−1

D caused by decay after two doublons hopped
on neighboring sites, this is not what we observe in the
numerical computations of Fig. 3(b). The doublons remain
stable in a much longer time scale than J−1

D . This can be
understood by noting that JD � �, which places the system
in a “quantum Zeno regime.” In this regime, the coherent
pair tunneling happens at a much slower rate compared to
the decay process at rate �, which connects the two-doublon
state to a continuum of scattering states consisting of a fixed
triplon and a mobile singlon. As a result the decay process
for two doublons initially separated by an empty site is
suppressed. A perturbative expansion in JD/� shows that the
effective doublon decay rate is given by �eff ∼ J2

D/�. For the
parameters considered in Fig. 3(b), this corresponds to a decay
process occurring on a time scale of ∼200J−1

F , consistent with
our numerical observations. The discussed effects make it
plausible why one may accurately describe the dynamics of a
dilute system by considering solely the dynamics of connected
few-doublon clusters.
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FIG. 3. (a),(b) Long-time evolution of the doublon density in
a 1D lattice (L = 1010) with two initial doublons computed using
t-DMRG. Parameters are JB = 0.1JF, UBB = JF, and UBF = 10JF.
In (a) the initial doublons are located on neighboring sites, and
there is a fast decay on a time scale of t ∼ J−1

B = 10J−1
F . In (b) the

initial doublons are separated by an empty site. Here, the doublons
are long-lived and diffuse on a time scale of t ∼ J−1

D = 100J−1
F .

In this case the doublons do not decay by forming a triplon and
singlon due to the quantum Zeno effect (see text). (c),(d) Time
evolution of a system with L = 100 sites and a random distribution
of initial doublons with different filling fractions of f = 5% and
f = 20% [panels (c) and (d), respectively]. For low fillings and short
times, the exact t-DMRG solution (solid black line, average over 30
initial configurations) is well reproduced by considering dynamics
of small connected clusters. The dashed blue (dotted red) line shows
weighted averages of evolution of connected clusters with two (three)
doublons, respectively.

C. Extended systems: Cluster expansion

Next, we consider extended systems of randomly placed
doublons at a given filling fraction. An upper limit on the
propagation speed of particles is given by the maximal group
velocity of the most mobile particles, typically the fermions,
vg = ∂E/∂k � 2JF (1D), limiting the speed at which corre-
lations can spread in the system. Thus, in order to calculate
the value of a local observable at site i after time t , it is
always sufficient to simulate a volume of radius r = 2JFt
around site i. If the system shows some kind of localization
length ξ < 2JFt a smaller simulation volume might be suffi-
cient. For a translationally invariant system this is equivalent
to simulating a box of linear size L > 2JFt with periodic
boundary conditions and evaluating the observable at all sites
of the box. Thus short-time dynamics can always be simulated
exactly.

As described above, we know that in the case of large UBF

the decay rate of two initially separated doublons is small.
Thus, in this case, a viable ansatz is to consider only the
dynamics of connected clusters up to a certain size. This cutoff
size can be small for low densities. For example, in 3D, at
a filling fraction of f = 10% the fraction of doublons that
are part of a connected cluster of size larger than 3 is about
1.5%. In this case the process dominating the doublon decay
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is the triplon formation from nearest-neighbor doublons. This
cluster expansion is schematically illustrated in Fig. 1(a).

In Figs. 3(c) and 3(d), the validity of this phenomenology is
illustrated. There we compare an exact t-DMRG calculation in
a 1D box with L = 100 sites and initial small filling fractions
f = 5% and f = 20%. To model the exact evolution we
compare these results to weighted averages

nc∑
c=1

wcP[c]
2 (t ), (5)

where P[c]
2 (t ) denotes the evolution of a cluster with c con-

nected doublons and wc the probability of the occurrence of
the cluster in the initial state. Clearly this simple approach
reproduces the exact calculation in the limit of short times and
small filling fractions.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the nonequilibrium dynam-
ics of a lattice confined Bose-Fermi mixture initialized in a
state consisting of doublons randomly placed on the lattice
sites at a given dilute filling fraction. We found that the
short-time relaxation dynamics can be understood in terms
of the decay of connected doublon clusters. We have derived
analytical expressions for the decay of clusters of one, two,
and three doublons valid when the interspecies interaction is
the dominating energy scale. We found that the relaxation
of the doublon population is governed by multiple different
decay time scales resulting from different processes such as
single-doublon decay, doublon-pair decay via triplon forma-
tion, and decay after doublon tunneling at even longer times.
We verified our cluster expansion model by numerically exact
t-DMRG simulations in 1D.

Our choice of initial state and observable is motivated
by the fact that both can be realized straightforwardly in
experiment using the ability to associate and dissociate Fes-
hbach molecules. In Ref. [45] a lattice gas of ground-state
KRb molecules was prepared where any remaining unpaired
atoms can be removed from the lattice. After exciting the
molecules to a weakly bound state (Feshbach molecules)
they can subsequently be dissociated by an adiabatic ramp
of the magnetic field, resulting in a configuration with all
sites either empty or occupied by a doublon. The interspecies
interaction strength can be adjusted by varying the end point
of the magnetic field ramp. The remaining doublon fraction
after a free evolution time can be determined by reversing
the preparation process. Molecules only form on sites that
are still occupied by a doublon. Unbound atoms can again be
discarded and the molecules detected. Experiments that have
taken advantage of the efficient conversions of pairs of the
molecular constituents to molecules to create a low entropy
lattice gas of polar molecules have recently been reported
by a number of groups [46–52], opening up a new direction
for experimental investigation of nonequilibrium dynamical
properties of Bose-Fermi mixtures.

In order to show that the regimes studied above are indeed
experimentally relevant, we provide typical parameters for
the case of 40K and 87Rb atoms in an optical lattice of
wavelength λ = 1064 nm as used in Ref. [45]. The different

TABLE I. Typical experimental parameters for the case of
fermionic 40K and bosonic 87Rb in a λ = 2π/k = 1064 nm optical
lattice. The experimentally adjustable parameters are the lattice depth
VB (first column, in units of lattice recoils of Rb, ER = h̄2k2/2mRb)
and the interspecies scattering length (second column, in Bohr).

VB/ER as/a0 JB/JF UBF/JF UBB/JF JD/JF

10 −220 0.103 2.83 1.15 0.0728
10 −910 0.103 11.7 1.15 0.0176
10 −1900 0.103 24.5 1.15 0.00843

15 −220 0.059 7.05 2.81 0.0167
15 −910 0.059 29.2 2.81 0.00405
15 −1900 0.059 60.9 2.81 0.00194

20 −220 0.0372 15.2 5.94 0.00491
20 −910 0.0372 62.7 5.94 0.00119
20 −1900 0.0372 131 5.94 0.000569

masses and polarizabilities lead to different tunneling rates for
the two species. We express all parameters in units of JF = JK.
UBF can be adjusted independently of the other parameters
by varying the magnetic field near an interspecies Feshbach
resonance. Increasing the lattice depth leads to slower tun-
neling and enhanced on-site interactions. Table I shows that
all the different regimes are experimentally accessible, and
also that UBF is indeed always the largest parameter and
JB � JF in this case. Thus a time resolved measurement of the
doublon fraction should reveal the effects found here, and in
addition provide a means to explore the long-time dynamics
of large 3D ensembles, which are inaccessible to numerical
simulations.

The rich relaxation dynamics observed already for the
restricted parameter regime considered here, and the prospect
of experimental realization, call for a more systematic study of
this system, addressing more parameter regimes and longer-
time dynamics. Such a study would be quite challenging and
require novel numerical and analytical methods for going
beyond 1D and short times. Nevertheless, our results already
showed a hierarchy of energy scales at which relaxation
processes occur. Considering that such hierarchical relaxation
is also found in spin glasses and soft matter physics, we
take this as a hint for a rich phenomenology of relaxation
dynamics in lattice Bose-Fermi mixtures yet to be uncovered.
Adding an additional disorder potential, this system might be
suited for studying localization phenomena in a new class
of Hubbard models accessible to state-of-the-art quantum
simulation experiments.
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APPENDIX: DETAILS OF ANALYTICAL CALCULATIONS
OF FEW-DOUBLON DYNAMICS

In this Appendix we present details of the derivation of our
analytical results for single, two, and three-doublon clusters.
In each scenario we calculate the doublon fraction, P2(t ),
from Eq. (3). For two and three doublons, the initial state
is a connected cluster where the doublons are initialized on
neighboring sites.

1. Single doublon physics

In this section we describe two approaches which yield
analytic expressions for single doublon dynamics in 1D.
These approaches will then be used to also obtain ana-
lytical results for more than one doublon within certain
approximations.

We first apply standard perturbation theory to the single
doublon problem. The prescriptive nature of this method
allows for straightforward extensions to larger number of
doublons and higher dimensions. We start by considering the
limit where one constituent of the doublon is stationary and
can be approximated as a fixed defect. We then consider the
case where both constituent atoms are mobile. Here we are
able to build on the expressions derived in the prior approach
and simply replace certain parameters.

a. Perturbation method: Stationary defect

Consider a system described by Hamiltonian (1) with JB =
0 on a ring of L sites with periodic boundary conditions, where
site L is identified with site 0. We use basis states {|n〉}, with
n = 0, . . . , L − 1 corresponding to a boson on site i = 0 and
the fermion on site n. In this basis the system is described by
the Hamiltonian

H = H0 + H1, (A1)

H0 = −UBF |0〉 〈0| + JF

L−2∑
n=1

(|n〉 〈n + 1| + |n + 1〉 〈n|),

(A2)

H1 = JF(|0〉 〈1| + |0〉 〈L − 1| + |1〉 〈0| + |L − 1〉 〈0|), (A3)

where we treat H1 as a perturbation.
The eigenstates of H0 are |φ0〉 = |0〉, forming the bound

state, and |φk〉 = √
2/L

∑
n sin(πkn/L) |n〉, which are the

scattering states. The corresponding unperturbed eigenener-
gies are given by E (0)

0 = −UBF and E (0)
k = 2JF cos(πk/L).

The effect of H1 on the eigenenergies is nonvanishing only
at second order. The second-order perturbative corrections to

the energies are given by

	E (2)
k =

∑
l

|〈φk| H1 |φl〉|2
E (0)

k − E (0)
l

=

⎧⎪⎨
⎪⎩

8J2
F

L

∑
l odd

− sin2(π l/L)
UBF+2JF cos(π l/L) if k = 0,

8J2
F

L
sin2(πk/L)

2JF cos(πk/L)+UBF
if k �= 0, k odd,

0 else.
(A4)

The first-order corrections to the eigenstates are given by∣∣	φ
(1)
k

〉 =
∑

l

|φl〉 〈φl | H1 |φk〉
E (0)

k − E (0)
l

=

⎧⎪⎨
⎪⎩

2JF
√

2/L
∑

l odd
− sin(π l/L)

UBF+2JF cos(πk/L) |l〉 if k = 0,

2JF
√

2/L sin(πk/L)
2JF cos(πk/L)+UBF

|0〉 if k odd,

0 else.

(A5)

With this we find that the remaining doublon fraction is
given by

P2(t ) = |〈ψ (0)|ψ (t )〉|2 =
∣∣∣∣∣
∑

k

e−iE (2)
k t

∣∣〈φ(1)
k

∣∣0〉∣∣2

∣∣∣∣∣
2

=
∣∣∣∣∣e−iE (2)

0 t

N2
0

+
∑
k odd

2e−iE (2)
k t

LN2
k

∣∣∣∣ 2JF sin(πk/L)

2JF cos(πk/L) + UBF

∣∣∣∣
2
∣∣∣∣∣
2

,

(A6)

where N0 and Nk are normalization factors. In the limit
UBF � 2JF, we can approximate 2JF cos(πk/L) + UBF ≈ UBF

in the denominator. Neglecting terms of order L−1 this leads
to N0 = 1 + 2J2

F/U 2
BF, Nk = 1, E (2)

0 = −UBF − 2J2
F/UBF, and

E (2)
k ≈ E (0)

k = 2JF cos(πk/L). With this we find

P2(t ) ≈
∣∣∣∣∣ e−iE (2)

0 t

1 + 2J2
F/U 2

BF

+ 8J2
F

LU 2
BF

∑
k odd

e−iE (0)
k t sin2(πk/L)

∣∣∣∣∣
2

≈ Psat

(
1 + 16J2

F

LU 2
BF

∑
k odd

sin2(πk/L) cos(	Ekt )

)

≈ Psat

[
1 + 4JF

tU 2
BF

J1(2JFt ) cos
(
t
√

4J2
F + U 2

BF

)]
, (A7)

where 	Ek=E (2)
0 −E (0)

k = − UBF − 2J2
F/UBF−2JF cos(πk/L)

and Psat = 1/(1 + 4J2
F/U 2

BF). This is the perturbative solution
shown as a dashed line in Figs. 2(a) and 2(b).

b. Perturbation method: Relative motion

We now include the motion of the boson (JB > 0).
We first consider the noninteracting Hamiltonian describing
the motion of the boson and fermion in the lattice. We denote
the position of the boson in the lattice with xB and the
position of the fermion with xF . The noninteracting part of
the Hamiltonian thus reads

Hfree = −
∑

α=B,F

L∑
xα=1

Jα (|xα〉〈xα + 1| + |xα〉〈xα − 1|). (A8)
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We now introduce relative, r = xB − xF , and center-of-
mass coordinates, R = (xB + xF )/2, a well as total and rela-
tive quasimomenta denoted by K and k, respectively. Then,
using the ansatz 〈R, r|�〉 = √

1/2πeiKRψK (r) for the relative
wave function at a given momentum K of the center-of-mass
motion (with the obvious labeling |R, r〉 of the position basis
states), we find

〈R, r|Hfree|�〉
= −JBeiKR[eiK/2ψK (r + 1) + e−iK/2ψK (r − 1)]

− JF eiKR[e−iK/2ψK (r + 1) + eiK/2ψK (r − 1)].

The action of Hfree on the relative coordinate wave function
ψK (r) can be written more compactly using the quantities
J± = JF ±JB

2 :

HfreeψK (r) = εK (k)ψK (r),

with εK (k) = EK cos (φK + k). Here we have introduced

EK = −4
√

J2+ cos2(K/2) + J2− sin2(K/2)

and

φK = arctan

[
J−
J+

tan(K/2)

]
.

We can now rewrite the Hamiltonian considered above
for the stationary defect, interpreting the basis states {|n〉}
referring to the relative distance between the fermion and the
boson, with JF → EK/2. Applying a perturbative treatment
valid for UBF � JB, JF results in a refined expression Psat →
U 2

BF/[U 2
BF + 8(J2

+ + J2
−)].

2. Clusters of two and three doublons

In the following we continue to assume that UBF is the
largest energy scale such that we can restrict the Hilbert
space to the manifold containing no lone bosons, indicated
by the red ellipse in Fig. 4(a). Consider a chain of 2L − 2
sites, where the sites are indexed by integers in the intervals
[−L + 1,−1] and [1, L − 1] (omitting 0 for symmetry). We
denote the initial state in which the two doublons are placed on
the nearest neighboring sites −1 and 1 by |0〉. The rest of the
basis states are denoted by |n〉, n = 1, . . . , L − 1. These states
are symmetrized states where the triplon and the fermion are
separated by n sites; cf. Fig. 4(b). Using this basis and in the
limit of vanishing JD the Hamiltonian takes the form

H = H0 + H1, (A9)

H0 = −UBB |0〉 〈0| + JF

L−2∑
n=1

(|n〉 〈n + 1| + |n + 1〉 〈n|),

(A10)

H1 = 2JB(|0〉 〈1| + |1〉 〈0|). (A11)

We observe that by replacing UBB → UBF in H0 and
JB → JF/2 in H1 one obtains the single doublon Hamiltonian

FIG. 4. (a) Energy diagram for states accessible to a two dou-
bloon cluster. For large UBF the state space can be restricted to the
lowest two manifolds as indicated by the red ellipse. (b) These states
are connected through different terms in the Hamiltonian. Typically
the coupling JF is large compared to JB. In this case we diagonalize
the singlon-triplon subspace (gray box). (c) The resulting problem is
a single state (two-doublon state) coupled to a continuum of singlon-
triplon states. The gray shading indicates the density of states, which
is minimal in the band center in 1D but maximal in the band center
in higher dimensions. We have shifted the origin of the energy to
be at the center of the band. (d) Relevant states and coupling matrix
elements for the three-doublon problem.

discussed above (except for the periodic boundaries). Thus the
problem is reduced to a single state |φ0〉 = |0〉 at energy −UBB

coupling to a band of states |φk〉 = √
2/L

∑
n sin(πkn/L) |n〉

of width 2JF [see Fig. 4(c)].

a. Perturbative treatment

If the bound state and the band of scattering states are
energetically separated (UBB > 2JF), we can again employ
the perturbative approach. The perturbative corrections to the
eigenenergies and eigenfunctions of H0 are given by

	E (2)
k =

⎧⎨
⎩

8J2
B

L

∑
l

sin2(π l/L)
−UBB−2JF cos(π l/L) if k = 0,

8J2
B

L
sin2(πk/L)

2JK cos(πk/L)+UBB
if k �= 0

(A12)

and

∣∣	φ
(1)
k

〉 =
{

2JB
√

2/L
∑

l
sin(π l/L)

−UBB−2JF cos(πk/L) |l〉 if k = 0,

2JB
√

2/L sin(πk/L)
2JF cos(πk/L)+UBB

|0〉 if k �= 0.

(A13)
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Using these expressions we find that the doublon fraction
is given by

P2(t ) =
1 + 16J2

B
L

∑
k

sin2(πk/L)
[UBB+2JF cos(πk/L)]2 cos(	Ekt )

1 + 16J2
B

L

∑
k

sin2(πk/L)
[UBB+2JF cos(πk/L)]2

≈Psat,2

(
1 + 16J2

B

LU 2
BB

∑
k

sin2(πk/L) cos(	Ekt )

)
,

(A14)
with 	Ek = −UBB − 4J2

B/UBB − 2JF cos(πk/L) and Psat,2 =
1/(1 + 8J2

B/U 2
BB), where we have replaced the denominator

in the energy corrections by UBB.
In the following we will extend the perturbative method

to three doublons. We consider a chain of 2L − 3 sites. The
initial state consists of three doublons in three neighboring
sites, denoted by |0〉. This state connects to two disconnected
manifolds of states. The first set of states are labeled as |n〉
with n = 1, . . . , L − 1, where n labels the distance between
the fermion and the triplon, and are shown in Fig. 4(d), panel
(i). These states are connected to the states |η〉 [see panel (ii)
in Fig. 4(d)] if the triplon and the doublon on its neighboring
site exchange places. For these states η = 1, . . . , L − 1 labels
the distance between the fermion and the doublon. We use
|n〉 and |η〉 to denote the symmetric combination of these two

families of states. The second energetic manifold is given by
the state |Ls〉, the symmetric combination of the states (iii) and
(iv) in Fig. 4(d). In this manifold the fermionic atom cannot
move and thus these states, along with |0〉 form bound states.

In analogy with the previous perturbative treatments, we
begin by determining the eigenenergies and eigenfunctions
of H0. The unperturbed localized states are |φ0〉 = |0〉 and
|φL〉 = |Ls〉 with E0 = −UBB and EL = 0, respectively. The
unperturbed scattering states and their corresponding energies
are given by

|φ±
k 〉 =

∑
n

√
2

L
sin

(
πk

L
n

)
|n±〉, (A15)

E±
k = 2JF cos

(
πk

L − 1

)
, (A16)

where |n±〉 = 1√
2
(|n〉 ± |η〉), n = 1, . . . , L − 1. We now pro-

ceed to find the perturbative corrections to the wave functions
and the energies with the perturbation Hamiltonian

H1 = 2JB
1√
2

(|1+〉 + |1−〉)〈0| + 2JB|φL〉〈0| + H.c.

To first order the eigenfunctions are given by

∣∣φ(1)
0

〉 = −
√

4

L
JB

∑
l=1

(
sin

(
π l
L

)
UBB + E+

l

|φ+
l 〉 + sin

(
π l
L

)
UBB + E−

l

|φ−
l 〉

)
− 2JB

1

UBB
|φL〉 , (A17)

∣∣φ(1)
l,±

〉 =
√

4

L
JB

sin
(

π l
L

)
UBB + E±

l

|φ0〉, (A18)

∣∣φ(1)
L

〉 = 2JB
1

UBB
|φ0〉 , (A19)

and the second order energy corrections are

E (2)
0 = 4J2

B

L

(∑
l

sin2
(

π l
L

)
−UBB − E+

k

+
∑

l

sin2
(

π l
L

)
−UBB − E−

k

)
− 4J2

B

UBB
≈ −12

J2
B

UBB
, (A20)

E (2)
l,± = 4J2

B

L

sin2
(

π l
L

)
UBB + E±

l

≈ 4J2
B

L

sin2
(

π l
L

)
UBB

, (A21)

E (2)
L = 4J2

B

UBB
. (A22)

We can now proceed as usual to find the time-dependence of the doublon fraction:

P2(t ) =
{

1 + 8J2
B

L

[∑
l

sin2

(
π l

L

)(
cos(	+

l t )

(UBB + E+
l )2

+ cos(	−
l t )

(UBB + E−
l )2

)]

+ 8J2
B

U 2
BB

cos(	Lt )

}/[
1 + 8J2

B

L

∑
l

(
sin2

(
π l
L

)
(UBB + E+

l )2
+ sin2

(
π l
L

)
(UBB + E−

l )2

)
+ 8J2

B

UBB2

]
, (A23)

where 	±
l = UBB + 12J2

B
UBB

− E±
l and 	L = UBB + 4J2

B

U 2
BB

. The

above expression saturates to Psat = 1/(1 + 16J2
B/U 2

BB),
where we have used the approximation UBB + E±

l ≈ UBB.

b. Quasicontinuum model

We now examine the decay of two neighboring doublons
in the regime UBB < 2JF, i.e., when the two-doublon state lies
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inside the continuum of singlon-triplon states; see Fig. 4(c).
In this case perturbation theory breaks down since the spac-
ings between the levels of the singlon-triplon band are small
compared to the perturbation H1 ∼ JB. We expect an expo-
nential decay of the two-doublon state population and our
objective here is to find its decay constant. We will use a
treatment known as Bixon-Jortner quasicontinuum in quan-
tum optics [53]. We use the notation defined in the previous
section.

The Hamiltonian in the basis of bound and scattering states
defined above reads

H = 2JB

√
2/L

L−1∑
k=1

[sin(πk/L) |0〉 〈φk| + H.c.]

+
L−1∑
k=1

[2JF cos(πk/L) + UBB] |φk〉 〈φk|

=
L−1∑
k=1

Wk (|0〉 〈φk| + H.c.) + 	k |φk〉 〈φk| . (A24)

Note that the couplings Wk and detunings 	k are real valued.
The time-dependent Schrödinger equation becomes

ḃ(t ) = −i
∑

k

Wkck (t ),

(A25)
ċk (t ) = −i	kck (t ) − iWkb(t ),

where b(t ) and ck (t ) are the time-dependent amplitudes of
states |0〉 and |φk〉, respectively. Initially, the system is in state
|0〉; thus b(0) = 1 and ck (0) = 0. Applying a Laplace trans-
form [ f̄ (s) = L[ f (t )] = ∫ ∞

0 e−st f (t )dt] this set of equations
becomes

sb̄(s) − 1 = −i
∑

k

Wkc̄k (s),

(A26)
sc̄k (s) = −i	k c̄k (t ) − iWkb̄(s).

Solving the second equation for c̄k (s) and substituting into the
first, we obtain

b̄(s) =
(

s +
∑

k

W 2
k

s + i	k

)−1

. (A27)

Now we have to invert the Laplace transform to obtain b(t ).
At this point we make the following approximation: since

JB � JF, the state |0〉 only significantly couples to a small
window within the band of states |φk〉 [see Fig. 4(c)]. If this
window is small compared to the band width 2JF we can
assume that the energy differences between the states |φk〉
are constant (linearize the spectrum, 	k ∝ k0 − k) and that
the couplings Wk are constant over the relevant range of k’s.
Moreover, for a dense (quasicontinuous) spectrum, we can as-
sume that there is always a resonant state k0 defined by 	k0 =
2JF cos(πk0/L) + UBB = 0. In quantum optics this is known
as the Bixon-Jortner quasicontinuum [53]. (Originally it was
reported in the context of radiationless decay in molecules).
It is a good approximation in the center of the band, i.e., for
UBB � 2JF. Near the band edges it can be problematic. We

thus have

k0 = L

π
arccos[UBB/(2JF)],

	k ≈ d	k

dk

∣∣∣∣
k=k0

(k − k0) = n	,

Wk ≈ Wk0 = W, (A28)

where

	 = 2JF
π

L
sin(πk0/L) = 2JF

π

L

√
1 −

(
UBB

2JF

)2

,

W = 2JB

√
π

L
sin(πk0/L) = 2JB

√
π

L

√
1 −

(
UBB

2JF

)2

.

(A29)

With these approximations the sum in b̄(s) becomes
∞∑

n=−∞

W 2

s + in	
= πW 2

	
coth

[πs

	

]
. (A30)

In the limit of large system size L → ∞, i.e., 	 → 0, we can
use limx→∞ coth(x) = 1, to obtain b̄(s) = (s + �/2)−1, with
� = 2πW 2/	, which is obviously the Laplace transform of
b(t ) = exp(−�t/2). Note that W 2/	 is independent of L.

To summarize the final result, we have

P2(t ) = |b(t )|2 = e−�t , (A31)

with

� = 8J2
B

JF

√
1 −

(
UBB

2JF

)2

. (A32)

This model was used to produce the black dashed lines in
Figs. 2(c) and 2(d).

c. Higher dimensions

Consider the problem of two doublons on neighboring sites
in d dimensions (d > 1). We again neglect all states that are
detuned by at least UBF from the initial state. Analogous to
the 1D case we can split the problem into the two-doublon
state plus a continuum of singlon-triplon states. As in the case
of a single doublon in higher dimensions, the problem is that
the eigenstates of the singlon-triplon block cannot be found
analytically. They are the eigenstates of a free particle on a
d-dimensional lattice with a defect, i.e., a single site that is not
accessible (the site that is occupied by the triplon). Unlike in
the single doublon problem, the coupling of the bound state to
the scattering states is JB, which is different from the tunneling
rate JF that determines the width 4dJF of the band of scattering
states. Note that the triplon is in principle also mobile for
d > 1, since the fermion (singlon) can propagate to any of
the 2d neighboring sites of the triplon and a boson can
subsequently tunnel to that site to form two doublons on sites
different from the initial doublon sites, which can then again
decay into a triplon on the neighboring site of the original
triplon site plus a singlon. This process leads to a center-of-
mass motion of the cluster.

However, for the understanding of the short-time dynam-
ics, it is sufficient to consider a single two-doublon state plus
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FIG. 5. Doublon decay in 2D. Fitted decay rate � from fitting
P2(t ) with exp[−�t] as a function of UBB/JF at JB/JF = 0.1 (left)
and of JB/JF at UBB/JF = 1 (right). Solid lines are a linear fit to the
region 1 < UBB/JF < 2d , and a quadratic fit, respectively. A lattice
of size 22 by 23 sites was used with the doublon pair initially sitting
on the two central sites.

a continuum of scattering states. The global properties of the
band are not changed significantly with respect to a perfect
lattice by the addition of a defect, in particular the density of
states and the width of the band stays the same. The crucial
parameter is still the position of the two-doublon state with
respect to the band: if it is outside the band (UBB > 2dJF ),
P2(t ) will quickly saturate and 1 − Psat ∝ J2

B, the square of
the coupling matrix element. Psat will depend on UBB/JF in
a complicated way, and for UBB/JF � 2d we have 1 − Psat ∝
J2

B/U 2
B; however, in this limit 1 − Psat will be extremely small

and the doublon pairs are essentially stable. Thus, for JB �
JF, the doublon pairs become stable very quickly as soon as
UBB > 2dJF .

In the regime UBB < 2dJF, where the bound state lies
inside the band of scattering states, we can again employ the

Bixon-Jortner quasicontinuum approximation, which means
that we assume that the bound state couples to a continuum
of equally spaced states (spacing 	) with a constant coupling
strength W . If this is a valid description of the continuum, then
in the limit of large L, the bound-state population will decay
like exp[−�t], with � = 2πW 2/	. In a higher-dimensional
situation, for a given energy of the bound state, there are in
general several resonant states (	k = 0) and each of those
states couples to the bound state with a different Wk . What
we can do is to define W 2 as the average squared coupling
of the scattering states at a given energy and 	 as the mean
splitting between neighboring states in an energy interval,
i.e., as the inverse of the density of states ρ(E = −UBB) =∫

dk δ(E (k) + UBB). Calculating the density of states in-
volves an elliptical integral and cannot be solved analyti-
cally. However, it is clear that the density of states will be
proportional to 1/JF and thus 	 ∝ JF. The squared coupling
will be proportional to J2

B. Thus � = (J2
B/JF) f (u), where u =

UBB/JF. The function f (u) depends on where in the band the
bound state is located (0 < u < d) and will decrease to zero
at the band edge.

In Fig. 5 we show the fitted decay rates �, obtained by fit-
ting the function exp[−�t] to the numerically obtained P2(t )
as a function of the rescaled model parameters. We find that
an exponential decay is indeed a good fit except close to the
edges of the band |UBB| ≈ 2dJF. We observe that � decreases
to zero monotonically in the interval 0 < UBB/JF < 2d and is
approximately linear for UBB/JF > 1. In addition, � ∝ J2

B/JF

is very well satisfied for JB/JF � 0.5. These statements also
apply for d = 3.
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