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Enhancement of strong-electromagnetic-field ionization in a constant magnetic field
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The tunneling and multiphoton ionization of a weakly bound level in an intense laser field of an arbitrary
polarization and a constant uniform magnetic field, under the condition when the frequency ω of a laser field
coincides with the cyclotron frequency ωH , are discussed in the quasistationary quasienergy state (QQES)
formalism framework. The integral equation is derived for the complex quasienergy of the photoelectron, on
the basis of the exact solution of the Schrödinger equation for an electron moving in an arbitrary electromagnetic
wave and a constant magnetic field, obtained in Rylyuk [Phys. Rev. A 93, 053404 (2016)]. Simple analytical
expressions for ionization rates in the tunneling and the multiphoton regimes by using the saddle-point method
are derived and discussed. Using the “imaginary-time” method, the extremal subbarrier trajectory, the barrier
width, and the emission angle of photoelectrons are considered. We theoretically demonstrate that when the
frequency of a left polarized laser field coincides with the cyclotron frequency, the constant magnetic field does
not stabilize the bound level, which leads to an enhancement of the ionization rate as compared to when the
magnetic field is absent.
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I. INTRODUCTION

Over the past 30 years significant progress has been made
in the development of lasers capable of producing ultrashort
and strong pulses with durations of the order of femtoseconds
(10−15 s) and intensities of the order of 1014–1015 W/cm2.
In this regard, of unabated interest are the phenomena related
to the interaction of high-intensity laser radiation with atoms
and ions [1–17]. Ionization is one of these effects which
characterizes the interaction of laser radiation with matter.
The basic concepts of the theory of ionization were developed
by Keldysh [18]. In Ref. [18] was shown that the character
of the ionization depends on the magnitude of the Keldysh
parameter

γ = κω

eF
, (1)

where κ = √
2m|E0| is the inner-atomic momentum (|E0| is

the binding energy of the level), ω is the laser frequency, F
is the magnitude of the perturbing field, and m and e are the
electron mass and elementary charge, respectively. Tunneling
ionization of atomic states takes place when γ � 1 and the
multiphoton regime is realized when γ � 1. The ionization
in constant electric and magnetic fields was considered in
Refs. [19–21] within the adiabatic approach. These studies
showed that the ionization rate decreases as the magnetic
field increases. This effect is explained by the increase of the
length of the electron subbarrier trajectory. In the presence
of a magnetic field, the electron moves along a helix and its
trajectory becomes longer, which impedes penetration of the
electron through the barrier. In Refs. [22–29] was developed
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the quasistationary quasienergy state (QQES) formalism that
allows one to find the exact solution of a full nonstationary
problem of the decay of a weakly bound level in an elliptically
polarized laser field with an arbitrary intensity and frequency.
Further, in Refs. [30–32], within the framework of the QQES
formalism, was considered the atomic ionization in an intense
laser radiation field of an arbitrary polarization and a constant
magnetic field. The questions considered above were also
expounded in reviews [4,33–37].

The aim of this paper is to consider the ionization of a
weakly bound level in an intense monochromatic elliptically
polarized laser beam propagating at an arbitrary angle to the
constant magnetic field in the case when the frequency ω

of an elliptical laser field and the cyclotron frequency ωH

are equal. For this purpose, using the QQES formalism, the
saddle-point, and the “imaginary-time” methods [38,39], we
derive ionization rates and the extremal subbarrier trajectory
of the electron. We analyze in detail analytical expressions for
ionization rates, the barrier width, and the emission angle of
photoelectrons, in the tunneling and multiphoton limits. Our
consideration is also complemented by numerical calculations
of ionization rates and “stabilization factors” for neutral atoms
of hydrogen and helium in the field of a titanium-sapphire
laser. Our calculations show that contrary to the widespread
view, the constant magnetic field in the presence of an elec-
tromagnetic wave, when ω = ωH , does not always tend to
suppress the ionization of the bound level. So, in the case
of a right polarized laser field the constant magnetic field
suppresses the ionization, i.e., stabilizes the bound level. The
reason for this is that a right polarized laser field and the con-
stant magnetic field rotate the electron in the same direction
(corotating electron). As a result the subbarrier trajectory of
the electron elongates, reducing the chance of the electron
penetrating the barrier. On the contrary, in the case of a left
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polarized laser field, when the constant magnetic field and
the electromagnetic wave rotate the electron in the opposite
directions (counterrotating electron) and the frequency ω of
the laser field is equal to the cyclotron frequency ωH , the con-
stant magnetic field does not stabilize the bound level, which
leads to an enhancement of the ionization rate as compared to
the case when the magnetic field is absent. In Ref. [40] was
shown that in the case of a linearly polarized electromagnetic
wave, under the condition ω = ωH , the constant magnetic
field always stabilizes the bound level.

It should be noted that the ionization induced by an electro-
magnetic wave and a magnetic field is also of great practical
importance. The method of magnetic cumulation (explosion-
assisted compression of an axial magnetic field), proposed by
Sakharov in [41,42], made it possible to obtain magnetic fields
H � 15–25 MG. A strong magnetic field with an amplitude
∼50 MG was generated in overdense laser-produced plasmas
(e.g., at the critical electron number density ne ∼ 1021 cm−3)
by a laser pulse with the wavelength ∼1.054 μm of duration
τ0 ∼ 1 ps and intensity ∼1020 W/cm2 [43]. Magnetic fields
in the range 340–460 MG were obtained in a solid target
irradiated with a high-intensity (∼1019 W/cm2) picosecond
laser pulse [44,45]. Ultrastrong-magnetic-field strengths of
0.7 ± 0.1 GG in the overdense plasma are produced during
intense (∼1020 W/cm2) laser interaction experiments with
solids [46]. The magnitudes of magnetic fields generated in
these experiments could soon approach those needed for test-
ing astrophysical models of neutron stars and white dwarfs.
For instance, at the surface of white dwarf star magnetic
fields ranging from 2 MG to roughly 1000 MG may be
observed [47]. White dwarf stars are remarkable because it
is possible to observe their optical spectra [47,48] allowing
one to study the effect of large electric and magnetic fields
on the atomic levels, primarily for the atoms of hydrogen and
helium.

The paper is organized as follows. Section II represents
analytical results of an elliptically polarized laser beam prop-
agating at an arbitrary angle to the constant magnetic field.
In Sec. III we derive the subbarrier trajectory, barrier width,
and emission angle of photoelectrons. In Sec. IV we analyze
the results of numerical calculations for ionization rates and
stabilization factors. Section V concludes the work.

II. ANALYTICAL RESULTS OF AN ELLIPTICALLY
POLARIZED LASER BEAM PROPAGATING AT AN

ARBITRARY ANGLE TO THE CONSTANT
MAGNETIC FIELD

Now, consider an elliptically polarized monochromatic
laser beam of frequency ω, which propagates at an angle θ

to the constant magnetic field H (we choose the direction
of H as the z axis). The components of its vector potential
A(t ) = (Ax(t ), Ay(t ), Az(t )) are

Ax(t ) = −F

ω
cos(θ ) sin ωt, Ay(t ) = g

F

ω
cos ωt,

Az(t ) = −F

ω
sin(θ ) sin ωt, (2)

where F is the laser field amplitude and g is the ellipticity of
the laser field (−1 � g � +1). The wave function �ε (r, t ) =

exp(−iεt/h̄)	ε (r, t ) of the electron moving in the field of
potential U (r) and in the net electromagnetic field produced
by the electromagnetic wave and the constant magnetic field
reads

	ε (r, t ) =
∫ t

−∞
dt ′eiε(t−t ′ )/h̄

∫
dr′ G(r, t ; r′, t ′)U (r′)	ε (r′, t ′),

(3)

where ε is the complex quasienergy and G(r, t ; r′, t ′) is the
retarded Green’s function for the electron moving in the
laser pulse (2) and the constant magnetic field H , which was
derived in Ref. [30] [see Eq. (5)]. For calculating the complex
quasienergy ε = E − i
 of the electron we use the QQES
formalism. In this approach the real and imaginary parts of the
complex quasienergy determine the Stark shift �ε = E − E0

and the laser field-induced width h̄
 of the bound level. In the
zero-range potential model the wave function 	ε (r, t ) from
Eq. (3), for the electron in the s state, satisfies the boundary
condition at r → 0 [22,23,49,50]:

	ε (r, t ) �
(

1

r
− 1

a
− 2i

e

h̄c

rA f (t )

r

)
fε (t ) + O(r),

fε (t ) = fε

(
t + 2π

ω

)
, (4)

and the following relation

U (r)	ε (r, t ) = −2πδ(r) fε (t ), (5)

where a = h̄/
√

2m|E0| is the scattering length, E0 is the en-
ergy of the electron bound by the zero-range potential alone,
A f (t ) is the sum of the vector potentials of the laser pulse
and the constant magnetic field, and fε (t ) is the new unknown
function. Using Eqs. (4) and (5) we get from Eq. (3) the
closed equation for the complex quasienergy (see details in
Refs. [30,32])

β � 1 + 1

2
√

π iλ

1

π

∫ π

0
dτ

∫ ∞

0

dt

t3/2
exp(−iλβ2t )

×
{

ω0t

2 sin(ω0t/2)
exp [iλS(τ, t )] − 1

}
, (6)

where β = √−ε/|E0| describes the alteration of the electron
energy by the laser and magnetic fields, ω0 = ωH/ω (ωH =
|e|H/(mc) is the cyclotron frequency), λ = |E0|/(h̄ω) is the
multiquantum parameter, S(τ, t ) = limr,r′→0 S(r, τ ; r′, τ − t ),
and the classical action S(r, τ ; r′, t ) is determined by Eqs.
(A19) and (A20) in Ref. [30].

In this paper we consider the situation when ω = ωH (ω0 =
1). For getting some analytical results we limit ourselves
by the case of weak electric F � F0 (F0 = κ3 is the inner-
atomic field; for the ground state of the hydrogen atom F0 =
m2e5/h̄4 = 5.14 × 109 V cm−1 is the electric field at the first
Bohr orbit) and magnetic H � H0 (H0 = κ2 = 2.35 × 109 G
for the H atom) fields, when the inequality λ � 1 holds.
Under these conditions the tunneling of an electron from un-
der the barrier has the quasiclassical character. Transforming
the integral in Eq. (6) over t into one in the complex plane
x = −iωHt and applying the standard saddle-point method
at λ = λH � 1, we obtain the expressions for the width h̄
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and the shift E − E0 of the bound s electron level in the
quasiclassical approximation, in the case when ω = ωH ,


 � ωH

2
√

2x0 sinh(x0)

1√|F ′′(x0)| exp [−2λH F (x0)], (7)

E � |E0|
{

− 1 − 1

4

(
F

F0

)2[
1 + 7

48λ2
H

(3 − g2)

− 7

12

g

λH

H

H0
+ 13

2

(
F

F0

)2]

+ 1

12

(
H

H0

)2

− 5

144

(
H

H0

)4

+ 1

2

(
FH

F0H0

)2}
, (8)

where λH = |E0|/(h̄ωH ) is the magnetic multiquantum pa-
rameter determining the minimal number of photons nec-
essary for the ionization and F (x0) = i

2 [S(τ = t/2, t ) +
β2t]t=−2ix0 :

F (x0) =
(

1 + 4 + G2(g, θ )

8γ 2
H

)
x0 − 4 − G2(g, θ )

16γ 2
H

sinh(2x0)

− G2(g, θ )

4γ 2
H

x2
0 coth(x0). (9)

In Eqs. (7) and (9) γH = √
2|E0|ωH/F is the magnetic

Keldysh parameter and x0 is the saddle point, which is de-
termined by the condition F ′(x0) = 0, i.e., by the saddle-point
equation

G2(g, θ )
[
x2

0 − [1 − x0 coth(x0)]2]
+ [4 − G2(g, θ )] sinh2(x0) = 4γ 2

H , (10)

where G(g, θ ) = g + cos(θ ). Note that x0 has a simple physi-
cal interpretation: t0 = −ix0/ωH is the time of the subbarrier
motion of the electron. The expressions (7) and (8) are the
quasiclassical ionization rate and the level shift for an s
electron in a zero-range potential under the influence of the
elliptically polarized laser field (2) at ω = ωH and the constant
magnetic field H . The real part E in Eq. (8) of the quasienergy
contains the contributions ∼F and H from the Stark and the
Zeeman effects, and the cross terms ∼FH . One sees from
Eq. (8) that the term in the quadratic brackets, which is
proportional to g(H/H0), increases the energy in the case of
a right polarized wave and decreases it in the case of a left
polarized wave. Further throughout the paper we will use the
atomic units: e = m = h̄ = 1.

In the tunneling limit, where the inequality γH � 1 holds,
the saddle point x0 in Eq. (10) can be written in the following
analytical form:

x0 � γH

{
1 − γ 2

H

6

(
1 − G2(g, θ )

3

)

+ 3

40

[
1 − 22

27
G2(g, θ )

(
1 − 35

198
G2(g, θ )

)]
γ 4

H

}
.

(11)

Then, from Eq. (7), for the ionization rate we obtain


 � |E0|F

2
P(γH , g, θ ) exp

{
− 2

3F
f (γH , g, θ )

}
, (12)

where the exponential factor is

f (γH , g, θ ) � 1 − γ 2
H

10

(
1 − G2(g, θ )

3

)

+ 9

280

[
1− 22

27
G2(g, θ )

(
1− 35

198
G2(g, θ )

)]
γ 4

H ,

(13)

and the preexponential factor reads

P(γH , g, θ ) � 1 − γ 2
H

6

(
1 − 7

60
γ 2

H

)

+ 13

120

[
1− 56

117
G2(g, θ )

(
1− 5

42
G2(g, θ )

)]
γ 4

H .

(14)

Equations (11)–(14) show that the ionization rate (12) de-
pends on the ellipticity g and the angle θ only via the factor
G(g, θ ) = g + cos(θ ). The term ∼1 − γ 2

H (1 − 7γ 2
H/60)/6 in

the preexponential factor describes the diamagnetic shift in
the ionization rate.

In the multiphoton regime, i.e., for γH � 1 and at
G(g, θ ) 
= 2, the saddle point reads

x0 � ln

(
4γ 2

H√
4 − G2(g, θ )

)
, (15)

and the ionization rate (12) can be represented in the form


 �
√

2

16

F√|E0|

√
4 − G2(g, θ )

x0

[
e

64

(4 − G2(g, θ ))F 4

E2
0 ω4

H

]λH

× exp

{G2(g, θ )F 2

4ω3
H

x2
0

}
, (16)

where e is the Euler number. In the special case, when a right
circularly polarized laser beam (g = +1) propagates parallel
(θ = 0) to the magnetic field H , i.e., at G(g, θ ) = 2, the saddle
point in the multiphoton regime is

x0 � γ 2
H

2
, (17)

and the ionization rate may be written as


 � F

2
√|E0|

γH exp

{
−γ 2

H

2
(1 + λH )

}
. (18)

As follows from Eq. (18), the constant magnetic field causes
the exponential reduction of the ionization rate. This effect can
be explained by the distortion of the subbarrier trajectory due
to the screwlike electron motion. As a result, the subbarrier
trajectory of the electron in a right circularly polarized laser
field becomes longer and the ionization rate decreases.

III. BARRIER WIDTH AND EMISSION ANGLE OF
PHOTOELECTRONS

Within the framework of the imaginary-time method we
can calculate the width of the barrier in the case when ω =
ωH :

b(g, θ ) = |r(0)|, (19)
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where r(x) = (rx(x), ry(x), rz(x)) is the extremal subbarrier
trajectory of the electron. In order to determine this trajectory
we use the imaginary-time method. Being a generalization
of the well-known method of complex classical trajectories
considered by Landau [51,52] in the case of time-dependent
fields, the imaginary-time method describes the tunneling
transition of an electron from a bound state to the continuum
using the classical equations of motion but with an imaginary
“time.” Integrating the equations of motion

r̈ = 1

c
∂A(t )/∂t − 1

c
[ṙ, H], (20)

where A(t ) is the vector potential (2) at ω = ωH and H is the
constant magnetic field, with the initial condition

r(x0) = 0 (21)

and the boundary conditions

Im r(0) = Im ṙ(0) = 0, (22)

we obtain the following result for the extremal subbarrier
trajectory of the electron in the case when ω = ωH :

rx(x) = F

2ω2
H

{[cosh(x) − cosh(x0)]

× [G(g, θ )(1 − x0 coth(x0)) − 2g]

+ G(g, θ )[x sinh(x) − x0 sinh(x0)]},

ry(x) = iF

2ω2
H

G(g, θ ){x cosh(x) − x0 cosh(x0)

− x0 coth(x0)[sinh(x) − sinh(x0)]},

rz(x) = F

ω2
H

sin(θ )[cosh(x) − cosh(x0)], (23)

where the saddle point x0 is determined by Eq. (10). Equa-
tion (22) means that the extremal trajectory at t = 0 is real
and further describes the motion of the electron at infinity in
the classically allowed region.

In the adiabatic limit, i.e., for γH � 1, the width of the
barrier (19) is

b(g, θ ) � κ2

2F

{
1− γ 2

H

4

[
1− 1

9
{4g2 + [5g + cos(θ )] cos(θ )}

]}
,

(24)

and in the multiphoton regime, i.e., for γH � 1, the width of
the barrier may be written as

b(g, θ ) � κ

ωH

√
[g − cos(θ )]2 + 4 sin2(θ )

4 − [g + cos(θ )]2
. (25)

In the special case, when a right circularly polarized laser
beam (g = +1) propagates parallel (θ = 0) to the constant
magnetic field H , the width of the barrier is

b(g = +1, θ = 0) � κ2

2F
. (26)

When a left circularly polarized laser beam (g = −1) prop-
agates parallel (θ = 0) to the constant magnetic field H , the
width of the barrier reads

b(g = −1, θ = 0) � κ

ωH
. (27)

As can be seen from Eqs. (26) and (27), b(g = +1, θ =
0)/b(g = −1, θ = 0) ∼ γH � 1, i.e., the barrier width in the
case of a right circular laser field is greater than in a left
circular laser field. This means that the ionization rate in a left
polarized laser pulse is greater than in a right polarized laser
pulse. The reason for this is that a left circularly polarized
laser field rotates the electron against the constant magnetic
field while a right circularly polarized laser pulse and the con-
stant magnetic field rotate the electron at the same direction,
i.e., a counterrotating electron has significantly better chances
to penetrate the barrier than a corotating electron.

At the moment when the electron overcomes the barrier,

ry(0) = 0, tan(ϕ) = rx(0)

rz(0)
, (28)

where ϕ is the emission angle of the electron ejected from
under the barrier. In the adiabatic limit (γH � 1), in the case
when ω = ωH ,

ϕ � π

2
− θ − γ 2

H

12
[g + cos(θ )] sin(θ ), (29)

or for small angles θ � 1

ϕ � π

2
−

[
1 + γ 2

H

12
(1 + g)

]
θ. (30)

Equations (29) and (30) show that the photoelectron moves
along the electric field during subbarrier motion. In the an-
tiadiabatic limit (γH � 1), and if g 
= +1 and θ 
= 0, i.e., at
G(g, θ ) 
= 2, the emission angle is

ϕ � − arctan

(
g − cos(θ )

2 sin(θ )

)

− sin(θ )

2γH

G(g, θ )
√

4 − G2(g, θ )

[g − cos(θ )]2 + 4 sin2(θ )
ln

(
4 − G2(g, θ )

16γ 2
H

)
,

(31)

or for small angles θ � 1

ϕ � π

2
sgn[cos(θ )−g]− 2

1−g

[
1+ G(g, θ )

4γH (1 − g)

√
4 − G2(g, θ )

× ln

(
4−G2(g, θ )

16γ 2
H

)]
θ. (32)

Equation (32) shows that for γH � 1 the subbarrier trajectory
of the photoelectron is “pressed” to the electric field, contrary
to the case of constant electric and magnetic fields, when
for γH � 1 the subbarrier trajectory of the photoelectron is
“pressed” to the magnetic field (see in Refs. [21,30]).

In the special case, when a right circularly polarized laser
beam (g = +1) propagates parallel (θ = 0) to the constant
magnetic field H , i.e., at G(g, θ ) = 2, the emission angle of
the photoelectron is

ϕ → −π

2
− exp

(
γ 2

H/2
)

γ 2
H

θ, (33)

i.e., the photoelectron moves in the opposite direction to the
electric field. In the case, when a left circularly polarized laser
beam (g = −1) propagates parallel (θ = 0) to the constant
magnetic field H , i.e., at G(g, θ ) = 0, the emission angle of
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FIG. 1. Ionization rates 
 vs γH for the 1s state of the H atom
(λH ≈ 8.77) at θ = 0, gA = −1, and gB = +1. Arbitrary units are
used for 
.

the photoelectron reads

ϕ → π

2
− θ, (34)

i.e., the photoelectron moves along the direction of the electric
field.

IV. NUMERICAL CALCULATIONS

Figure 1 shows the ionization rates for the H atom in the
field of a titanium-sapphire laser (ω = 1.55 eV, λ ≈ 800 nm)
for intensity J = 1013 W/cm2, in the case when a left circu-
larly polarized laser beam (gA = −1) and a right circularly po-
larized laser beam (gB = +1), with the frequencies ω = ωH ,
propagate parallel (θ = 0) to the constant magnetic field H .
Note that the cyclotron frequency ωH = 1.55 eV corresponds
to the constant magnetic field H ∼ 134 MG. As can be seen
from Fig. 1 the ionization rate for a left polarized laser field is
greater than for a right polarized laser field. The reason for this
is that since a left circularly polarized laser pulse (g = −1)
rotates the electron against the constant magnetic field, the
subbarrier trajectory of the electron becomes shorter than in
the case of a right circularly polarized laser field (g = +1). As
a result the ionization rate for a left polarized field is greater
than for a right polarized field.

Let us define the stabilization factor S(γH , g, θ ):
S(γH , g, θ ) = 
/
0, where 
0 is the ionization rate at
H = 0. In Refs. [21,30,40], it was shown that accounting
for the constant magnetic field in the ionization process
always leads to stabilization of a bound level. This is a
fairly general statement well known in the literature for the
atomic ionization. The stabilization effect can be explained
by the distortion (elongation) of the subbarrier trajectory
due to the screwlike electron motion in the magnetic field.
Figures 2–6 show the results of numerical calculations in the
field of a titanium-sapphire laser for the stabilization factor
S(γH , g, θ ), which determines the extent of the influence
of the constant magnetic field on the ionization rate, in the
case of neutral atoms of H and He. Note that numerical
calculations (Figs. 1–6) were carried out in the framework
of the zero-range potential model [see Eq. (5)], with binding

FIG. 2. Function S vs γH for the 1s state of the H atom (λH ≈
8.77) at θ = π/3, gA = +1, gB = +0.8, and gC = +0.6.

energies corresponding to hydrogen and helium. Figure 2
shows that in the case of a right polarized laser field (g > 0)
the stabilization factor decreases as the magnetic Keldysh
parameter γH increases (as the magnetic field increases),
i.e., the constant magnetic field stabilizes the bound level.
This means that for a right polarized laser field, when the
constant magnetic field and the electromagnetic wave rotate
the electron in the same direction, the subbarrier trajectory
of the electron elongates and the ionization probability, in
the presence of the magnetic field, decreases as compared to
the case when the magnetic field is absent. This stabilization
effect increases with the ellipticity g > 0 and reaches a
maximum for a right circularly polarized wave (g = +1).

Figures 3–6 show that in the case of a left polarized laser
field (g < 0) the stabilization factor increases with the mag-
netic Keldysh parameter γH , i.e., with the magnetic field. This
means that the ionization rate, in the presence of the magnetic
field, is greater than when the magnetic field is absent. For
a left polarized laser field, when the constant magnetic field
and the electromagnetic wave, under the condition ω = ωH ,
rotate the electron in the opposite directions, the subbarrier
trajectory of the electron shortens as compared to the case
when the magnetic field is absent. The consequence of this is

FIG. 3. Function S vs γH for the 1s state of the H atom (λH ≈
8.77) at θ = 0, gA = −1, gB = −0.8, and gC = −0.6.
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FIG. 4. Function S vs γH for the 1s state of the H atom (λH ≈
8.77) at g = −1, θA = 0, θB = π/4, and θC = π/2.

that the constant magnetic field does not stabilize the bound
level. It follows from Fig. 3 that the enhancement of the
ionization rate in the constant magnetic field, when ω = ωH ,
increases with the magnitude of the ellipticity |g| and reaches
a maximum in the case of a left circularly polarized laser pulse
(g = −1). As can be seen from Figs. 4 and 5, the enhancement
of the ionization rate increases as the angle between the
magnetic field and the direction of a laser beam propagation
approaches zero. This enhancement is maximal when a left
circularly polarized laser beam propagates parallel (θ = 0) to
the magnetic field. In addition, these figures show that the
enhancement of ionization rates for helium is greater than for
hydrogen, because the magnetic multiquantum parameter λH

for the He atom is greater than that for the H atom. Figure 6
shows that when a laser beam propagates perpendicularly
(θ = π/2) to the constant magnetic field, the enhancement of
ionization rates does not depend on a sign of the laser field
polarization and it is maximal for a circularly polarized laser
pulse (g = ±1).

V. CONCLUSIONS

We have considered the tunneling and multiphoton ioniza-
tion of a weakly bound level in an intense monochromatic

FIG. 5. Function S vs γH for the 1s state of the He atom (λH ≈
15.8) at g = −1, θA = 0, and θB = π/4.

FIG. 6. Function S vs γH for the 1s state of the He atom (λH ≈
15.8) at θ = π/2, gA = ±1, gB = ±0.8, and gC = ±0.6.

laser beam of an arbitrary polarization propagating at an
arbitrary angle to a constant uniform magnetic field, under
the condition when the frequency ω of a laser field coincides
with the cyclotron frequency ωH . Within the framework of
the QQES formalism we have derived the equation for the
complex quasienergy and expressions for ionization rates in
the case of arbitrary magnitudes of the magnetic Keldysh
parameter. Using the quasiclassical perturbation theory and
the imaginary-time method we have also derived the extremal
subbarrier trajectory of the electron. We analyzed in detail
analytical expressions for ionization rates, the barrier width,
and the emission angle of photoelectrons, in the tunneling and
the multiphoton limits.

We have complemented our consideration by numerical
calculations of ionization rates and stabilization factors for
H and He atoms in the field of a titanium-sapphire laser.
Our calculations showed the fundamental difference between
the processes of the ionization in the fields of right and
left polarized laser pulses, in the presence of the constant
magnetic field, in the case when ω = ωH . From our cal-
culations, it follows that the ionization rate in the case of
a left polarized laser field is greater than in the case of a
right polarized laser field. The reason for this is the fact that
since a right polarized electromagnetic wave and the constant
magnetic field rotate the electron in the same direction, the
subbarrier trajectory of the electron elongates. At the same
time, a left polarized laser field rotates the electron against the
constant magnetic field and the electron subbarrier trajectory
becomes shorter. As a result a counterrotating electron has
significantly better chances to penetrate the barrier than a
corotating electron. The consequence of this is that for a
right polarized electromagnetic wave the constant magnetic
field always stabilizes the bound level. On the contrary, for
a left polarized electromagnetic wave, under the condition
ω = ωH , the constant magnetic field does not stabilize the
bound level, which leads to an enhancement of the ionization
rate as compared to the case when the magnetic field is absent.
Our calculations also showed that this enhancement of the
ionization rate is maximal in the case of a left circularly
polarized laser beam, propagating parallel to the magnetic
field. The results obtained in this paper allow us to suggest
using the constant magnetic field in a two-color scheme with
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circular laser fields (see in Ref. [53]) when the frequency of
one of the harmonics coincides with the cyclotron frequency,
for an amplification of terahertz radiation.
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