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Stochastic learning control of inhomogeneous quantum ensembles
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In quantum control, the robustness with respect to uncertainties in the system’s parameters or driving-field
characteristics is of paramount importance and has been studied theoretically, numerically, and experimentally.
We test in this paper stochastic search procedures (Stochastic gradient descent and the Adam algorithm) that
sample, at each iteration, from the distribution of the parameter uncertainty, as opposed to previous approaches
that used a fixed grid. We show that both algorithms behave well with respect to benchmarks and discuss
their relative merits. In addition the methodology allows to address high-dimensional parameter uncertainty;
we implement numerically, with good results, a three-dimensional and a six-dimensional case.
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I. INTRODUCTION

Quantum control is a promising technology with many
applications ranging from nuclear magnetic resonance (NMR)
[1] to quantum computing [2] and laser control of quan-
tum dynamics [3]. The controlling field encounters many
molecules which, although identical in nature, may interact
differently with the incoming field because of different Lar-
mor frequencies or rf attenuation factors (in NMR spin control
or quantum computing, see [4–9]), different spatial profile
(see [10]), or other parameters (see [11–13]). For obvious
practical reasons, it is of paramount importance to ensure that
the control quality is robust with respect to this heterogeneity.
Thus the quantum control problem involves a unique set of
driving fields u(t ) ∈ RL, the same for all molecules in the
ensemble, however, each molecule is described by a set of
parameters θ ∈ � ⊂ Rd and the control outcome depends on
both u and θ ; the goal can be expressed as the maximization of
the control quality averaged over θ . A different view is when
the variability is not due to the presence of many different
molecules but when uncertainties in the control implementa-
tion require to devise a field robust to fluctuations in those
parameters.

A first natural question is whether this is at all possible, i.e.,
if a single field can drive several distinct molecules to a com-
mon target; the answer is given by the theory of ensemble con-
trol controllability, see [4,14–17] and is, in general, positive.
However, the theory does not explain how to find the control
(except under specific regimes, see [18]). To do so, different
algorithms have been proposed: the pseudospectral approach
of Li et al. [19–21] consider spectral and/or polynomial repre-
sentations of the control problem in two dimensions (d = 2);
Wang considered iterative procedures based on sampling [22];
the learning approach of Chen et al. [12] and Kuang et al. [23]
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(the latter in the context of time-optimal control) considered a
fixed uniform grid over the inhomogeneous parameter space
and was tested for d = 2. Finally, Wu et al. [24] found robust
controls using uniform grids in two and three dimensions
(d = 3).

In all these works there is always a fixed grid (or fixed
sampling) involved when the control is searched. The ratio-
nale behind this idea is that a fixed grid makes the search
more stable and a good choice of the grid is enough to
describe efficiently the mean performance of the control over
the parameter space in the spirit of a quadrature formula for
the average over θ . This is coherent with results from the ap-
proximation theory which inform that convergence is of order
e− d√N , with respect to the number N of grid points; however,
the same formula indicates a bad scaling with respect to d .
To address this curse of dimensionality and also explore the
nature of the search landscape, we take here a different view:
At each control iteration we use a new sampling in the spirit
of Monte Carlo methods (see [25, Sec. 7.7]) for computing
high-dimensional integrals. This will induce slight oscillations
in the average but has the advantage to cover the space � of
inhomogeneity even in high dimensions d . A similar approach
was tested independently in a very recent work by Wu et al.
[26] for a two-dimensional example and promising results
were obtained; see Sec. II B for comments on the differences
between the two approaches. The procedure we propose is
detailed in the next section and the numerical results are the
object of Sec. III.

II. ALGORITHMS FOR ENSEMBLE QUANTUM CONTROL

We consider a control u(t ) = (u1(t ), . . . , uL(t )) ∈ RL act-
ing on a molecule part of a larger ensemble. Each molecule is
completely characterized by some inhomogeneity parameter
θ ∈ � ⊂ Rd obeying a distribution law P(θ ) on � (which
can be the uniform distribution or any other). All molecules
are subjected to the same control u(t ) during the time interval
[0, T ] to reach some target.
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A. Evolution equations

The dynamics of each molecule in the sample is governed
by the Hamiltonian H (θ, u) = H0(θ ) + ∑L

�=1 u�(t )H�(θ )
through the Schrödinger equation

i
d

dt
ψ (t ; θ ) = H (θ, u)ψ (t ; θ ), (1)

where ψ is the wave function of the molecule (here and below
we set h̄ = 1). Of course, ψ depends on u but for notational
convenience we omit to write explicitly this dependence from
now on. Once a finite-dimensional basis {| j〉, j = 1, . . . , N}
is chosen, the state of the quantum system can be represented
as

|ψ (t ; θ )〉 =
N∑

j=1

c j (t ; θ )| j〉. (2)

Denoting C(t ; θ ) = [c0(t ; θ ), . . . , cN (t ; θ )]T the vector of co-
efficients C satisfies the equation

d

dt
C(t ; θ ) = X (θ, u)C(t ; θ ), (3)

where X is the representation of the Hamiltonian H (including
the 1/i factor) in the basis | j〉, j = 1, . . . , N .

Note that same setting also applies to nonlinear Hamilto-
nians, e.g., Bose-Einstein condensates (nonlinearity in ψ), or
high-order control terms [27,28] (nonlinearity in u).

The quantum system can also be described in terms of
a density matrix ρ(t ; θ ); this matrix is expressed in some
basis for operators. The same happens when the molecule is
coupled to a bath or when relaxation phenomena are at work,
see [29]; in both cases the coefficients of this expansion follow
an equation similar to Eq. (3).

B. Optimization by stochastic gradient descent
and Adam algorithms

The control goal is encoded as the minimization, with re-
spect to u, of an error, or “loss” functional L(u, θ ) depending
on the control u and the Hamiltonian parameters θ . When all
the ensemble is considered, the following loss functional is to
be minimized:

J (u) =
∫

�

L(u, θ )P(dθ ). (4)

The stochastic optimization algorithms described below con-
struct an iterative process to find the u that minimizes Eq. (4).

Historically the first to be considered, the stochastic gradi-
ent descent algorithm [30] (henceforth called SGD) consists
of the following procedure:

Algorithm 1 SGD

1: Choose a learning rate α > 0, a minibatch size M > 0 and the
initial control u0.

2: Set iteration counter k = 0.
3: repeat
4: Draw M independent parameters θ k

1 , . . . , θ k
M from the

distribution P(θ ) and compute the approximation gk := 1
M∑M

m=1 ∇uL(uk ; θ k
m ) of the gradient ∇uJ (uk ) of J (·) at uk .

5: Set uk+1 = uk − αgk and k = k + 1.
6: until stopping criterion is satisfied.

To accelerate the convergence of the SGD algorithm, sev-
eral improvements have been proposed (see [31]) among with
the Adam [32] variant which proved to be one of the most
efficient and very scalable. The difference between Adam and
SGD is that Adam uses a different learning rate for each
parameter which is tuned as follows: When the uncertainty
in the gradient is large the learning rate is taken to be small
and contrary otherwise. To have a robust estimation for the
gradient (in absolute value) a exponential moving average
is computed on the fly (see below). It can be described as
follows:

Algorithm 2 Adam

1: Choose the learning rate α > 0, the EMA parameters β1 and
β2, the minibatch size M > 0, the epsilon ε > 0, and the initial
control u0.

2: Set iteration counter k = 0, first moment estimate μ = 0,
second moment estimate v = 0.

3: Set k = k + 1.
4: repeat
5: Draw M independent parameters θ k

1 , . . . , θ k
M from the

distribution P(θ ) and compute the approximation gk := 1
M∑M

m=1 ∇uL(uk−1; θ k
m ) of the gradient ∇uJ (uk−1) of J (·) at uk−1.

6: Compute the moving averages μk := β1μ
k−1 + (1 − β1)gk ,

vk := β2v
k−1 + (1 − β2)|gk |2.

7: Compute bias-corrected moment estimates:
μ̂k = μk/[1 − (β1)k], v̂k = vk/[1 − (β2)k].

8: set uk = uk−1 − αμ̂k/(
√

v̂k + ε).
9: until some stopping criterion is satisfied.

The momentum algorithm used in [26] can be seen as
being halfway between SGD and Adam; it is formally a
special case of the Adam algorithm for β1 = λ, β2 = 1, v0 =
1 and no bias correction step 7 (that is μ̂k = μk , v̂k = vk). In
practice, the numerical results are very similar and point in the
same direction; in particular, we expect that the momentum
algorithm is also relevant to high-dimensional robust control
problems.

III. NUMERICAL RESULTS

We test the performance of the algorithms in Sec. II B
for several benchmarks from the literature (or that generalize
cases from the literature).

In Secs. III A and III A we compare the SGD algorithm
with a fixed grid sampling method from the literature. Then
in Secs. III C and III D we compare the SGD wih the Adam
algorithm and in Sec. III E we draw further conclusions con-
cerning stochastic optimization.

In the situations considered below, the goal is to maxi-
mize the so-called fidelity denoted F (u; θ ). For Secs. III A
and III B this has the formula F (u; θ ) = |〈C(T ; θ ),Ctarget〉|
where Ctarget is a prescribed target state. But this expression
is not differentiable everywhere and numerically it is easier to
replace it with its square. Moreover, to express the problem as
a minimization, a −1 multiplicative constant is introduced and
1 added to the result to have it positive. So the cost functional
J will be the mean, over θ ∈ � of the error in the fidelity
squared as in formula (8). On the contrary, when the fidelity is
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more well behaved as in Sec. III C where F (u; θ ) = c4(T, θ )
or in Sec. III D where F (u; θ ) = c6(T, θ ) the square operation
is useless and the cost functional has the form in Eqs. (11) or
(13). However, in all sections, we will plot the error in the
fidelity itself; the reason why not plotting the fidelity (instead
of the error) is that the error can be very small (as in Sec. III A)
and the results are more visible on a logarithmic scale. Note
that in some cases the best control cannot attain the target
with 100% quality (even for a single molecule). However,
for any given value of the parameter θ , the best attainable
performance is known (see [1,33,34]) and is denoted Fmax(θ ).
We will therefore consider the fidelity relative to Fmax(θ ). In
all cases the error is computed as the average over Mtest =
300 random independent parameters θ test

1 , θ test
2 ,..., θ test

Mtest
drawn

(once for all) from the distribution P(θ ) and has the following
expression:

1

Mtest

Mtest∑
k=1

(
1 − F

(
u; θ test

k

)
Fmax

(
θ test

k

)
)

. (5)

For Secs. III A and III B we will also plot the max relative
error

max
k=1,...,Mtest

(
1 − F

(
u; θ test

k

)
Fmax

(
θ test

k

)
)

. (6)

Finally, to compare our algorithm with those from the
literature, we take as indicator of the numerical effort the
number of gradient ∇uL(u; θ ) evaluations; for instance one
iteration of SGD or Adam algorithms count as M gradient
evaluations. In all situations we used for the Adam algorithm
the standard values β1 = 0.9, β2 = 0.999, ε = 10−8.

A. Two-level inhomogeneous ensemble

Consider an ensemble of spins as in [12, Sec. III]. The spins
have different Larmor frequencies ω in the range [0.8,1.2] and
the controls (L = 2) have multiplicative inhomogeneity ε ∈
[0.8, 1.2]; we set θ = (ω, ε) and with the previous notations
the dynamics corresponds to the equation(

ċ1(t ; θ )

ċ2(t ; θ )

)
=

(
0.5ωi 0.5ε[u2(t )−iu1(t )]

−0.5ε[u2(t ) − iu1(t )] −0.5ωi

)

×
(

c1(t ; θ )

c2(t ; θ )

)
, (7)

where c1, c2 are the coefficients of the wave function of the
spin system in the canonical basis, as detailed in Eq. (2).

The initial state of each member of the quantum ensemble
is set to |ψ0〉 = |0〉; i.e., C0 = (1, 0)T , and the goal is to
reach the target state |ψtarget〉 = |1〉; i.e., Ctarget = (0, 1)T . The
objective is encoded as the requirement to minimize

J (u) = 1

2

(
1 −

∫
�

|〈C(T ; θ ),Ctarget〉|2P(dθ )

)
. (8)

Here Fmax(θ ) = 1. The total time is T = 2 is divided
into Q = 200 time steps, of length 
t = T/Q = 0.01
each. The initial choice for the control u is uk=0(t ) =
{u0

1(t ) = sin t, u0
2(t ) = sin t}.

Several minibatch sizes M = 1, 4, 8, 16, and 32 are tested
and compared to the implementation in [12, Sec. III A] where

a two-dimensional (2D) uniform grid of 5 × 5 values for θ

is chosen. In all cases very good convergence results are
attained. We plot in Fig. 1 the results for M = 1, M = 4
relative to the convergence with the uniform 5 × 5 grid. In
all cases (M = 1, 4, uniform grid) we set α = 500; note that
the learning rate α was optimized to obtain the best possible
results for the fixed grid algorithm and indeed the results are
better than those in [12, Sec. III A]. But similar conclusions
are reached for any value of α. An acceleration by a factor of
5 is obtained for both M = 1 and M = 4, essentially due to the
fact that each SGD iteration uses only M gradient evaluations.
Note that the SGD algorithm oscillates but these oscillations
can be cured by lowering α (or stopping the search) as soon
as a good result is obtained. The question of which is the
best choice among M = 1 and M = 4 is a matter of striking
a balance between speed and uncertainty: for M = 4 the
convergence is slightly slower, but oscillations are diminished.
This behavior is observed, to a larger or lesser extent, in all test
cases.

Note that to compare our learning rate α (for the fixed
uniform grid) with that in [12, Sec. III A] a multiplicative
factor of 
t/2 has to be introduced because our gradient (see
the Appendix) contains an extra 
t factor and the coefficient
1/2. Thus one should transform α = 500 to 1/2 × 0.01 ×
500 = 2.5 to compare to 0.2 used in [12].

B. Three-level � atomic ensemble

In this section we test a � atomic ensemble from [12,
Sec. IV] which can be written as a three-level system with
the following dynamics:⎛
⎝ċ1(t ; θ )

ċ2(t ; θ )
ċ3(t ; θ )

⎞
⎠ =

⎛
⎝ −1.5ωi 0 −iεu2(t )

0 −ωi −iεu1(t )
−iεu2(t ) −iεu1(t ) 0

⎞
⎠

⎛
⎝c1(t ; θ )

c2(t ; θ )
c3(t ; θ )

⎞
⎠,

(9)

where ω and ε have uniform distributions in [0.8, 1.2] and
c1, c2, c3 are the coefficients of the wave function of the spin
system in the canonical basis, as detailed in Eq. (2).

The objective is to find a control u(t ) = [u1(t ), u2(t )]
which drives all the inhomogeneous members from |ψ0〉 =

1√
3
(|1〉 + |2〉 + |3〉) [i.e., C0 = ( 1√

3
, 1√

3
, 1√

3
)] to |ψtarget〉 =

|3〉 [i.e., Ctarget = (0, 0, 1)]; the objective is encoded as the
minimization of Eq. (8). Here Fmax(θ ) = 1.

We plot in Fig. 2 the results for M = 1 and M = 4 relative
to the convergence with an uniform grid as in [12, Sec. IV].
In all cases (M = 1, 4, uniform grid) we set α = 100. The
acceleration factor is around 7 for M = 4 and even larger for
M = 1 (but at the price of larger oscillations as well).

C. Three-dimensional example: Two spin systems
without cross-correlated relaxation

As argued before, methods from the literature may have
difficulties to address high-dimensional parameters, and often
limit to two-dimensional (d = 2) inhomogeneity (see, how-
ever, [24, Sec. V.B] for a three-dimensional (3D) case). To
test the full power of our method, we consider two situations
that extend cases treated in the literature but have never been
treated before. The first test is a 3D (d = 3) example which
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FIG. 1. Convergence for the numerical case in Sec. III A. Top image: Mean fidelity error [as defined in Eq. (5)]. Bottom image: Maximum
(over the sample) fidelity error [as defined in Eq. (6)]. We consider three simulations: a fixed uniform 2D grid (M = 25) as in [12, Sec. III A]
and the SGD algorithm with M = 1 and M = 4. This SGD converges about five times faster: the mean fidelity error of 2.0 × 10−3 is obtained
after 1250 gradient evaluations of the fixed grid algorithm and after 250 evaluations of the SGD algorithm with M = 1, 4. Same for other levels
of errors.

addresses the coherence transfer between two spins without
cross-correlated relaxation, taken from [20, Sec. III.B.1. Eq.
(15)] (but with an additional inhomogeneity dimension). An
example of such a system is an isolated heteronuclear spin
system composed of two coupled spins 1/2 corresponding to
atoms 1H and 15N . For a general treatment of the relaxation
terms and the formulation of this equation see [29]. The spins
display control inhomogeneity described by the parameter ε

as above, but there is also variation in the relaxation rate and
coupling constant, which, denoting θ = (ε, J, ξ ) results in the

dynamical system

⎛
⎜⎝

ċ1(t ; θ )
ċ2(t ; θ )
ċ3(t ; θ )
ċ4(t ; θ )

⎞
⎟⎠ =

⎛
⎜⎝

0 −εu1(t ) 0 0
εu1(t ) −ξ −J 0

0 J −ξ −εu2

0 0 εu2 0

⎞
⎟⎠

⎛
⎜⎝

c1(t ; θ )
c2(t ; θ )
c3(t ; θ )
c4(t ; θ )

⎞
⎟⎠.

(10)

Let us denote by I1x = σx/2, I1y = σy/2, I1z = σz/2 (here σx,
σy σz are the Pauli matrices) the spin operators corresponding

FIG. 2. Convergence for the numerical case in Sec. III B. Top image: Mean fidelity error as defined in Eq. (5). Bottom image: Maximum
(over the sample) fidelity error [as defined in Eq. (6)]. We consider two algorithms: a fixed uniform 2D grid (M = 25) as in [12, Sec. IV] and
the SGD algorithm with M = 1 and M = 4. This later approach converges about seven times faster: The convergence settles in after 17 500
gradient evaluations of the fixed grid algorithm compared to approximately 2500 evaluations of the SGD algorithm. This acceleration factor is
even more important for M = 1, but at the price of larger oscillations.
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FIG. 3. Convergence for the numerical case in Sec. III C. The
quantity plotted is given in Eq. (5). We set M = 4; for the SGD
algorithm we choose α = 10.0 and for the Adam algorithm we
set α = 0.01. The continuous (−) and dotted (·) curves stand for
the mean fidelity errors of the plain SGD and Adam algorithm,
respectively; the convergence is similar and a 95% mean target
relative fidelity (or equivalently 5% mean target relative fidelity
error) is obtained. For the controls see Fig. 4.

to the first spin and I2x, I2y, I2z the corresponding objects for
the second spin. With the usual notations for the Kronecker
products, c1 = 〈I1z〉, c2 = 〈I1x〉, c3 = 〈2I1yI2z〉, c4 = 〈2I1zI2z〉;
the exact derivation of this equation is beyond the scope of
this work, see [1,29,34] for details. On the other hand also
note that the dynamics is not reversible (relaxation is present)
and the equations do not correspond to a unitary evolution.

The inhomogeneity θ = (ε, J, ξ ) is uniformly distributed
in � = [0.9, 1.1] × [0.5, 1.5] × [0, 2]. The final time T =
7π/6 is discretized with Q = 200 uniform time steps. The
control is initialized as before. The initial state is encoded as
c0 = (1, 0, 0, 0) and the target is to minimize the 3D integral

J (u) = 1 −
∫

�

c4(T ; θ )P(dθ ). (11)

Recall that here the fidelity is F (u; θ ) = c4(T, θ ); in this
case (see [1,34]) Fmax(θ ) =

√
1 + (ξ/J )2 − ξ/J [the worse

performance being −Fmax(θ )]. The results are in Figs. 3
and 4. Note that although for each θ taken individually the
figure Fmax(θ ) can be attained with a pair (recall L = 2) of
suitable control fields, it is unknown whether a unique control
pair exists ensuring 100% [relative to Fmax(θ )] target yield

FIG. 4. Converged controls for the SGD (up) and Adam (bottom)
for the situation in Sec. III C (for the convergence see Fig. 3).
Controls obtained with the SGD algorithm are smoother than those
from the Adam algorithm.

simultaneously for all θ ∈ �. In practice, we did not find
any, irrespective of the algorithm hyperparameters such as α,
the maximum number of iterations and so on; we conclude,
on one hand, that this ensemble is not 100% simultaneously
controllable and, on the other hand, that our procedure im-
proves significantly the robustness of the control with respect
to θ ∈ � from an initial value of 67% up to 95%. Note that the
results from the literature (which for this case only consider
2D inhomogeneity) do not obtain 100% control either (exact
figure is not reported).

D. Six-dimensional example: Two spin systems with
cross-correlated relaxation

We continue here to address alternate systems that pre-
vious methods could not treat. We consider an ensemble
of two spin systems with cross-correlated relaxation as in
[19, Sec. III.A.2], [20, Sec. III.B.2 Eq. (16)], and also
[22, Example 3], [29].

The spins display control inhomogeneity described by
the parameters ε1 and ε2 and there is also variation in
the autocorrelated relaxation rate ξa, the quotient ξc/ξa

of the cross-correlation relaxation rate ξc with respect to
the autocorrelated relaxation rate ξa and finally, a disper-
sion in the Larmor frequencies of each spin. Denoting
θ = (ε1, ε2, ω1, ω2, ξa, ξc/ξa) ∈ � = [0.9, 1.1]2 × [0, 1]2 ×
[0.75, 1.25] × [0.7, 0.9], the dynamical system can be written

⎛
⎜⎜⎜⎜⎜⎝

ċ1(t ; θ )
ċ2(t ; θ )
ċ3(t ; θ )
ċ4(t ; θ )
ċ5(t ; θ )
ċ6(t ; θ )

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 −ε1u1(t ) ε2u2(t ) 0 0 0
ε1u1(t ) −ξa ω1 −J −ξc 0

−ε2u2(t ) −ω1 −ξa −ξc J 0
0 J −ξc −ξa ω2 −ε2u2(t )
0 −ξc −J −ω2 −ξa ε1u1(t )
0 0 0 ε2u2(t ) −ε1u1(t ) 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c1(t ; θ )
c2(t ; θ )
c3(t ; θ )
c4(t ; θ )
c5(t ; θ )
c6(t ; θ )

⎞
⎟⎟⎟⎟⎟⎠. (12)

The vector C = (c1, . . . , c6) has real entries and, with the
same notations as in equation (10), c1 = 〈I1z〉, c2 = 〈I1x〉,
c3 = 〈I1y〉, c4 = 〈2I1yI2z〉, c5 = 〈2I1xI2z〉, c6 = 〈2I1zI2z〉. The
relations are similar to that in Sec. III C, with the exception
that there are two new entries c3 and c5 due to the presence

of cross-correlation, see [1,29,34] for details of the derivation
of the model; the dynamics is not reversible (relaxation is
present) nor unitary.

We set J = 1; the total time T = 5 is discretized with Q =
200 uniform time steps. The control is initialized as before.
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FIG. 5. Convergence for the numerical case in Sec. III D. The
quantity plotted is defined as in the Fig. 3. We set M = 4; for the
SGD algorithm we choose α = 10.0 and for the Adam algorithm
we set α = 0.01. The continuous (−) and dotted (·) curves stand
for the mean fidelity errors of the plain SGD and Adam algorithm,
respectively; the convergence is similar and 91% mean relative
fidelity is obtained. For the controls see Fig. 6.

The initial state is encoded as c0 = (1, 0, 0, 0, 0, 0) and the
target is to minimize the six-dimensional integral

J (u) = 1 −
∫

�

c6(T ; θ )P(dθ ). (13)

Recall that here the fidelity is F (u; θ ) = c6(T, θ ). In this
case also the best attainable performance for a single molecule
is known (see [1,34]) and defined by Fmax(θ ) =

√
1 + η2 − η

where η =
√

ξ 2
a −ξ 2

c
J2+ξ 2

c
.

The simulation results are in Figs. 5 and 6. The same con-
ventions are kept as in the previous section (fidelity is relative
to maximum attainable figure) and the same considerations
still apply: 100% simultaneous controllability does not seem
attainable but significant improvement in the robustness is
obtained (91% up from −8%).

E. Stochastic convergence behaviors

The convergence of the stochastic algorithms can have two
important regimes.

(1) First, when all members of the ensemble can be simul-
taneously optimized to 100%; in our situation this is equiva-
lent to simultaneous controllability. In this case convergence
is “easier” because it is “enough” to follow the gradient for
each parameter value to converge; at convergence all gradients
(as distribution with respect to ω), will collapse to (in practice
will be close to) a Dirac mass.

FIG. 6. Converged controls for the SGD (up) and Adam (bottom)
for the situation in Sec. III D (for the convergence see Fig. 5).
Controls obtained with the SGD algorithm are smoother than those
from the Adam algorithm.

FIG. 7. Histogram of the gradients ∇u1(t )J [u(tn), θ ] computed
over the test sample θ test

1 , θ test
2 ,..., θ test

Mtest
(recall Mtest = 300). Six time

instants t are chosen uniformly in [0, T ]:t = 0, T/5, 2T/5,..., T .
In red are the gradients at u = u1 (iteration k = 1) and in blue the
gradients at u = u500 (iteration k = 500). Here we consider the case
in Sec. III A, see Fig. 8 for the test case in Sec. III D.

(2) Second, when members of the ensemble cannot be
simultaneously optimized; in this case, reaching full control
for some θ value will harm the quality of some other pa-
rameter values θ ′ 	= θ . At convergence gradients will not be
distributed as a Dirac mass any more, but the average with
respect to theta will be zero (in practice small).

We illustrate this behavior in Figs. 7 and 8 where we
plot the histograms of the gradient (with respect to the first
field) ∇u1(t )J [u(tn), θ ] as random variables of θ at some time
snapshots t . It is noticed that while in the first example it is
possible to reduce significantly the gradient absolute value for
all members of the sample (because simultaneous controlla-
bility holds true), in the second test case this reduction reaches

FIG. 8. Histogram of the gradients as in Fig. 7 except that here
the results correspond to the test case in Sec. III D.
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a limit and the algorithm tries instead to center the gradients
on zero so that the average will be as low as possible.

IV. DISCUSSION AND CONCLUSION

We proposed and tested in this work a stochastic approach
to compute the optimal controls of inhomogeneous quantum
ensembles. The algorithms were employed before in other
areas of stochastic optimization but not tested in this con-
text (see [26] for similar algorithms). Their specificity is
to draw at each iteration a new set of parameters from the
inhomogeneous distribution. Although at first the intuition
may not recommend such an approach, the numerical results
indicate not only convergence but also faster convergence than
methods based on fixed samples. In addition the method can
address situations when the space of parameters is large and
was tested successfully on a six-dimensional example.

For lower-dimensional examples (as in Secs. III A
and III B) the acceleration of the stochastic algorithms (SGD,
Adam) is due essentially to the lower effort per iteration
compared to a fixed grid sampling (both being proportional to
the number of samples used). In higher dimensions the fixed
grid approach is inherently less efficient due to the curse of
dimensionality and may even be prohibitively large.

On the other hand, compared to SGD, the Adam algorithm
has the advantage to be more robust with respect to the choice
of the learning rate α, but the controls are less regular.

Finally, one of the limitations of this work is to use
constant learning rates. Variable learning rates are potentially
interesting as it could speed up convergence in the initial

phases by using large values of α and avoid oscillations in
the end by lowering α. Several schedules are proposed in
the stochastic optimization literature (inverse linear, piece-
wise constant, etc.), but their analysis remains for future
work.

APPENDIX: GRADIENT COMPUTATION

We detail below the computation of the gradient for a
single parameter θ , the general case being just a mean over
θ . Consider the so-called adjoint state λ(t ; θ ); it is defined at
the final time as the derivative of the outcome with respect
to C(T ; θ ). For instance, for Secs. III A to III B: λ(T ; θ ) =
−〈Ctarget,C(T, θ )〉Ctarget while for Secs. III C to III D we set
λ(T ; θ ) = −1. Then for t < T , λ(t ; θ ) is the solution of
the (backward) equation d

dt λ(t ; θ ) = X (t, θ )†λ(t ; θ ), where
X (t, θ )† is the transpose conjugate of X when X has complex
entries (examples in Secs. III A and III B) and reduces to the
transpose when X is a real matrix (examples in Secs. III C
and III D). Then ∇u(t )J = 〈λ(t ; θ ), ∂X (t ;θ )

∂u(t ) C(t ; θ )〉. In prac-
tice, given that u is discretized, the state C and the ad-
joint state λ are also discretized at time instants tn = n
t :
Cn(θ ) 
 C(tn; θ ), λn(θ ) 
 λ(tn; θ ) which satisfy Cn+1(θ ) =
e
tX [u(tn );θ]Cn(θ ) and λn(θ ) = e
tX [u(tn );θ]†

λn+1(θ ) and the ex-
act discrete gradient is ∇u(tn )J = 〈λn+1(θ ), ∂e
tX [u(tn );θ ]

∂u(tn ) Cn(θ )〉.
Finally, to compute ∂e
tX [u(tn );θ ]

∂u(tn ) we use a “divide and con-
quer” approach coupled with an eighth-order expansion as in
[35, formula (11)]) to obtain at the same time the exponential
and the gradient ([36, Chap. VI]) from the knowledge of the
inputs X [u(tn); θ ] and ∂X [u(tn );θ]

∂uk (tn ) .
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