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Quantized conductance through a dissipative atomic point contact
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Signatures of quantum transport are expected to quickly vanish as dissipation is introduced in a system. This
dissipation can take several forms, including that of particle loss, which has the consequence that the total
probability current is not conserved. Here, we study the effect of such losses at a quantum point contact (QPC)
for ultracold atoms. Experimentally, dissipation is provided by a near-resonant optical tweezer the power and
detuning of which control the loss rates for the different internal atomic states as well as their effective Zeeman
shifts. We theoretically model this situation by including losses in the Landauer-Büttiker formalism over a wide
range of dissipative rates. We find good agreement between our measurements and our model, both featuring
robust conductance plateaus. Finally, we are able to map out the atomic density by varying the position of the
near-resonant tweezer inside the QPC, realizing a dissipative scanning gate microscope for cold atoms.
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I. INTRODUCTION

Coupling a system to its environment is a central concept
in physics, giving rise to different types of ensembles in ther-
modynamics [1]. It leads to fundamental questions about the
fate of quantum mechanics at a macroscopic scale [2,3]. The
coupling to the environment can also compete with coherence
and interaction effects, leading to new phenomena [4,5]. A full
model of a system and its environment is out of reach in most
cases due to the exponential growth of the total Hilbert space
with the number of degrees of freedom. Tracing out those of
the environment can be done under certain assumptions lead-
ing to a Lindblad master equation [6]. In some cases, further
simplification is possible by only adding dissipative terms to
the isolated system’s equation of motion [7,8]. The resulting
dynamics, which becomes non-Hermitian, has recently found
renewed interest due to the exotic behaviors of exceptional
points linked to the collapse of the eigenvectors at a critical
dissipation strength [9,10].

Dissipation, understood as the nonconservation of the sys-
tem’s volume in phase space over time, is characteristic for
transport phenomena where currents bring a system towards
equilibrium while producing entropy [1]. There, extrinsic dis-
sipation can be included by physical or fictitious coupling to a
reservoir other than the leads driving the transport processes.
Such an additional coupling has mostly been studied to model
incoherent scattering of electrons [11–13]. It is usually done
by adding a fictitious reservoir with which the lossy region can
exchange particles without any net current [11]. Mimicking
particle losses as a perturbation to transport by an additional
absorbing reservoir has to our knowledge so far not been
explored in this context.

*Corresponding author: lcorman@phys.ethz.ch

Cold clouds of atoms are nearly closed systems by default,
but can be opened by designing atom losses in a controlled
way. Experimental loss channels include (i) molecule forma-
tion via photoassociation [14] or via decay to a molecular
channel [15–17], (ii) ionization using a focused electron beam
[18,19] or a femtosecond laser [20], or (iii) scattering of
near-resonant photons that impart a large kinetic energy to
the atoms [21–23]. Many of these techniques realize localized
losses, an assumption underlying the usual theoretical models
for dissipation in transport structures [13], realized using an
electron beam in a Bose-Einstein condensate [24,25].

In this paper, we study dissipation as a perturbation to
transport through a quantum point contact (QPC) for a two-
component fermionic gas of ultracold 6Li atoms, where the
different hyperfine states of the atoms are interpreted as a
pseudospin. The geometry of the optical potentials trapping
the atoms realizes a two-terminal transport setup as illustrated
in Fig. 1(a) [26]. There, a cloud of degenerate fermionic
lithium is divided into two reservoirs connected by a quasi-
one-dimensional (1D) constriction formed by two intersecting
beams with a nodal line. Controlled by the chemical potential
inside the 1D channel, only one to two transverse modes are
available to particles moving from one reservoir to the other.
Since the potential landscape in the channel is smooth, trans-
port is ballistic: the transmission probability of the atoms is
close to unity. This leads to the measurement of conductance
plateaus [27] as the chemical potential is increased in the wire,
in agreement with the Landauer-Büttiker model [illustrated in
Fig. 1(b)] that identifies conductance with transmission for
mesoscopic conductors [28–30].

The losses are provided by a near-resonant beam focused
onto the constriction. The spatial profile of the beam is
controlled holographically using a digital micromirror device,
allowing us to correct for aberrations [31]. The scattering
rate and dipole potential experienced by the atoms are related
to the imaginary and real part of the atomic polarizability,
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(a)

(b)

FIG. 1. Experimental realization of a Landauer-Büttiker setup
with losses. (a) 6Li atoms in the lowest (|↓〉, orange) and third-
lowest (|↑〉, blue) hyperfine states are allowed to flow between two
reservoirs connected by an optically defined QPC (gray). A near-
resonant optical tweezer (red) with waist ws = 2.0(1) μm introduces
different loss rates �↑ and �↓ as well as a spin-dependent potential
Vs inside the QPC. A far-detuned gate beam (dashed circle) locally
increases the chemical potential μres imposed by the reservoirs by Vg.
(b) In a Landauer-Büttiker picture and in the absence of a temperature
bias, net transport can be attributed to the excess of particles in the
left reservoir not compensated by the right reservoir (orange) due to
a chemical potential difference μL − μR > 0. Losses on the other
hand involve the energy integration of the reservoir Fermi-Dirac
distributions fL (E ) and fR(E ), including states below the Fermi level
that do not contribute to a net current (brown). Conductance and
loss are furthermore weighted by the energy-dependent transmission
T (E ) and loss L(E ) coefficients of the mesoscopic channel.

respectively, which must be computed in the regimes of high
magnetic fields relevant for tuning the scattering properties
of 6Li. For light frequencies close to the atomic resonances
of different pseudospin states, both scattering rate and dipole
potential are strongly spin dependent due to the splitting
of their transition frequencies. The dipole potential can be
interpreted as an effective Zeeman shift in the case where
its magnitudes are equal and opposite for both spins. This
case is investigated in our companion paper [32] wherein
the amplitude of this effective Zeeman shift is on the order
of the Fermi energy of the atoms, leading to a significant
shift between the onset of the conductance plateaus of the
two spins. Here, we focus on the effect of the atom losses
engineered for the atoms. We demonstrate that in spite of
the dissipation the conductance plateaus persist owing to
the constant flow of low-temperature particles through the
channel. We show that the transport properties of a lossy QPC
can be described by including the transmission as well as
the energy-dependent losses characterizing the channel into
a Landauer-Büttiker model as illustrated in Fig. 1(b). Finally,
we are able to reconstruct the atomic density in a wide region

around the QPC by monitoring the atom losses as the position
of the near-resonant tweezer is varied.

This paper is structured as follows. In Sec. II, we review the
polarizability of alkali-metal atoms in high magnetic fields. In
Sec. III, we adapt the Landauer formalism to the presence of
particle losses. In Sec. IV, we describe the experimental setup
and the loss mechanism induced by the near-resonant light,
justifying the validity of the analysis of Sec. III. Finally, we
compare the extended Landauer formalism to our measure-
ments in Sec. V.

II. 6Li POLARIZABILITY IN HIGH MAGNETIC FIELDS

In the following, we briefly review how to compute the
atomic polarizability in presence of a high magnetic field,
which is particularly relevant when the interaction strength
can be controlled using a Feshbach resonance such as 6Li.
Choosing the frequency and intensity of a near-resonant beam
allows to tailor different optical potentials and losses for each
internal state of ultracold lithium atoms. We will focus on
presenting regimes where the optical potentials are of equal
magnitude but opposite sign for the two relevant states in the
experiment, emulating an effective Zeeman shift.

A. Polarizability of alkali-metal atoms
in the Paschen-Back regime

We consider alkali-metal atoms in a uniform magnetic field
�B. If the energy of the electron’s magnetic dipole moment
exceeds the hyperfine interaction for 6Li, the atoms are in the
Paschen-Back regime.

The Hamiltonian for a single atom can be expressed as a

function of the electronic and nuclear spin operators �̂J = �̂L +
�̂S and �̂I:

Ĥat = μB

h̄
(gJ �̂J · �B + gI �̂I · �B) + a

h̄2
�̂J · �̂I, (1)

where μB is the Bohr magneton, gJ and gI are the electronic
and nuclear gyromagnetic factors, and a is the hyperfine
coupling energy. Both gJ and a depend on the electron’s
orbital momentum L and total spin J which characterize each
level manifold 2S, 2P1/2, and 2P3/2. Their values for 6Li are
reported in [33].

The dipole matrix element between two states labeled by
electron and nuclear spin (J, mJ , mI ) is given by the Wigner-
Eckardt theorem:

dq
kk′ = 1√

2J ′ + 1
δmI ,m′

I
〈JmJ , 1q|J ′m′

J〉 〈J ′|| �d||J〉 , (2)

where 〈JmJ , 1q|J ′m′
J〉 is the Clebsch-Gordan coefficient re-

lating initial and final electron spins mJ and m′
J through the

added angular momentum q = −1, 0, and + 1 of a photon
with polarization σ−, π, and σ+, respectively, and 〈J ′|| �d||J〉
is the reduced matrix element of the corresponding 2S → 2P
transition. The dipole matrix elements d q

eg between each pair
of eigenstates |g〉 and |e〉 of (1) are then given via a change of
basis.

These dipole matrix elements appear in the complex polar-
izability tensor of each state |g〉 of the ground manifold 2S at
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light frequency ν:

αqq′
g = −

∑
e

(
d q

eg
)∗

d q′
eg

h(ν − νeg) + ih̄�eg/2
, (3)

where the sum runs over all excited states |e〉 in 2P1/2 and
2P3/2. The transition frequencies νeg between ground and
excited states are derived from the eigenvalues of (1),
and �eg denotes the spontaneous emission rates from excited
to ground states:

�eg = (hνeg)3

3πε0c3h̄4

∑
q

∣∣d q
eg

∣∣2
, (4)

where c is the speed of light and ε0 is the vacuum permittivity.
For light intensities I small compared to the saturation

intensity, the light shift V|g〉 and scattering rate �|g〉 experi-
enced in the ground state |g〉 are related to the dispersive and
dissipative parts of the polarizability:

V|g〉 = − I

2ε0c

∑
q,q′

eq Re
(
αqq′

g

)
e∗

q′ , (5)

�|g〉 = I

h̄ε0c

∑
q,q′

eq Im
(
αqq′

g

)
e∗

q′ . (6)

The sum indicates a double tensor contraction by the light
polarization �e = �E/| �E | = ∑

q eq�uq, the coordinates of which

are expressed here in the basis �u−1 = (�ux − i�uy)/
√

2 for σ−
polarization, �u0 = �uz for π polarization, and �u+1 = −(�ux +
i�uy)/

√
2 for σ+ polarization.

B. Spin filter regimes for ultracold 6Li atoms

The eigenstates of the Hamiltonian (1) can be expressed
as linear combinations of the |J, mJ , mI〉 states. From an
experimental point of view, we are especially interested in
the lowest and third-lowest hyperfine states as possible ground
states, labeled as |↓〉 and |↑〉.

At high magnetic field B, these states can be approximated
by

|↓〉 =
∣∣∣∣mJ = −1

2
, mI = 1

〉
− ε√

2

∣∣∣∣mJ = 1

2
, mI = 0

〉
, (7)

|↑〉 =
∣∣∣∣mJ = −1

2
, mI = −1

〉
(8)

to first order in ε = ah/(gJμBB), with a = 152.1 MHz the
hyperfine coupling constant of the 2 2S1/2 manifold.

Therefore the different internal states are mostly described
by their electronic spin mJ = −1/2 and nuclear spin, mI =
+1 and −1, for the lowest and third-lowest hyperfine states of
6Li, respectively.

For a given polarization, the transitions between these
hyperfine states and the excited manifolds 2P1/2 and 2P3/2

occur at different frequencies, typically offset by a magnetic-
field-dependent shift comparable to the hyperfine coupling.
Tuning the light frequency in the vicinity of these transitions
leads to strongly state-dependent polarizabilities which can be
exploited experimentally.

As an example, and along the lines of our companion paper
[32], the differential light shift created by a near-resonant

beam can be reinterpreted as an effective Zeeman shift.
We therefore aim at creating the maximum potential
difference V↑ − V↓ for a limited scattering rate at a frequency
where the mean potential for the two spin states vanishes
(V↓ + V↑)/2 = 0.

A natural and experimentally practical solution adopted
in [32] is to choose a frequency ν right in between the
strongest transitions of the states |↓〉 and |↑〉 to the D2 line,
which fulfill the condition mJ ′ = mJ + q and the linewidths of
which are almost equal at high magnetic field. For σ− light,
the resonance frequencies ν↓ and ν↑ are 162.6 MHz apart at
the typical magnetic field of B = 568 G where the scattering
length between the two spin states vanishes. The potentials
and scattering rates for each atomic internal state are displayed
in Figs. 2(a) and 2(b) as a function of the mean detuning
δ̄ = ν − (ν↓ + ν↑)/2.

Alternative solutions are, however, more favorable in terms
of light scattering. Interestingly, the small admixture of mJ =
1/2 states in |↓〉 as seen in Eq. (7) leads to narrow transitions
to the states mJ ′ = 1/2 + q with an effective width ∼ε2�/2.
Figures 2(c) and 2(d) shows the dipole potential and scattering
rate close to such a transition for σ+ polarization within the
D2 line, adapting the light intensity such that the differential
light shift remains equal to the one in Fig. 2(a). The associated
scattering rate is reduced by more than one order of magnitude
compared to Fig. 2(b).

Last, the mean potential also vanishes at a frequency
between the D1 and the D2 lines for σ+ and π polarization. As
illustrated in Figs. 2(e) and 2(f) for σ+ polarization, the signs
of the dipole potentials V↑ and V↓ are inverted compared to
the two previous cases. The scattering rate at fixed differential
light shift is only reduced by a factor of 2, but it is equal for
the two spin states and remains weakly frequency dependent.

III. ADAPTING THE LANDAUER
FORMALISM WITH LOSSES

Transport between two reservoirs through a QPC is usually
well described by Landauer’s formalism which identifies con-
ductance with transmission [28–30]. Our aim here is to extend
this formalism to localized particle losses by modeling them
by an imaginary potential.

A. Effective Hamiltonian with losses

For a system evolving according to a Hamiltonian Ĥ0

which is weakly coupled to a fast evolving environment
(Born-Markov approximation), the evolution of the density
matrix ρ is determined by the Lindblad master equation [6]:

∂t ρ̂ = − i

h̄
[Ĥ, ρ̂] −

∑
j

(
1

2
L̂†

j L̂ j ρ̂ + 1

2
ρ̂L̂†

j L̂ j − L̂ j ρ̂L̂†
j

)

(9)

where L̂ j represent the noise operators describing the loss
processes, which are proportional to the square root of the
scattering rate (6). The first two terms of the sum can be
included in the commutator by defining an effective, complex-
valued Hamiltonian

Ĥeff = Ĥ0 − i
h̄

2

∑
j

L̂†
j L̂ j (10)
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FIG. 2. Potentials and scattering rates at a magnetic field of B = 568 G for the |↓〉 and |↑〉 states for different frequencies ν of the light
where the mean potential (V↓ + V↑)/2 vanishes. The lower frequency axes are offset by the D2 transition frequency at zero magnetic field
νD2 [33]. The intensities in each pair of graphs are chosen to give a constant amplitude of the spin potential |V↓ − V↑| = kB × 0.6 μK. Panels
(a) and (b) correspond to σ− polarization and an intensity of 3 W/m2. The top frequency axis has been offset by the mean of the resonance
frequencies of state |↓〉 and |↑〉 for the main D2 σ− transition: δ̄ = ν − (ν↓ + ν↑)/2. Panels (c) and (d) correspond to σ+ polarization and an
intensity of 136 W/m2 close to a narrow D2 resonance appearing in the Paschen-Back regime. Panels (e) and (f) correspond to σ+ polarization
and an intensity of 1.2 × 104 W/m2 between the D1 and D2 lines.

which, for losses spatially varying along y, becomes

Ĥeff = Ĥ0 − i
h̄�(y)

2
�̂†(y)�̂(y) (11)

where �̂(y) is the particle annihilation operator at position y.
The last term in the sum of (9) represents fluctuations

and is necessary to preserve fermionic commutation relations.
Using an imaginary potential is a minimal way to capture
non-Hermitian dynamics [9] that neglects this last term. This
ignores the stochastic nature of the loss processes and applies
well to particles described by a macroscopic wave function
such as photons or condensed bosons [19,34]. Although un-
paired fermions are not described by a macroscopic wave
function, the last term of (9) can still be neglected in our
case since it will not contribute to macroscopic response
functions measured over times very large compared to the
fluctuation timescales. Therefore, the non-Hermitian Hamilto-
nian approach (11) should be sufficient to model the conduc-
tance measurement in a transport experiment, performed for
durations much longer than the typical scattering time �−1.

B. Transmission and loss coefficients

In the ballistic regime, the conductance between two reser-
voirs at chemical potentials μL and μR only depends on the
overall transmission at a given energy E :

T (E ) =
∑

modes n

Tn(E ) (12)

where Tn(E ) is the transmission of transverse mode n, i.e.,
the probability that a particle injected at one end with energy
E will be transmitted to the other end.

The different transverse modes of the QPC are charac-
terized by the quantum numbers n = (nx, nz ) describing the
transverse wave function along the harmonically confined
directions. We will restrict the analysis to the first transverse
mode n = (0, 0), which is valid at low chemical potentials in
the reservoirs.

The transmission T (E ) is computed from the longitudinal,
complex-valued, spin-dependent potential Vσ (y) that the par-
ticles experience as they travel along the QPC region. To this
end, forward and backward scattering amplitudes associated
with this complex potential are computed by solving the
time-independent 1D Schrödinger equation with Numerov’s
method [35]. Their square moduli are equal to the energy-
dependent transmission T (E ) and reflection R(E ), respec-
tively, and do not sum up to one since the total probability
amplitude is not conserved by the nonunitary evolution. The
loss probability L(E ) is defined as the missing probability:

T (E ) + R(E ) + L(E ) = 1. (13)

C. Landauer-Büttiker formula

In the Landauer-Büttiker picture presented in Fig. 1(b),
transport arises from the sum of a right-moving and a left-
moving current of particles with the Fermi-Dirac distributions
fL(E ) and fR(E ) of the left and right reservoirs, respectively,
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defined as

f (E , μ, T ) = 1

1 + e
E−μ

kBT

(14)

where μ = μL/R and T = TL/R are the chemical potentials and
temperatures of each reservoir.

The number of right and left movers that are transmitted
through the mesoscopic channel with an energy-dependent
probability T (E ) per unit time is

Ṅ trans
→/← = 1

h

∫ +∞

−∞
fL/R(E )T (E )dE . (15)

This formula is independent of the fermions’ velocity at
a given energy E thanks to the expression of the one-
dimensional density of states (see Sec. 2.1 in [36]). The
total number of atoms crossing the channel per unit time is
therefore

Ṅ trans = Ṅ trans
→ + Ṅ trans

← (16)

= Ṅ trans
→ − Ṅ trans

← (17)

+2Ṅ trans
← . (18)

The net current is the difference between the right and left
movers as in Eq. (17), corresponding to the orange shaded
area in Fig. 1(b):

Ṅ trans
c = IN = 1

h

∫ +∞

−∞
[ fL(E ) − fR(E )]T (E )dE (19)

where the subscript “c” stands for “contributing” to transport.
The rest of the atoms are transmitted through the channel
without contributing to the net current with a rate

Ṅ trans
nc = 2Ṅ trans

← (20)

(with a subscript “nc” for “noncontributing”). This corre-
sponds to the brown shaded area in Fig. 1(b).

Particle transport is also associated with energy transport,
leading to weak thermoelectric effects that are neglected
in the rest of the paper [37]. Assuming that the reservoirs
have the same temperature T , conductance is obtained using
Ohm’s law:

IN = G�μ. (21)

To compute conductance in Sec. V, we furthermore assume
small biases �μ relative to temperature kBT that simplify the
expression to

G = 1

h

∫ +∞

−∞
T (E )

(
−∂ f (E , μ̄, T )

∂E

)
dE (22)

with μ̄ = (μL + μR)/2.

D. Time evolution of the reservoir properties

This Landauer-Büttiker picture can be refined to estimate
the particle and energy losses occurring during transport.

In contrast to the net current (19), the absolute parti-
cle number loss is equal to the sum of the currents lost
from the mesoscopic channel by photon scattering with
probability L(E ):

−dN

dt
= 1

h

∫ +∞

−∞
[ fL(E ) + fR(E )]L(E )dE (23)

= 1

h

∫ +∞

−∞
[ fL(E ) − fR(E )]L(E )dE (24)

+ 2

h

∫ +∞

−∞
fR(E )L(E )dE . (25)

Similar to Eqs. (15)–(20), the total rate of particle losses
(23) can be split into a contributing term Ṅ loss

c corresponding
to the atoms at the Fermi level in Eq. (24) [orange area in
Fig. 1(b)] and a noncontributing term Ṅ loss

nc corresponding to
the atoms below the lowest Fermi level in Eq. (25) [brown
area in Fig. 1(b)].

The time evolution of each reservoir, characterized by its
particle number NL,R(t ) and internal energy UL,R(t ), can be
evaluated iteratively by (i) converting the extensive quan-
tities (NL,R,UL,R) into chemical potential and temperature
(μL,R, TL,R) using the equation of state of the noninteract-
ing Fermi gas in a three-dimensional harmonic trap [38];
(ii) inserting these quantities into the reservoir Fermi-Dirac
distributions fL,R to compute the time derivatives of particle
number and energy in each reservoir,

dNL,R

dt
= 1

h

∫ +∞

−∞
fR,L(E )T (E )dE

− 1

h

∫ +∞

−∞
fL,R(E )[T (E ) + L(E )]dE , (26)

dUL,R

dt
= 1

h

∫ +∞

−∞
E · fR,L(E )T (E )dE

− 1

h

∫ +∞

−∞
E · fL,R(E )[T (E ) + L(E )]dE ; (27)

and (iii) updating the particle number and energy after a
numerical time step using Euler’s method.

IV. EXPERIMENTAL PROCEDURE

In this section, we present the characteristics of the exper-
iment and of the conductance measurements. We also justify
why the scattering of a photon, normally associated with a
large momentum kick, can be modeled by a local particle loss
without increasing the total energy of the system.

A. Experimental parameters

We prepare atoms in the geometry depicted in Fig. 1(a) of
an atomic QPC consisting of two reservoirs connected by a
1D region where the atomic density is tunable.

We start by producing a degenerate cloud of 6Li atoms
in a balanced mixture of |↓〉 and |↑〉 (the lowest and third-
lowest hyperfine states), with a typical temperature of T =
66(12) nK and N = 1.1(1) × 105 atoms per spin state. Before
starting the transport experiment, the magnetic field is ramped
to a value of 568 and 574 G for Fig. 3 and Figs. 4–6 where the
scattering length between the two components is a = 0(7) a0

and 91(7) a0, respectively. The atoms are thus very weakly
interacting and atom-atom scattering is expected to be weak,
even in the 1D region of the QPC.

The cloud is then shaped into two reservoirs by pro-
jecting the different optical potentials [see Fig. 1(a)]. The
vertical (horizontal) confinement is provided by a beam
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FIG. 3. Measured and simulated evolution of the relative atom
number imbalance and of the atom number. (a) Experimental relative
imbalance and (b) normalized atom number for spin |↓〉 (orange,
closed symbols) and spin |↑〉 (blue, open symbols), obtained for a
mean chemical potential Vg + μres = kB × 0.61(2) μK, with a near-
resonant beam power Ps = 20(6) pW corresponding to an intensity
Is = 0.13(4) Isat, where Isat is the D2-line saturation intensity and at
a scattering length a = 0(7) a0. The initial atom numbers for each
spin state are N0,↓ = 117 × 103 and N0,↑ = 110 × 103. Here and in
the following, error bars correspond to the standard error of the
mean of three measurements. (c) Simulation results for the relative
atom number difference �N/N and (d) the normalized atom num-
ber with spin-dependent potential Vs = kB × 0.25 μK, gate potential
Vg = kB × 0.38 μK, temperature T = 60 nK, and initial conditions
N0,↓/↑ = 115 × 103 and �N0/N0 = 0.41. Losses occur mostly for
|↓〉 atoms.

propagating along x (z) with a waist along y of wz = 30.2 μm
(wx = 5.9 μm) with maximum confinement frequency νz =
9.03(5) kHz [νx = 14.0(6) kHz]. The length of the QPC is
mainly defined by the shortest waist of the constriction beams,
namely, wx. The mean chemical potential of the reservoirs is
typically μres = (μL + μR)/2 = kB × 0.23 μK. The density
in and around the 1D region is tuned using an attractive gate
beam of waist wg = 31.8(3) μm and of maximum potential
Vg. This increases the local value of the chemical potential
relevant for understanding transport to Vg + μres. Inside the
QPC, we add a near-resonant light beam the frequency of
which can be tuned between the two resonances for states |↑〉
and |↓〉 of the D2 line for σ− polarized light [see Figs. 2(a) and
2(b)]. This beam is shaped into a Gaussian profile with a waist
of ws = 2.0(1) μm thanks to a digital micromirror device
that allows for aberration correction and precise positioning
inside the constriction [31]. Its power of Ps = 20(6) pW corre-
sponds to a peak intensity of Is = 2Ps/πw2

s = 3(1) W/m2 =
0.13(4) Isat. For equal and opposite detunings from the two
resonances δ̄ = 0, this corresponds to a dipole potential of
Vs = V↑ = −V↓ = kB × 330(98) nK and a photon absorption
rate � = 3.1(9) × 103 s−1.

Neglecting the spatial variations of the attractive gate
beam, the potential landscape Vσ (y) defined in Sec. III B
consists of (1) a space-dependent zero-point energy due to the

FIG. 4. Conductance plateaus are preserved at a lossy QPC.
(a) Breakdown of the simulated numbers of lost and transmitted
atoms as a function of their energy using the parameters of Fig. 3
integrated over a transport time of 4 s. This highlights one reason
for the robustness of transport observables. The total number of lost
(transmitted) atoms (first bar of the chart) can be decomposed into
two parts, shown in the filled (hatched) region: (i) those which do
not contribute to transport [Eqs. (18) and (25), brown region in Fig. 1
and second bar of the chart] and (ii) those which could contribute to
transport [Eqs. (17) and (24), orange region in Fig. 1 and third bar of
the chart]; see text for details. The relative fraction of lost atoms in
each category, indicated on top of each bar, shows that the losses
are less important for the atoms participating in transport (due to
their higher velocities) than for the other atoms, hence conductance
is weakly affected by the losses. (b) Quasi-1D potentials along the
transport direction y for each spin state Vσ (y). The chemical potential
of Fig. 3 and panel (a) is indicated as dashed lines. (c) Conductance
G of each spin state at scattering length a = 91(7) a0 vs local
chemical potential Vg + μres with a near-resonant beam intensity of
Is = 0.13(4) Isat. Fits by a Landauer model are shown as solid curves
and indicate a spin-dependent potential of Vs = kB × 0.25(2) μK.

x and z confinement

V0(y) = 1

2
hνze

−y2/w2
z + 1

2
hνxe−y2/w2

x (28)

where νx,z are the maximum confinement frequencies and
wx,z are the waists along y of the beams providing this
confinement; (2) a spin-dependent potential Vα (y) defined by
Eq. (5) and proportional to the near-resonant beam intensity
I (y) = Ise−2y2/w2

s ,

Vα (y) = εαVse
−2y2/w2

s , (29)

with ε↑ = +1 and ε↓ = −1; and (3) an imaginary potential
iVloss(y) = −ih̄ �(y)

2 introduced in the effective Hamiltonian
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FIG. 5. Validity of the Landauer model for large dissipation.
Conductance G at a scattering length a = 91(7) a0 for spin |↓〉
(orange, closed symbols) and spin |↑〉 (blue, open symbols) with
near-resonant light (a) on resonance with |↑〉 at detuning δ̄ =
−81.3 MHz, (b) at detuning δ̄ = −40.6 MHz, (c) at detuning δ̄ =
40.6 MHz, and (d) on resonance with |↓〉 at detuning δ̄ = 81.3 MHz.
Solid curves show a Landauer prediction using the fit parameters
of Fig. 4(c) extended to different detunings. The different detunings
at which the conductance is measured are indicated by dashed gray
lines in Figs. 2(a) and 2(b).

(11), describing losses due to the scattering rate �(y) defined
by Eq. (6) that is proportional to I (y).

At the end of an experimental cycle, the atomic density of
the cloud is recorded using absorption imaging. The density
profile is then fitted to the equation of state of the noninter-
acting Fermi gas to extract the atom number, temperature, and
chemical potential of each reservoir.

B. Transport measurement

Transport experiments are performed by introducing an
initial atom number between the two reservoirs and letting
the system relax to equilibrium via the flow of particles of
each internal state through the ballistic channel. Typically,
we prepare for each spin state atom number differences of
�N (0) = 45(3) × 103. As demonstrated in previous works, in
the absence of dissipation, this system is very well described
using Landauer-Büttiker theory [27].

FIG. 6. Dissipative scanning gate microscopy. Integrated atom
loss in state |↓〉 after a time �t = 4 s as a function of the near-
resonant beam position (xs, ys ) and corresponding two-dimensional
density n2D, showing a high-resolution map of the QPC. The exact
value of n2D should be obtained by deconvolving this map with the
spatial profile of the near-resonant beam, which is beyond the scope
of this paper. The near-resonant beam has a detuning of δ̄ = 40 MHz,
a narrower waist of ws = 1.02(5) μm, and a power Ps = 4(1) ×
101 pW, corresponding to a peak intensity of Is = 24(8) W/m2

and therefore a large photon absorption rate � = 9(3) × 104s−1 for
state |↓〉.

When the temperature difference between the reservoirs
is zero, i.e., �T = 0, the particle current through the QPC
is linear in the chemical potential between the reservoirs
following Eq. (21). The linear approximation is valid for the
weak interaction strengths considered here [39]. They also
ensure that spin drag is negligible and that biases, currents,
and transport coefficients can be treated independently for
each spin σ ∈ {↑,↓} (omitted in the rest of the subsection).

The chemical potential for each reservoir r ∈ {L, R} and
each spin can be furthermore expanded to first order around
the atom number at t = 0, dμr = dNr/κr , where κr is the
compressibility of one reservoir. Equation (21) can then be
simplified to a closed first-order differential equation in the
atom number difference �N . This difference is an exponen-
tially decreasing function of time, showing that the atomic
QPC is the analog of an RC circuit for neutral atoms, with
a time constant

τ = G

(
1

κL
+ 1

κR

)
≈ 2G

κ
, (30)

where κ is the reservoir compressibility at global equilibrium
for a mean atom number N̄ = (NL + NR)/2 and temperature
T computed from the trap geometry and the noninteracting
Fermi gas properties. The timescale τ is extracted from the
atom number difference �N/N = (NL − NR)/(NL + NR) at
t = 0 s and after a fixed transport time t = 4 s, which in turn
yields the conductance G.

Using thermodynamical variables such as T , μ, or κ is
possible as long as the reservoirs can be described by thermal
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states, which is valid when the scattering time in the reservoirs
τs is short compared to the characteristic timescale of the
transport τ . The scattering time can be approximated by τs =
1/n̄σvF , where n̄ is the peak density and vF is the Fermi veloc-
ity taken at the trap center, and σ is the interatomic scattering
cross section. For a scattering length of a = 91 a0, τs = 0.08 s
while τ is on the order of several seconds for a conductance
around 1/h. In the absence of atom-atom scattering for a =
0(7) a0, even though this assumption should formally break
down, we expect the reservoirs to remain approximated by
thermal states since atom number variations due to transport
and losses are smaller than 10% per reservoir. Such an agree-
ment between observables in thermalized and nonthermalized
regimes was already noted in our previous experimental work
[27], and is furthermore supported by theoretical studies on
the validity of the Landauer formalism both in presence of
incoherent baths or in a complete microcanonical picture [40].

C. Loss mechanisms

When an atom scatters a near-resonant photon, it gets a
large kinetic energy corresponding to the two momentum
kicks associated with the absorption and spontaneous reemis-
sion of the photon. It is therefore not lost immediately but
travels through the cloud of trapped atoms and can interact
with them. In this subsection, we show that an atom that
underwent a scattering event can be considered as lost for
moderate interaction strengths between the two component of
the gas. This requires us to study (i) the single-particle dynam-
ics after a photon scattering event as well as the subsequent
scattering with (ii) atoms inside the wire and (iii) atoms in the
reservoir.

Atoms that absorb a photon reemit it spontaneously at a
rate �0 = 36.9 μs−1 during which they move by less than
1 nm. The imparted recoil energy ER = (h/λ)2/2m = kB ×
3.54 μK is smaller than the potential barrier imposed by
the beams defining the QPC, equal to kB × 48 μK in the
z direction and kB × 7 μK in the x direction. Atoms there-
fore do not escape the QPC laterally and are projected to
a superposition of transverse QPC modes, described by the
Lamb-Dicke parameter ηz = √

ER/hνz = 2.86(1) for a recoil
momentum transfer along z and ηx = √

ER/hνx = 2.29(4)
along x. They are, however, directed towards the reservoirs
along the nonconfined direction y.

Once the atom has scattered a photon, it is projected into
an excited state of the 2D harmonic oscillator the quantum
number of which is nx,z � η2

x,z on average and can still scat-
ter with another low-energy atom in the wire. With strong
harmonic confinement in two directions of space, the s-
wave scattering properties can be modified by confinement
induced resonances [41]. Using [42], we can compute the
transmission probability associated to the scattering event of
an atom in (nx, nz ) with an atom in the ground state of the
two transverse harmonic oscillator at a relative momentum
of kR = 2π/λ. The probability that the atoms are transmitted
without changing their oscillator and momentum states is
equal to T = 1–6.1 × 10−4, which has to be exponentiated
by the number of potential atom-atom scattering events in the
channel. There is therefore less than 0.4% chance that such a
collision happens with any atom in the wire, hence scattering

events between the energetic particle and the atoms in the
channel can be neglected.

When an atom at the recoil velocity enters the three-
dimensional reservoirs, the relevant quantity to consider is its
mean free path � = 1/n̄σ . For the largest interaction strength
considered here, its value is � = 3.26(5) mm, much larger
than the reservoir size of approximately 0.2 mm. Since the
recoil energy is larger than the depth Vtrap = kB × 0.55 μK
of the optical trap defining the reservoirs, scattered atoms
eventually escape the system and do not contribute to a global
energy increase for the weak interactions.

Therefore, for weak s-wave interactions, an atom which
has scattered a photon can be considered as lost and the
formalism of Sec. III applies.

V. EXPERIMENTAL INVESTIGATION OF
TRANSPORT WITH LOSSES

We now compare the measurements to the models of
Secs. II and III. First, we compare the experimental time
evolution of the total atom number and relative imbalance for
a fixed value of the detuning to the simulation. From this evo-
lution, we can extract the conductance of the QPC and demon-
strate that the expected conductance plateaus remain visible
even at large local chemical potential, with a value renormal-
ized by the loss probability. We then vary the detuning of the
near-resonant tweezer to show the validity of the Landauer-
Büttiker model even when the tweezer is brought on resonance
with one of the two spin states. Last, varying the position
of the tweezer in the channel generates losses proportional
to the local atomic density, allowing us to map it in and around
the QPC.

A. Atom number evolution in the reservoirs

In a first measurement, we study the evolution of the
atom number in each reservoir as a function of time both
experimentally and numerically.

With the experimental setup and parameters described in
Sec. IV A, the photon scattering rates are equal for the two
internal states while the potentials are of equal and opposite
magnitude, as illustrated in Figs. 2(a) and 2(b). The relative
imbalance �N/N = (NL − NR)/(NL + NR) and the normal-
ized atom number N/N0 = (NL + NR)/[NL(t = 0) + NR(t =
0)] are recorded over 6 s at a magnetic field of 568 G where
the s-wave scattering length is a = 0(7) a0. The results, pre-
sented in Figs. 3(a) and 3(b), illustrate that the spin-dependent
potential acts as a repulsive barrier for the |↑〉 state: the fitted
current I↑ = −19 ± 85 s−1 vanishes while the one for the |↓〉
state has a finite value of I↓ = 833 ± 98 s−1 corresponding
to a conductance of G↓ = 0.45(4)/h. In spite of a maximal
photon scattering rate �s = 2.3(8) × 103 s−1 at the center of
the tweezer, the atom losses are moderate since they represent
less than 10% of the total atom number.

This experiment is reproduced by a numerical simulation
following Sec. III D using the parameters obtained experi-
mentally (near-resonant beam intensity, initial atom number,
initial imbalance, and temperature). The numerical results
shown in Figs. 3(c) and 3(d) are largely consistent with the
experimental results, indicating that for moderate values of the

053605-8



QUANTIZED CONDUCTANCE THROUGH A DISSIPATIVE … PHYSICAL REVIEW A 100, 053605 (2019)

conductance, neglecting fluctuations, extending the Landauer-
Büttiker model and integrating the time evolution of the cloud
properties as in Sec. III constitute a valid approach. The
simulation also indicates that losses should be smaller for |↑〉
atoms which are blocked by the spin-dependent potential and
therefore have lower densities in the dissipative region, with a
5% difference in atom number for both spin states. This effect
nevertheless remains elusive in the experimental data because
of the uncertainty in the measured atom numbers since this
difference is on the order of our preparation noise in terms of
atom numbers.

B. Preserving the conductance plateaus at a lossy QPC

In Sec. III, we have showed that transport observables are
sensitive only to scattering at energies close to the Fermi level
which concerns a small fraction of all atoms subject to near-
resonant light. Conductance is therefore expected to be robust
against losses. As illustrated in Fig. 1(b) (brown areas), most
of the losses actually concern atoms that are below the Fermi
surface (25) and therefore do not affect conductance.

This is verified by integrating the simulation results of
Fig. 3 over t = 4 s of transport time. We thus obtain the
number of atoms transmitted or lost and participating or not
in transport (subscripts “c” and “nc”),

N trans/lost
c/nc =

∫ t

0
Ṅ trans/lost

c/nc dt ′, (31)

using the quantities defined in Secs. III C and III D. We then
extract the total number of particle participating in transport
Nc = N lost

c + N trans
c and nonparticipating in transport Nnc =

N lost
nc + N trans

nc . The value of these quantities and their sum
is represented in Fig. 4(b) for the |↓〉 state: while 33% of
the particles flowing through the dissipative region are lost,
only 21% of the particles contributing to net transport are
dissipated due to their larger velocities compared with the
noncontributing particles.

Recording conductance as a function of local chemical
potential demonstrates that plateaus are still visible at the
lossy QPC, as shown in Fig. 4(c). We fit the conductances of
both states with the Landauer model [solid curves in Fig. 4(c)]
described in Sec. III. The relevant model parameters are
summarized by the following function:

Gσ (x) = AGth
σ (x − μ0, T, δ̄,Vs), (32)

where Gth
σ is obtained using the Landauer-Büttiker formula

for the |↓〉 spin. The fixed parameters are the temperature
T fixed to its measured value and the detuning relative to
the mean resonance frequency δ̄ = 0. The fitted parameters
are a small chemical potential offset μ0 = kB × 0.06(2) μK
and a scaling factor capturing the decrease of the extracted
conductance below 1/h due to remaining weak thermoelec-
tric effects A = 0.78(3). This yields an experimental value
of the spin-dependent potential of Vs = kB × 0.25(2) μK,
compatible with the theoretical value of kB × 0.29(11) μK for
an intensity of 3(1) W/m2

In a Landauer picture valid for weak interactions, these
losses contribute to decreasing the conductance by the scat-
tering probability. This probability is computed to be 21% in

Fig. 4(a) and is consistent with the decrease of the conduc-
tance plateau from G = 0.84(1)/h to 0.72(3)/h.

C. Varying the loss rates

To explore the validity range of this Landauer model
with losses presented in Sec. III, we extend our conductance
measurements to different tweezer detunings δ̄ relative to
the mean resonance frequency (ν↑ + ν↓)/2 at fixed intensity
Is = 0.13(4) Isat and at an interaction strength of 91(7) a0.

As shown in Figs. 2(a) and 2(b), this affects both spin-
dependent dipole potential Vσ and photon scattering rate �σ ,
and allows us to change the latter by more than three orders of
magnitude. We explore detunings ranging from the tweezer
being resonant with |↑〉 at δ̄ = −81.2 MHz in Fig. 5(a) to
the |↓〉 resonance at δ̄ = 81.2 MHz in Fig. 5(d). Bringing
the tweezer on resonance with one of the two states leads
to its entire loss after 4 s, while the other nonresonant state
still displays quantized conductance [Figs. 5(a) and 5(d)].
The applicability of the Landauer theory highlights that the
coupling between spins is negligible at this scattering length.

In addition, tuning the frequency by δ̄ = −40.6 MHz to-
wards the resonance of |↑〉 leads to a shift of the conductance
curve towards higher chemical potentials [Fig. 5(b), blue],
since the repulsive potential barrier and scattering rate for
that state are increased. Meanwhile, the conductance of |↓〉
[Fig. 5(b), orange] approaches the one measured in the ab-
sence of near-resonant light.

The reverse trend is observed with a detuning δ̄ =
+40.6 MHz, where the conductance of |↓〉 is clearly reduced
due to increased losses [Fig. 5(c)]. These measurements show
good agreement with the previous Landauer model without
having to add any fit parameters.

The good agreement demonstrates the applicability of the
Landauer-Büttiker formula over a wide range of dissipation
strengths.

D. Scanning gate microscopy with losses

We have so far studied the effect of dissipation in the
transport structure, developing an extension to the Landauer
model; now we can further use the dissipative beam as a
density probe. The near-resonant tweezer is corrected for
aberrations using a digital micromirror device in Fourier con-
figuration. A discretized grating therefore controls the phase
front of the beam which determines its position inside the
QPC at the submicron level. We take advantage of this precise
positioning by recording the total atom loss as a function of
the tweezer position to infer the local atomic density. We
perform this experiment with a vanishing atom imbalance
between the reservoirs.

To model the situation, we assume that the atomic density
is two dimensional and time independent. These assumptions
hold provided that the density variations along the z direc-
tion are small compared to the Rayleigh length of the near-
resonant beam zR = πw2

s /λ = 4.9(3) μm, and that the atom
losses remain small relative to the total atom number.
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The atom losses integrated over the time interval �t during
which photon scattering occurs can be written as

N (0) − N (t ) = �t
∫

dxdy�(x, y)n2D(x, y)dxdy (33)

with �(x, y) = �se
−2[(x−xs )2+(y−ys )2]/w2

s . (34)

Losses are proportional to the atomic density convolved
with the Gaussian intensity profile of the near-resonant beam
centered at position (xs, ys). In the limit where its Gaussian
waist ws is small with respect to the variations of the atomic
density, it can be approximated by a Dirac function and the
local density is given by

n2D(xs, ys) = 2

πw2
s

N (0) − N (t )

�s�t
. (35)

The near-resonant beam also acts as an attractive beam,
slightly shifting the local chemical potential.

As long as the chemical potential shift is small compared to
the mean value, and as the Gaussian waist is small, repeating
measurements of atom losses for different positions of the
near-resonant beam allows us to retrieve a map of the two-
dimensional density, as shown in Fig. 6. This measurement is
conceptually similar to scanning probe microscopy in solid-
state physics, and complements previous imaging techniques
for quantum gases using absorption imaging, a focused elec-
tron beam [18], or a conservative optical potential in a trans-
port geometry [43]. The dissipative scanning gate technique
is favorable over standard absorption imaging because the
resolution is limited by the minimal displacement possible
with the near-resonant beam (below 0.3 μm), which is smaller
than the resolution of the optical system used to project the
potential (of 0.7 μm).

VI. CONCLUSION

Adding a near-resonant beam at an atomic QPC leads
to different potentials and scattering rates for the different

spin states. These values can be computed from the atomic
polarizability and used to express the transmission and loss
probabilities of each particle traveling through the point con-
tact. This required extending the Landauer-Büttiker formalism
to a situation with losses which reproduces the measurement
of the conductance, where a plateau remains visible although
its value is decreased with respect to the quantum of conduc-
tance 1/h. It is also possible to integrate the results of this
model to express the time evolution of the atom number and
relative imbalance between the reservoirs of the two-terminal
geometry. Finally, the atom losses can be related to the atomic
density at the position of the near-resonant tweezer, which can
therefore act as a “dissipative scanning gate microscope” for
ultracold gases.

The ability to engineer dissipation in a transport experi-
ment opens the possibility to study the competition between
losses and coherent transport by investigating the continuous
Zeno effect [44] or the modification of transport through a
mesoscopic, dissipative lattice. Ultracold atoms also allow us
to vary the s-wave interaction strength up to the point where a
paired superfluid is formed. There, characteristic signatures
of transport through a tunnel barrier can also be strongly
influenced by the presence of dissipation [45].
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