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Bose-Einstein condensate in Bloch bands with an off-diagonal periodic potential
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We report on the Bose-Einstein condensate in the Bloch bands with off-diagonal periodic potential (ODPP),
which simultaneously plays the role of spin-orbit coupling and Zeeman field. This model can be realized using
two independent Raman couplings in the same three-level system, in which the time-reversal symmetry ensures
the energy degeneracy between the two states with opposite momenta. We find that these two Raman couplings
can be used to tune the spin polarization in momentum space, thus greatly modifying the effective scatterings
over the Bloch bands. We observe a transition from the Bloch plane wave phase with condensate at one wave
vector to the Bloch stripe phase with condensate at the two Bloch states with opposite wave vectors. These
two phases will exhibit different spin textures and density modulations in real space, which are totally different
from that in free space. In momentum space, multiple peaks differing by some reciprocal lattice vectors can
be observed in both phases, reflecting the periodic structure of the ODPP. A three-band effective model is
proposed to understand these observations. This ODPP will never approach the tight-binding limit, thus can
provide an alternative platform in the investigations of various physics, such as collective excitations, polaron,
and topological superlfuids, over the Bloch bands.
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I. INTRODUCTION

Spin-orbit coupling (SOC) plays an important role in
many important concepts in condensed matter physics [1–4].
This interaction has been widely explored in ultracold atoms
[5–10]. In Bose gases, it could be used to realize the Bose-
Einstein condensate (BEC) [11,12] with finite momentum,
which belongs to either the plane wave phase or the stripe
phase [13–15], depending strongly on the interparticle and in-
traparticle interaction strengths. The spin dipole in this system
will also exhibit some exotic behaviors in quench dynamics
[16]. In Fermi gases, it can be used for the realization of
topological superfluids [2,17–22] and the associated Majorana
zero modes [23–25], due to the effective p-wave pairing at
the Fermi surface. By carefully engineering the interaction,
this system may also be used to create different types of
gapless superfluids [26–29]. To date, both the one- [30] and
two-dimensional SOC have been realized with Bosons [31]
and Fermions [32]. In these experiments, the SOC is realized
by the Raman coupling [7,33–36], which can be brought into
Rashba or Dresselhaus SOC by an unitary transformation.
These progresses open an avenue for searching of exotic
phases in degenerate gases [30,37–42].

In this work, we consider the fate of a BEC in the Bloch
bands with off-diagonal periodic potential (ODPP), which
plays the role of SOC and Zeeman field simultaneously. This
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potential can be realized using three laser beams coupled
to the same three-level system (in � configuration), which
forms two independent Raman couplings. In this model the
position of the local energy minima and their corresponding
spin textures can be tuned by the two Raman couplings, which
in turn greatly influence the scatterings of the Bloch states.
This model exhibits rich phase structures in both the single-
particle band structure and the interacting condensates. Es-
pecially, we find a transition from the spin-imbalanced Bloch
plane wave (BPW) phase condensed at one Bloch wave vector
k0 to the spin-balanced Bloch stripe (BST) phase condensed at
two vectors ±k0 in the case with time-reversal (TR) symme-
try. These two phases exhibit multiple peaks differ by several
reciprocal lattice vectors in momentum space. The phase
transition between these two phases can be controlled by the
relative intensity of these two Raman coupling strengths but
not their relative phase. Meanwhile, both phases will exhibit
some intriguing spin textures and density modulations in real
space. Thus, these two phases will have features that are
totally different from the case with Rashba SOC in free space
[5–10]. This platform also serves as an interesting model for
exploring of various physics in the Bloch bands.

II. MODEL AND HAMILTONIAN

We consider a 87Rb BEC in a weak trap [see Fig. 1(a)].
Three laser beams are used to couple the ground-state man-
ifold |F = 1, mF 〉 to the excited-state manifold to construct
two independent Raman couplings. Here laser beam L3 is
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FIG. 1. (a) Setup for the ODPP. The laser L1 with frequency ω1 is
linearly polarized along the z direction, and the two lasers L2/3 with
identical frequency ω2 are orthogonally polarized in the x-y plane.
(b) These three laser beams form two independent Raman coupling
in the same three-level system. (c) Momentum transfer in these two
Raman couplings with ki ≡ kLi − kL3 for i = 1, 2. (d) The plane
wave k with spin σ is coupled the two other plane wave vectors
k ± Q with opposite spin σ̄ by �1 and �2, respectively.

linearly polarized along the ẑ direction (π transition) and L1

and L2 from the same laser source with identical frequency are
polarized in the x-y plane (σ transition). We assume that the
polarization of the L1 and L2 beams are mutually orthogonal
to avoid interference (see details in Appendix A). These two
couplings are accompanied by a momentum transfer k̃i ≡
kLi − kL3 for i = 1, 2. By labeling |↓〉 = |1,−1〉 and |↑〉 =
|1, 0〉, we have the following Hamiltonian:

H =
∫

dr�†(r)[H(r) + Vtrap(r)]�(r). (1)

By eliminating the excited bands in the large detuning limit
(see details in Appendix A), we obtain the following single-
particle Hamiltonian:

H(r) =
(

p̃2

2m + δ̃
∑

j=1,2 �̃ jeik̃ j ·r̃∑
j=1,2 �̃∗

j e
−ik̃ j ·r̃ p̃2

2m − δ̃

)
, (2)

under basis �(r) = [ψ↑(r), ψ↓(r)]T . In this model, Vtrap(r) is
the harmonic trap potential, m is the mass, p̃ is the momentum
operator, �̃ j is the resonant Raman coupling strength, and δ̃

is the detuning from Raman resonance. Note that the phases
carried by �̃1,2 are always fixed as L1 and L2 originate from
the same laser source, making our model immune to random
phase fluctuation. When �̃2 (or �̃1) equals to zero, Eq. (2) is
reduced to the model studied in the previous literature, which
after an unitary transformation will yields an one-dimensional
SOC [3,5,7]. In the presence of both Raman couplings, the
phase carried by ODPP can no longer be gauged out.

In the following, we rescale the energy and momentum in
units of recoil energy Er = h̄2k2

r /2m and recoil momentum

FIG. 2. (a) Energy spectrum with �1 = 0.2, �2 = 0 when kx =
0, here the �i have defined in unit of the recoil energy ER. The blue
dashed lines are obtained with H̃, in which ky has been shift to match
the bands obtained using Bloch theorem. (b) Spectrum with �1 =
0.2, �2 = 0.1 when kx = 0. The inset shows the detail of the double
minima. (c) Double minima spectrum in two dimension when �1 =
0.6 and �2 = 0.2. (d) Single minimum at (0, π ) with �1 = 1.2 and
�2 = 0.2. The arrows in (c) and (d) represent the spin polarization
in σx-σz space in momentum spacing, indicating of spin-momentum
locking from two-dimensional SOC.

kr [43], then we can define δ̃ = δEr , �̃ j = � jEr , k̃i = kikr ,
K̃ = Kkr , and Q̃ = Qkr , where K = k1+k2

2 and Q = k1−k2
2

[see Fig. 1(c)]. After a unitary transformation [5], we have

H(r) =
(

(p + K/2)2 + δ �1eiQ·r + �2e−iQ·r

�∗
1e−iQ·r + �∗

2eiQ·r (p − K/2)2 − δ

)
. (3)

The physical meaning now becomes clear. The global plane
carried by the vector K plays the role of one-dimensional
SOC, and the ODPP, which represents a helical magnetic
field with period determined by 2π/Q in real space, plays
the role spatial varying Zeeman field. However, it is more
complicated because this helical magnetic field is coupled to
the momentum, hence behavior as some kind of SOC. The
two-dimensional nature of the SOC from the spin-momentum
locking effect is shown in Figs. 2(c) and 2(d). The relative
phase between the two Raman couplings can be gauged out
by a position shift, thus is unimportant. Hereafter we will
focus on the case with δ = 0, at which point the model is
invariant under the anti-unitary transformation 
 = σxK, with
K being the complex conjugate operator. In the following,
for simplicity, we only report the case of |k1| = |k2|, then K
is perpendicular to Q. The case with two non-perpendicular
vectors will be discussed elsewhere. In our simulation, we let
K = K x̂ and Q = Qŷ, then the diagonal term represents the
usual one-dimensional SOC as kxσz along the x direction.

The wave function can be written as [44]

ψs,k(r) =
∑

G

φs,k,Gei(k+G)·r, (4)
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following the Bloch theorem, where ky ∈ [−Q/2, Q/2] and
G = nQ (n ∈ Z) are the reciprocal lattice vectors. In this
basis, the Hamiltonian can be written as Hk = ∑

G Hk(G),
where

Hk(G) =
∑

s=↑,↓
φ

†
s,k,G[(k + G + csK/2)2]φs,k,G

+ (�1φ
†
↑,k,Gφ↓,k,G−Q + �2φ

†
↑,k,Gφ↓,k,G+Q + H.c.),

(5)

with c↑ = 1 and c↓ = −1. We see that the �1 field cou-
ples φ↑,k,G to φ↓,k,G−Q, while the �2 field couples φ↑,k,G
to φ↓,k,G+Q [see illustration in Fig. 1(d)]. In momentum
space, one can define a TR operator 
tr = I2nc+1 ⊗ 
, with

trHk


−1
tr = H−k [45]. Moreover, the Hamiltonian can be

made real if all �i ∈ R using the symmetry K.

III. SINGLE-PARTICLE PHASE DIAGRAM

We first consider the single-particle spectra, as shown in
Fig. 2. The case with �2 = 0 can be obtained exactly via
an unitary transformation, which yields H̃ = k2 + σzk · k1 +
�1σx and spectra εk± = k2 ±

√
(k · k1)2 + �2

1 [see the blue
dashed lines in Fig. 2(a)]. However, by Bloch theorem, the
dispersion in free space should be folded into the first BZ,
in which the Raman coupling �1 will open an energy gap
between the ground state and the third excited band [see
Fig. 2(a)]. The folded spectra form the first and second excited
bands.

Next we switch on the second Raman coupling �2 
= 0,
and the corresponding Bloch bands are shown in Fig. 2(b).
We see that this additional coupling can open an energy gap
between the folded spectra at ky = ± 1

2 . The interplay between
these two Raman couplings can greatly influence the spin
texture in momentum space [46,47]. Two typical examples
for the lowest band E1,k from the Bloch wave functions are
presented in Figs. 2(c) and 2(d), from which one can see that
the position of the ground-state minima can be controlled in
the whole BZ by tuning the two Raman coupling strengths.
Moreover, the TR symmetry 
tr ensures En,k = En,−k.

The single-particle phase diagram is characterized by the
position of the energy minima [see Fig. 3(a)], which ex-
hibits a star structure. To understand this diagram, let us
consider the limit that |�1| � |�2|, then by ignoring �2, the
Hamiltonian can be written as k2 + (Qky + Kkx )σz + �1σx,
which exhibits two local minima when �1 is small, and
one minimum at k = 0 when |�1| � |Qŷ + K x̂|. Noticed
that the unitary transformation has introduced a momentum
shift, thus the single minimum is shifted to k = (0, π ). When
�1 = ±�2, which corresponds to the diagonal (�1 = �2) and
off-diagonal (�1 = −�2) axes in Fig. 3(a) denoted by dashed
lines, it will always exhibit two local minima even when �1

becomes large. In this case, these two minima will never
merge to a single minimum. Thus, by tuning these two Raman
couplings, one can not only engineer the spin polarization,
but also the position of the ground-state minima, which can
influence the fate of the BEC over the Bloch bands.

FIG. 3. (a) Single-particle phase diagram in the parameter space
�1 and �2. The color represents the distance between the two
minima, thus the white color represents one local minimum. (b) The
phase boundary between BPW (g1 > gc

12) and BST (g12 < gc
12) in-

fluenced by the two Raman couplings for the three horizon lines
in (a), with �2 = (0, 0.8, 0.9, 1.0, 1.2). The system collapses when
g12/g < −1. (c, d) Ground-state energy Eg = Eg(g12) − Eg(gc

12)
and spin polarization across the phase boundaries for three typical
parameters.

IV. BEC OVER THE BLOCH BANDS
AND PHASE DIAGRAM

With these features, we naturally ask the question that what
will happen to the condensate in these Bloch bands? From the
viewpoint of plane wave basis, this condensate occupies mul-
tiple momenta simultaneously. In the weak interacting limit,
one expects the atoms to be condensed at the ground state(s) of
the Bloch bands. We consider the following interaction [48],

VI =
∫

dr{g[n2
↑(r) + n2

↓(r)] + 2g12n↑(r)n↓(r)}. (6)

Then we expand the wave function in terms of the Bloch basis
φn,k. The condensate should occur at one momentum with k =
−k0 or k0, or both of them. By only considering the scattering
at these two points, we obtain an effective interaction over the
Bloch bands,

VI = Uk0

(
nk0 + n−k0

)2 + (
Vk0 − 2Uk0

)
nk0 n−k0 . (7)

Here the two coefficients g and g12 will contribute to both Uk0

and Vk0 in a linear but complicated way. In general, Uk0 > 0,
thus the sign of the second term determines the fate of con-
densate [14,40,49,50]. It occupies a single Bloch vector (for
the BPW phase) when Vk0 − 2Uk0 > 0 and two Bloch vectors
(for the BST phase) with equal population of ±k0 when Vk0 −
2Uk0 < 0. With this criterion, we determine the phase bound-
ary between these two phases in Fig. 3(b). Strikingly, we find
that the spin polarizations can fundamentally influence the
scatterings in the condensate, thus dramatically influence the
phase boundaries between these phases. The change of this
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FIG. 4. Properties of the BPW phase. (a) and (d) Wave function
in momentum space for spin up and spin down components, respec-
tively. (b) and (e) The corresponding wave functions for these two
components in real space. Spin polarization in σx − σy space and
σx − σz space are shown in (c) and (f). These results are obtained
from GPE simulation with parameters: �1 = 0.4, �2 = 0.8, g12/g =
0.1, and k0 ≈ (0.30, 0.15).

boundary is further confirmed by numerical simulation using
Gross-Pitaevskii equation (GPE); see Figs. 3(c) and 3(d), in
which during the transition from the BPW phase to the BST
phase, dramatic changes in ground-state energy Eg − Eg(gc

12)
and total spin polarization can be observed.

In the special condition with only one Raman cou-
pling, say �2 = 0. We find Uk0 = g − ηg + ηg12 and Vk0 −
2Uk0 = (6η − 2)g + (2 − 2η)g12, where η = 2�2

1/k4
1 . The

phase boundary is given by [14,51]

gc
12

g
= 2 − 6η

2 − 2η
= k4

1 − 6�2
1

k4
1 − 2�2

1

, for |�1| < k2
1/2, (8)

which corresponds to the blue solid line in Fig. 3(b). This
boundary can be used to explain the four limits that when
�1 = 0, �c

2 = ±1, and when �2 = 0, �c
1 = ±1.

V. SPIN TEXTURES, DENSITY MODULATIONS,
AND EFFECTIVE HAMILTONIAN

In the BPW phase, only one Bloch wave vector k0 is
occupied. We find that one of the spin components will
occupy one momentum k0, and the other component oc-
cupies two momenta k0 ± Q. The other momenta such as
k0 + nQ for n 
= ±1 are presented but not discernible in
the present plot. By keeping only these three components as
(φ↓,k0,−Q, φ↑,k0,0, φ↓,k0,Q)T , we obtain an effective Hamilto-
nian as

Heff(k0) =

⎛
⎜⎝

ε−1
k0−Q �1 0

�∗
1 ε0

k0
�2

0 �∗
2 ε+1

k0+Q

⎞
⎟⎠, (9)

where ε0
k = (kx + K/2)2 + k2

y and ε±1
k = (kx − K/2)2 + k2

y .
We can use this effective Hamiltonian to understand our
numerical results from GPE simulation. In Fig. 4, the two
Raman couplings have different strengths, thus the two peaks
in Fig. 4(a) have different intensities. We find the ground state
is (−0.154, 0.897,−0.413)T , thus the intensity ratio between

FIG. 5. Properties of the BST phase with parameters �1 = 0.4,
�2 = 0.8, g12/g = −0.1, k0 ≈ (0.30, 0.15). The other parameters
are the same as that in Fig. 4.

these two peaks k0 ± Q is 0.413/0.154 = 2.69, while the
GPE gives 2.58. The intensity ratio between k0 and k0 + Q
is 0.897/0.413 ≈ 2.17, while the GPE gives 2.24. The inter-
ference between different momenta can give rise to density
modulation in real space [see Figs. 4(b) and 4(e), and more
numerical data can be found in Appendix B], while in free
space, this kind of modulation is absent. Furthermore, this
phase will also exhibit some interesting spin textures in real
space as shown in Figs. 4(c) and 4(f). We then compare
these features to that in BST phase in Fig. 5, in which each
component will exhibit three peaks in momentum space due
to occupation of both wave vectors ±k0. As a result, the
density modulations and spin textures in real space are also
totally different. Note that in the BST phase, the total spin is
balanced, thus 〈ψk0 |σz|ψk0〉 = 0 [see Fig. 5(f)]. These features
can be understood from two copies of model Eq. (9), i.e.,

H = diag[Heff(k0),Heff(−k0)]. (10)

Due to the same parameters �1 and �2 used in both figures,
they should have the same intensities. The case with �1 =
�2 = 1.0 for different g, which exhibit the similar interference
features, are presented in Appendix B. These features provide
smoking gun evidences in experiments to identify these two
phases.

VI. CONCLUSION AND DISCUSSION

Our model possesses some features similar to that of two-
dimensional SOC. The real representation of Hk ensure that
the geometry phase around any closed loop exactly vanish.
However, by applying an in-plane Zeeman field hxσx, which
still respects 
tr symmetry but breaks the K symmetry, we
can awake the two-dimensional nature of SOC with a finite
geometry phase. While this feature is not essential for BEC
in Bloch bands, it may be important for the realization of
topological superfluids in Fermi gases, in which the BCS
pairing [52–55] is ensured by 
tr symmetry.

To conclude, we demonstrate some exotic condensates in
the Bloch bands with ODPP realized using three laser beams
coupled to the same three-level system. With this potential,
the single-particle spectrum exhibit different and more com-
plicated structure with the one-dimension SOC, resulting in
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FIG. 6. (a) Two lasers, polarize along the x̂ and ŷ directions,
couple the ground state |m〉g to the excite states |m − 1〉e and
|m + 1〉e. Here the ground state |m〉g denotes hyperfine state 52S1/2

with F = 1, mF = m, and the excited state |m〉e denotes 52P1/2 with
F = 1, mF = m [62]. The solid and dashed lines denote the two
lasers, respectively. (b) Two independent Raman couplings in the
same three-level system. Lasers L1 and L2, which polarize in the x̂-ŷ
plane, couple |↓〉 to |e〉, while Laser L3 linearly polarizes along the ẑ
direction, couples |↑〉 to |e〉.

the modulation of the distribution of the condensate in the
plane wave and stripe phases. By involving more lasers from
the same source, different forms of ODPP can be realized.
This kind of potential can never approach the tight-binding
limit, thus it enables us to simulate some intriguing physics
beyond the realm of condensed matter physics, which should
be an important goal in AMO physics. This ODPP can change
the interactions over the Bloch bands and thus may lead to
alternative physics, such as collective oscillation and damping
of condensate [56–58], polaron physics [59–61], topological
superfluids [28,29], and their quench dynamics.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

1. Absence of interference between two orthogonal laser beams

First, we show that two orthogonal linear polarized laser
beams do not have interference effect. Let us assume the two
lasers are polarized along the x̂ and ŷ directions [see Fig. 6(a)],
so their electric field components can be written as

E1 = ε1eiq1·r−iωt x̂ E2 = ε2eiq2·r−iωt ŷ, (A1)

where q1 and q2 denote the momenta of the two lasers and ω

is the frequency of the two lasers. The magnetic field along
the ẑ direction sets the spin polarization axis, then we have

x̂ = σ+ + σ− ŷ = −iσ+ + iσ−. (A2)

As a result, both lasers can induce σ+ and σ− transitions.
We can define the dipole moment for σ± transitions as
d± = d0σ

±. In the large single photon detuning limit, the

excited states |m ± 1〉e can be adiabatically eliminated, result-
ing in the AC Stark shift as

1


[|d+ · (E1 + E2)|2 + |d− · (E1 + E2)|2]

= d2
0


(|ε1eiq1·r − iε2eiq2·r|2 + |ε1eiq1·r + iε2eiq2·r|2)

= 2d2
0



(
ε2

1 + ε2
2

)
. (A3)

In the above calculation we can safely assume that the σ+
and σ− transitions have the same detuning since the Zeeman
splitting with the order of MHz, is much smaller than the
detuning  with the order of GHz. Thus, we see that the
interference between these two Raman couplings are exactly
canceled and the lowest state |m〉g only feels a constant
AC stark shift. This picture is true even by considering all
hyperfine levels.

2. The effective Hamiltonian

Next, we derive the effective Hamiltonian using the three-
level system in Fig. 6(b). In this setup, the two lasers L1

and L2 come from the same source and polarize linearly in
the x̂-ŷ plane and the third laser L3 polarizes along the ẑ
direction. We only consider a three-level system, although
in ultracold atoms, the excited manifolds contains a lot of
energy levels [62]. However, only one of them is energetically
allowed in the two-photon Raman coupling, and all the other
couplings only contributes to an effective Zeeman field to the
two ground-state energy levels. The original Hamiltonian can
be written as

Horig = ω↑|↑〉〈↑| + ω↓|↓〉〈↓| + ωe|e〉〈e|
+ [

e−iωL1 t
(
�L1 eikL1 ·r + �L2 eikL2 ·r)|e〉〈↓|

+�L3 e−iωL3 t+ikL3 ·r|e〉〈↑| + H.c.
]
. (A4)

Here ωLi ,�Li and kLi denote the frequency, the Rabi fre-
quency and the wave vector of laser Li, respectively. No-
ticed that we have assumed ωL1 = ωL2 . With an unitary
transformation

UR= exp[iω↓t |↓〉〈↓|+ i(ω↑+ δh)t |↑〉〈↑|+ i(ω↓+ ωL1 )t |e〉〈e|],
(A5)

the Hamiltonian can be rotated to a time-independent model
as

Hrotate = URHorigU†
R + i

(
∂

∂t
UR

)
U†

R

= |e〉〈e| − δh|↑〉〈↑| + [(
�L1 eikL1 ·r +

×�L2 eikL2 ·r)|e〉〈↓| + �L3 eikL3 ·r|e〉〈↑| + H.c.
]

≡ H0 + HR, (A6)

where  = ωe − ω↓ − ωL1 , ω↑ + δh + ωL3 = ωL1 + ω↓, and
H0 = |e〉〈e| − δh|↑〉〈↑|. Usually, the detuning  is about
tens or hundreds of GHz in experiments, which is much larger
than the Rabi frequency �Li = 1 ∼ 10 MHz [30]. We can
safely eliminate the contribution from the excited state via the
second-order perturbation theory [63]. To obtain the effective
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FIG. 7. Properties of the BPW when �1 = �2 = 1.0 and g12/g = −0.3. (a) and (e) show the wave function in momentum space for spin
up and spin down components, respectively. The corresponding wave functions in real space are given in (b) and (f). (c) and (g) show the
densities of spin up and spin down components in the line of x = 0. (d) and (h) plot the spin polarization in σx − σy and σx − σz space. In (a),
two major peaks are visible at −k0 ± Qŷ, while in (e), three peaks are visible at −k0 and −k0 ± Q2ŷ.

Hamiltonian, we define the projectors on the space of the lowest two states Pgs = |↓〉〈↓| + |↑〉〈↑| and the excited state Pex =
1 − Pgs = |e〉〈e|. Then, the effective Hamiltonian on the subspace |↑〉, |↓〉 can be written as [63]

Hpertur = Pgs(H0 + HR)Pgs + PgsHRPex
1

E0 − PexH0Pex
PexHRPgs

= − 1



[∣∣�L1

∣∣2 + ∣∣�L2

∣∣2 + �L1�
∗
L2

ei(kL1 −kL2 )·r + �L2�
∗
L1

ei(kL2 −kL1 )·r]|↓〉〈↓| −
(

1



∣∣�L3

∣∣2 + δh

)
|↑〉〈↑|

+
[
−�∗

L1
�L3


e−i(kL1 −kL3 )·r|↓〉〈↑| − �∗

L2
�L3


e−i(kL2 −kL3 )·r|↓〉〈↑| + H.c.

]
. (A7)

The amplitude of the effective Raman couplings, �∗
Li
�L3/

(for i = 1, 2) can range from 100 Hz to 104 Hz, or equivalently
in the order from 0.1Er to several Er . In this effective model,
the interference between the two lasers L1 and L2 can be
exactly canceled, from our conclusion in Eq. (A3), thus it can
be dropped out. Then we obtain an effective Hamiltonian as

Heff = δ(|↑〉〈↑| + |↓〉〈↓|) + δ(|↑〉〈↑| − |↓〉〈↓|)
+ (�1eik1·r + �2eik2·r )|↑〉〈↓|
+ (�∗

1e−ik1·r + �∗
2e−ik2·r )|↓〉〈↑|, (A8)

where we have defined

δ = −(∣∣�L3

∣∣2
/ + δh

)/
2, (A9)

�i = −�Li�
∗
L3

/, (A10)

and ki = kLi − kL3 , with i = 1, 2. This is the expression used
in the main text. Throughout this work, we let δ = 0; while
the result with δ 
= 0 will be published elsewhere.

APPENDIX B: PHASES WITH �1 = �2 = 1.0 AND
ANALYSIS USING A FIVE-BAND MODEL

We aim to provide some more numerical results from
GPE simulation for the properties of BPW and BST phases
discussed in the main text. When �1 = �2 = 1.0, the
condensates happen at k0 = (0.2, 0) and −k0 = (−0.2, 0).
The critical boundary is determined to be gc

12/g = −0.529
from the simulation of Uk0 and Vk0 [see Eq. (7) in the
main text]. Our numerical results for the BPW phase and
BST phase are presented in Fig. 7) and Fig. 8, respec-
tively. In this regime, we find that the ±k0 ± 2Q is vis-
ible, thus one need a 5 × 5 model, under the basis of
(φ↑,k0,−2Q, φ↓,k0,−Q, φ↑,k0,0, φ↓,k0,Q, φ↑,k0,2Q)T, to more accu-
rately characterize the properties of these two phases, which
can be written as follows:

Hk0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε
↑
k0−2Q �2 0 0 0

�2 ε
↓
k0−Q �1 0 0

0 �1 ε
↑
k0

�2 0

0 0 �2 ε
↓
k+Q �1

0 0 0 �1 ε
↑
k0+2Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)
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FIG. 8. Properties of the BST phase when �1 = �2 = 1.0 and g12/g = −0.7. (a) and (e) show the wave function in momentum space for
spin up and spin down components, respectively. The corresponding wave function in real space are presented in (b) and (f). (c) and (g) show
the densities of spin up and spin down components in the line of x = 0. (d) and (h) plot the spin polarization in σx − σy and σx − σz space. In
(a), five peaks can be found at k0, −k0 ± Qŷ, k0 ± 2Qŷ. The peaks at k = k0 ± 2Qŷ is about one tenth in amplitude of the peaks at k0. In (e),
there are also five peaks at −k0, k0 ± Qŷ, −k0 ± 2Qŷ, just in the opposite position of the peaks in (a).

where

ε
↑
k = (kx + K/2)2 + k2

y , (B2)

ε
↓
k = (kx − K/2)2 + k2

y . (B3)

For the parameters �1 = �2 = 1.0, K = 1, Q = 1 and −k0 =
(−0.2, 0), we can get the eigenvector of the lowest state
as (0.0786,−0.388, 0.828,−0.388, 0.0786). So the ratio be-
tween the peaks at −k0 and −k0 ± Q is

A−k0

A−k0±Q
= 0.828

0.388
= 2.13, (B4)

and the ratio between the peaks at −k0 and −k0 ± 2Q is

A−k0

A−k0±2Q
= 0.828

0.0786
= 10.53, (B5)

while the ratios obtained from the simulations of the GPE are
[results of Figs. 7(a) and 7(e)]

(
A−k0

A−k0±Q

)
≈ 2.15,

(
A−k0

A−k0±2Q

)
≈ 10.19. (B6)

These two values match exactly with the results based on the
five-band model. We need to point out that if we consider the
three-band model used in the main text, the ratio

A−k0
A−k0±Q

=
2.29, which is slightly poorer than the five-band model. In
experiments, this ratio can be directly obtained from the time-
of-flight measurement.
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