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Investigation of electron spin dynamic in the bichromatic Kapitza-Dirac effect via frequency ratio
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We discuss electron diffraction from two standing waves with two different frequencies. The effects of
increasing the frequency of the second laser beam and changing the laser amplitudes on the form and period
of the Rabi oscillation are studied theoretically. The corresponding scattering probabilities for certain incident
electron momenta are obtained by an analytical Rabi matrix and numerical solution of the Dirac equation. We
show that at high intensities, �1020 W cm−2, the process with an even number of photons involved in the
Kapitza-Dirac effect can be used as a spin filter for free electrons. On the other hand, the process with an odd
number photons and an electron with momentum along the laser polarization preserves the initial spin of the
electron.
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I. INTRODUCTION

Recent developments in high-power lasers raised hopes
to polarize electrons and positrons with ultraintense laser
fields [1–3] and produce spin-polarized beams for new ap-
plications in high-energy physics [4]. There are methods
(mechanisms) for efficient electron (positron) polarization,
e.g., spin-dependent radiation reactions [5,6], laser wake field
acceleration in prepolarized plasmas [7], radiative polariza-
tion in a storage ring via the Sokolov-Ternov effect [8,9], and
beam splitters [10].

Recently, there have been notable theoretical and experi-
mental studies in the spin polarization of electrons via inter-
ferometric beam splitters in high-intensity laser interactions.
These studies rely on the diffraction of electrons from the
periodic potential generated by laser waves, the Kapitza-Dirac
(KD) effect [11]. A relativistic treatment by field intensities
in excess of 1020 W cm−2 and field frequencies in the x-ray
range was presented to analyze the spin dynamics of electrons
in monochromatic and bichromatic standing waves [12–15].
The recent researches proposed that the KD effect and specific
polarization combination of the two laser pulses could control
the spin polarization of electron beams [10,16]. The spin
properties of the scattered electron beam were discussed in
bichromatic standing waves with frequency ratios 1:2 and
1:3 [17,18]. Also new studies show that the energy of sub-
relativistic electrons can be strongly modulated on the few-
femtosecond timescale via an interaction with a high-intensity
optical traveling wave created in vacuum by two counter-
propagating laser pulses at different frequencies [19,20]. This
effect can serve as a generator for the attosecond ballistic
bunching of electrons. Furthermore, inelastic scattering of
subrelativistic electrons in bichromatic standing waves was
studied for three-photon (ω : 2ω) and four-photon (ω : 3ω)
processes [21].

In the original version, the KD effect can be understood
as a combined absorption and emission process involving two

photons. The electron absorbs a photon of momentum �k from
one of the laser beams and emits a photon of momentum −�k
into the counterpropagating laser beam. Therefore, the out-
going electron momentum changes by 2�k. A similar effect is
considered in the case of two counterpropagating waves with
different colors, E1 cos(ω1t − k1x) and E2 cos(ω2t + k2x). In
the Bragg regime and with the energy and momentum con-
servation laws for the process, the electron absorbs N photons
from the one wave and emits L photons to the other wave. Due
to the opposite directions of momenta k1 and k2 of the two
laser fields, the electron momentum changes by Nk1 − Lk2.
In previous studies of the two-color Kapitza-Dirac effect,
the three-photon KD effect [electron scattering in standing
waves composed of two photons with fundamental frequency
(N = 2) and one photon of its second harmonic (L = 1)]
and the four-photon KD effect [electron scattering in standing
waves composed of three photons with fundamental frequency
(N = 3) and one photon of its third harmonic (L = 1)] were
investigated. To study the KD effect involving more photons,
we use other higher-order (fourth, fifth, sixth, seventh, and
eighth) harmonics as the second laser beam. In the following,
we investigate the interference of a fundamental laser beam
with higher-order harmonics as counterpropagating waves in
the bichromatic KD effect to manipulate and characterize
the scattered electron spin. In this case, questions arise: Can
the interaction of an unpolarized electron beam with more
photons in the Kapitza-Dirac effect be used to spin-polarize
the electrons? Does the increase in the number of photons in
the KD effect with a higher-order-harmonic beam distinctly
change the electron spin dynamics?

In this work, we investigate the spin effects of an electron
for the high-number photon KD effect caused by adding a
second standing wave with commensurate frequency, i.e., 1:4,
1:5, 1:6, 1:7, and 1:8. Our paper is organized as follows. In
Sec. II and the Appendix, we present an analytical treatment
which relies on the relativistic Volkov states of the Dirac
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TABLE I. The Rabi frequency �̂ for various polarization configurations of the bichromatic standing waves with different frequency ratios.
The definition σ± = σx ± iσy is applied.

Case �ε1 �ε2 �̂ω:2ω �̂ω:3ω �̂ω:4ω �̂ω:5ω

1 �ex �ex
5

4h̄ pxc + i
2 ωσy − 27i

8
pxω

c σy − i
2 ωσy

625i
128

pxω

c σy

2 �ex �ey − i
2 ωσx

27i
8

pxω

c σx − 9i
16 ωσz 4i pxω

c σz + i
2 ωσx − 625i

128
pxω

c σx + 125i
256 ωσz

3 �ey �ex
1

4h̄ pxc + i
2 ωσy

9i
16 ωσz − i

2 ωσy − 125i
256 ωσz

4 �ey �ey − i
2 ωσx 0 i

2 ωσx 0

5 1√
2
(�ex + i�ey ) 1√

2
(�ex + i�ey ) 1√

2h̄
pxc 0 0 0

6 1√
2
(�ex + i�ey ) 1√

2
(�ex − i�ey ) 0 0 0 0

7 1√
2
(�ex − i�ey ) 1√

2
(�ex − i�ey ) 5

4
√

2h̄
pxc + 1

2
√

2
ωσ+ − 27

16
pxω

c σ+ + 9
16 ωσz − 4√

2
pxω

c σz − 1
2
√

2
ωσ+ 625

256
pxω

c σ+ − 125
256 ωσz

8 1√
2
(�ex + i�ey ) �ex

1
2h̄ pxc 0 0 0

9 1√
2
(�ex − i�ey ) �ex

3
4h̄ pxc + i

2 ωσy − 27i
8
√

2
pxω

c σy + 9
16

√
2
ωσz −2 pxω

c σz − i
2 ωσy

625i
128

√
2

pxω

c σy − 625i
256

√
2
ωσz

10 �ex
1√
2
(�ex + i�ey ) 5

4
√

2h̄
pxc − 1

2
√

2
ωσ− 27

8
√

2
pxω

c σ− − 9
16

√
2
ωσz

4√
2

pxω

c σz + 1
2
√

2
ωσ− − 625

128
√

2
pxω

c σ− + 125
256

√
2
ωσz

11 �ex
1√
2
(�ex − i�ey ) 5

4
√

2h̄
pxc + 1

2
√

2
ωσ+ − 27

8
√

2
pxω

c σ+ + 9
16

√
2
ωσz − 4√

2
pxω

c σz − 1
2
√

2
ωσ+ 625

128
√

2
pxω

c σ+ − 125
256

√
2
ωσz

equation. Our numerical results are presented in Sec. III. First,
we show the time evolution of an electron in the counterpropa-
gating bichromatic laser waves with various harmonics. Then
we discuss the dependence of the results on the frequency
ratios of the standing waves. We finish with some comparative
conclusions about even and odd numbers of photons involved
in the KD effect.

II. SPIN-DEPENDENT STIMULATED COMPTON
SCATTERING

The Kapitza-Dirac effect can be regarded as stimulated
Compton scattering. We therefore start from the S matrix for
multiphoton Compton scattering:

S = ie

c

∫
d4x ψ̄p′,s′ /A2ψp,s. (1)

Here,

ψp,s(x) =
√

mc

V p0

(
1 − e/k1/A1(k1x)

2ck1 p

)
up,se

−ipx+i�p, (2)

with

�p = 1

ck1 p

∫ k1x [
epA1(φ) + e2

2c
A2

1(φ)

]
dφ, (3)

represents the Dirac-Volkov state for the incoming electron
dressed by the field Aμ

1 and counterpropagating field Aμ
2

[22–24]. Accordingly, ψp′,s′ is the Dirac-Volkov state for the
scattered electron, c is the speed of light, m is the electron
rest mass, and V is a normalization volume. The free Dirac
spinors up,s are spin polarized along the z axis. We employ
the Feynman slash notation /A = γ A = γ μAμ for scalar prod-
ucts of four-vectors with the Dirac matrices γ μ. Moreover,
throughout this paper we set h̄, the reduced Planck constant,
to unity for convenience.

In the following we derive the Rabi frequency for the five-
photon bichromatic (ω : 4ω) and six-photon bichromatic (ω :
5ω) processes. The Appendix provides the derivation details
of the Rabi frequency for five- and six-photon processes. By
neglecting the terms with higher order of px, we derive the

effective term of the Rabi frequency of order m−1 in the five-
photon KD effect as

�̂ω:4ω = + i

2
ω �ε1

4( �ε∗
2 × �ez ) · �σ

+ 4i
px

c
ω( �ε1 · �ex ) �ε1

2( �ε1 × �ε∗
2 ) · �σ , (4)

and for the six-photon KD effect as

�̂ω:5ω = +125i

256
ω �ε1

4( �ε1 × �ε∗
2 ) · �σ

− 625i

128

px

c
ω( �ε1 · �ex ) �ε1

4( �ε∗
2 × �ez ) · �σ . (5)

The Rabi frequency is indicated for polarization com-
bination of the fundamental frequency laser beam with its
second, third, fourth, and fifth harmonic separately in Table I.
Following the results of the analytical method [17,18], here
we can emphasize some interesting points of this table. First
of all, the existence of σ± in the Rabi matrix is a sign of spin
dependency of the Rabi oscillation. That means if this term
is the only term of the Rabi matrix, the electron can be spin
polarized by the KD effect. Second, the σz term in the Rabi
matrix has no effect on the spin polarization of the electron
along the x or y directions.

III. NUMERICAL RESULTS AND DISCUSSION

In order to evaluate our analytical predictions, we have
implemented numerical simulations. The Dirac equation(

i/∂ + e

c
/A(x) − mc

)
ψ (x) = 0 (6)

was solved in the presence of the bichromatic vector potential
A(x) = A1(k1x) + A2(k2x). Here A1(kx) is the fundamental
laser beam and A2(nkx) represents its nth harmonic, in this
work the fourth, fifth, sixth, seventh, or eighth harmonic. We
model the temporal interaction of the electron with the laser
beam in these numerical simulations with a trapezoidal shape
and comprise ten cycles of the fundamental laser period for
turn-on and turn-off [18]. We transform the Dirac equation
(6) into momentum space using an expansion of the electron
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wave function over the momentum eigenstates of the form

ψ (x) =
√

k

2π

∑
n

∑
ζ

cζ
n (t )uζ

neipnx. (7)

The coefficients cζ
n (n = 0,±1,±2, . . .) are related to the

states with pn = (px, 0, nk) momentum. Also the bispinors uζ
n

are defined as

u+↑/+↓
n =

√
εn + mc2

2εn

(
χ↑/↓

nckh̄σx
εn+mc2 χ

↑/↓

)
,

u−↑/−↓
n =

√
εn + mc2

2εn

(− nckh̄σx
εn+mc2 χ

↑/↓

χ↑/↓

)
, (8)

with χ↑ = (1, 0)� and χ↓ = (0, 1)� and the relativistic en-
ergy momentum relation εn = √

(mc2)2 + c2 p2
n. The index

ζ ∈ {+↑,+↓,−↑,−↓} labels the sign of the energy and
the spin direction. These states can be denoted by |nk, ζ 〉.
Inserting this ansatz into the Dirac equation and employing
a Crank-Nicolson scheme yields coupled ordinary differential
equations for time-dependent expansion coefficients. In the
numerical simulation, however, these systems are truncated
to a finite number of momentum modes, −nmax < n < nmax,
with nmax large enough for convergence. Therefore, the occu-
pation probabilities as a function of the interaction time are
obtained.

The specific setup of two counterpropagating waves with
frequency ratio 1 : n (n = 4, 5, 6, 7, 8) is encoded by the
vector potential

�A(ω:nω) =A1[cos(kz) cos(kct )�ε1]+A2[cos(nkz) cos(nkct )�ε2],

(9)

where A1 and A2 are the amplitudes of standing waves and ε1

and ε2 are polarization vectors. Taking into account the prac-
tical feasibility, the parameters of the available high-intensity
light sources with field frequencies in the x-ray range, such
as the European XFEL (Hamburg) and LCLS (Stanford) [25],
have been chosen for the numerical simulation. In the follow-
ing numerical calculation, for each multiphoton KD effect,
the electron is considered with appropriate initial momentum
and its mirror state. The electron with initial longitudinal
momentum (momentum component in the direction of the
laser propagation) of pz = −4k in the presence of a five-
photon bichromatic (ω : 4ω) vector potential corresponds to
the scattered state with pz = +4k. Similarly, the electron
in the six-photon bichromatic (ω : 5ω) vector potential is
elastically scattered, with its longitudinal momentum reverted
from pz = −5k to pz = +5k.

A. Linear-linear polarization laser beams in
multiphoton KD effect

We take a closer look at the simplest asymmetric setup
for two linearly polarized counterpropagating laser waves
with frequency ratio 1 : n. At the same time, we choose the
electron momentum to be perpendicular to the direction of
both laser waves. Our numeric result indicates that, for each
scattering, the same form of Rabi oscillation would arise. The
shape of the oscillation, similar to the result of bichromatic

FIG. 1. Temporal evolution of the occupation probability in five-,
six-, seven-, eight-, and nine-photon KD effects with linear fun-
damental beam and counterpropagating linear high-order-harmonic
laser beam. The vector potential that we used in this simulation
is �A = A1 cos(kz) cos(ωt ) �ex + A2 cos(nkz) cos(nωt ) �ex . The laser pa-
rameters are λ = 0.6 nm for wavelength, eA1 = 2n × 104 eV for
amplitude of the fundamental laser beam, and eA2 = 2 × 104 eV for
amplitude of the high-order-harmonic laser beam. The initial electron
momentum along the laser propagation for each scattering is under
the Bragg condition and has no component on the polarization plane.

(ω : 3ω) standing waves via a selective vector potential with
cos(ω1,2t ) part, is sinusoidal and has two distinct peaks [18].
As the previous results have pointed out, there is an additional
term in the vector potential that causes this change in Rabi
oscillation form. If the constant vector potential is used in
the simulation, the same spin dynamic is observed with a
typical Rabi oscillation. Due to higher harmonic orders for
the counterpropagating wave, the overall intensity and the
amplitude of oscillation increase. As an illustration, the oc-
cupation probability of initial and scattered modes for each
multiphoton KD effect is depicted in Fig. 1. The form of
the Rabi oscillation even with increasing frequency ratio in
bichromatic standing waves is unchanged.

In Fig. 2 all multiphoton KD effects have equal overall
intensity. In this case the amplitude of high-order harmonics
is chosen to A2 = A1/n, and because of decreasing intensity,
the amplitude of oscillation is reduced. The form and period
of the Rabi oscillation are unchanged. It should be noted
that, in all reviewed bichromatic standing waves for linearly
polarized laser beams, the spin dynamics of the electron
shows spin flipping. The symmetry of spin flipping exists
and the same kind of Rabi oscillation would arise if the
electron was incident with opposite spin state. According to
the numerical results, another interesting point to note here is
that the frequency of the Rabi oscillation in each multiphoton
scattering does not change with changing laser amplitudes in
a scattering. For instance, the Rabi oscillations in Figs. 1 and 2
with blue (square symbol) lines for six-photon KD scattering,
even with different laser amplitudes, have the same frequency.
Due to the vector potential we described for bichromatic
standing waves, the Rabi frequency of the n-photon KD effect
scales with cos(ωt )n( ea1

mc2 )n cos(nωt )( ea2
mc2 ) and with changing

a1,2 (respectively the fundamental and high-order-harmonic
laser amplitudes) the final Rabi frequency remains constant.
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FIG. 2. Temporal evolution of the occupation probability in five-,
six-, seven-, eight-, and nine-photon KD effects with linear fun-
damental beam and counterpropagating linear high-order-harmonic
beam with �A = A1 cos(kz) cos(ωt ) �ex + A2 cos(nkz) cos(nωt ) �ex as
the vector potential. The wavelength of the laser is λ = 0.6 nm.
By choosing eA1 = 2 × 104 eV for the fundamental laser beam and
eA2 = A1/n eV for the nth harmonic laser beam in each scattering,
the combined intensity for all scattering is equal. The initial electron
momentum along the laser propagation for each scattering is under
the Bragg condition and has no component on the polarization plane.

In a forthcoming study we intend to investigate the effect of
vector potential variation on Rabi oscillation frequency due to
the laser amplitude changes.

B. Combination of linear and circular polarization of laser
beams in multiphoton KD effect

Recent progress in the theory shows that significant polar-
ization for electrons can be acquired in a circularly polarized
standing laser wave. This spin separation via setup with
the circular polarization of a high-order-harmonic and linear
fundamental laser beam were observed in the three- and four-
photon KD effect [6,17,18]. In this research we investigate
the numerical solution for the same setup of polarization in
other multiphoton KD effects with higher-order harmonics.
We start with the five-photon KD effect and provide the details
of analytical and numerical results.

In the case of the circular polarization for the high-
frequency laser beam in the five-photon KD effect, for in-
stance, cases 10 and 11 of Table I, it can be predicted that the
Rabi oscillation is spin dependent. The diffraction probability
resulting from numerical simulation for a combination of
the fourth harmonic with circular polarization and the linear
polarized fundamental laser beam (case 10) is plotted with
red (circle symbol) lines in Fig. 3. The electrons are scattered
only when they are initially in the spin-up state and spin-
down electrons will remain in their initial state. By replaying
left-handed circular polarization for the fourth harmonic (case
11), only the initial spin-down electrons are transferred to the
spin-flipping state and the spin-up electrons do not diffract.
This property can be used to separate spin-up from spin-
down electrons as a spin-filter device. The Rabi oscillations
with |−4,+↓〉, |+4,+↑〉, and |+4,+↓〉 states appear for
an incident electron state |−4,+↑〉 with nonzero transverse

FIG. 3. Temporal evolution of the occupation probability of
an initial electron with spin up (upper panel) and initial electron
with spin down (lower panel) in five-, seven-, and nine-photon
KD effects with a linearly polarized fundamental beam and circu-
larly polarized harmonic laser beam. The numeric results are ob-
tained with �A = A1 cos(kz) cos(ωt ) �ex + A2√

2
cos(nkz) cos(nωt ) �ex −

A2√
2

sin(nkz) cos(nωt ) �ey as the vector potential. The wavelength of
the laser is λ = 0.6 nm. The amplitude of the high-order-harmonic
laser beam is eA2 = 2 × 104 eV and, to obtain equal overall intensity
in these three processes, we select eA1 properly. The electron enters
the laser field with momentum along the laser field direction. For a
spin-down electron in five-, seven-, and nine-photon KD effects, no
scattering takes place.

momentum in the linearly polarized fundamental laser beam
and circularly polarized fourth harmonic. As expected for
cases 10 and 11 of Table I, for nonvanishing values of px, the
Rabi matrix contains an additional spin-independent term.

Interestingly, numeric results confirm the similar spin dy-
namics for the electron with the same setup polarization in
the seven- and nine-photon KD effects. As is presented in
Fig. 3, by proper selection of laser beam amplitudes with
identical overall intensity for the bichromatic standing waves
with frequency ratios 1:4, 1:6, and 1:8, the form and the period
of Rabi oscillation for spin-up electrons are the same. As
discussed earlier in both linear setups, the combination with
higher-order harmonics as counterpropagating laser beams
only changes the amplitude of the Rabi oscillation. By com-
paring nine-, seven-, five-, and three-photon KD effects [18],
one would find that the electron has similar spin dynamics in
these scatterings. In fact all processes involving an odd num-
ber of photons with zero transverse momentum for electrons
px = 0 can be suitable for spin polarization of the electron
beam.

Furthermore, the study of six- and eight-photon KD ef-
fects yields similar results and for better understanding we
investigate the details of the six-photon KD effect. Our ana-
lytical calculation according to Table I, for the setup with a
linear fundamental laser beam and circularly polarized fifth
harmonic, shows that there is no term proportional to σ± in
the six-photon KD effect Rabi matrix [Eq. (5)] for the electron
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FIG. 4. Temporal evolution of the occupation probability in six-
and eight-photon KD effects with linear fundamental beam and
circular high-order-harmonic wave. The initial electron momentum
is along the laser field direction. The numeric results are ob-
tained with �A = A1 cos(kz) cos(ωt ) �ex + A2√

2
cos(nkz) cos(nωt ) �ex −

A2√
2

sin(nkz) cos(nωt ) �ey as the vector potential. The Rabi oscillations
for bichromatic (ω : 5ω) and (ω : 7ω) standing waves with I1 inten-
sity show that scattering with different frequency ratio and equal
intensity has the same spin dynamics. Also the Rabi oscillations
for bichromatic ω : 5ω with I1 and I3 and ω : 7ω with I1 and I2

confirm that with changing laser amplitude, not only the electron spin
dynamic in even photons involving scattering, but also the frequency
of Rabi oscillations do not change. The overall intensity is in the
order of I1 < I2 < I3.

with zero transverse momentum, px = 0. By performing this
setup in numerical simulation, as shown with blue (square
symbol) and red (circle symbol) lines in Fig. 4, when the
electron initially is in |−5,+↑〉, the Rabi oscillation takes
place with the |+5,+↓〉 state. The symmetric spin flipping oc-
curs and the same Rabi oscillation happens when the electron
initially is spin down. The similar spin dynamic happens in the
eight-photon KD effect. In Fig. 4, we compared both six- and
eight-photon KD effects to investigate frequency ratios and
laser amplitudes in electron spin dynamics. As it is clear, one
can conclude that, with the change in laser amplitudes and, as
a result, the change in the total intensity of the superposition of
the two counterpropagating waves, the amplitude of the Rabi
oscillation varies but the frequency of the Rabi oscillation
remains constant. It is remarkable to note that although laser
amplitudes change, the Rabi frequency stays constant in Fig. 4
for hybrid polarization of laser beams, similar to what is seen
in Figs. 1 and 2 for linear polarization. We also concluded that
by choosing the appropriate laser amplitudes, the eight-photon
KD effect with higher-frequency beam could have the smaller
amplitude of the Rabi oscillation. To illustrate other points
of the study, we choose the six-photon KD effect for which
the Rabi amplitude is fully developed, the red (circle symbol)
lines in Fig. 4.

For the same combination of polarization, linear funda-
mental laser beam, and circularly polarized fifth harmonic,
when an electron has a px momentum component within the
polarization plane, the spin-dependent and spin-preserving
scattering happens. The results are shown in Fig. 5. For the
electron with initial momentum pz = −5k and px = 5k in the

FIG. 5. Temporal evolution of the occupation probability in
the six-photon KD effect with linear fundamental beam and cir-
cular fifth harmonic wave. The vector potential used for the
simulation is �A = A1 cos(kz) cos(ωt ) �ex + A2√

2
cos(5kz) cos(5ωt ) �ex −

A2√
2

sin(5kz) cos(5ωt ) �ey. The field parameters for beams ω and 5ω

are eA1 = 10 × 104 eV and eA2 = 2 × 104 eV, respectively, with
wavelength λ = 0.6 nm [the same as the red (circle symbol) lines
in Fig. 4], except by choosing px = 5h̄k the influence of �p · �A
is considered here. A Rabi oscillation with spin preserving can
be seen, if the initial state was spin up. The probability start-
ing from |−5, +↓〉 is distributed through |+5, +↓〉, |+5, +↑〉,
and |−5, +↑〉.

FIG. 6. Temporal evolution of the occupation probability in
the six-photon KD effect with linear fundamental beam and cir-
cular fifth harmonic wave. The vector potential used for the
simulation is �A = A1 cos(kz) cos(ωt ) �ex + A2√

2
cos(5kz) cos(5ωt ) �ex −

A2√
2

sin(5kz) cos(5ωt ) �ey. The parameters are the same as the red
(circle symbol) lines in Fig. 4 with zero transverse momentum px =
0 but for longer periods the same as in Fig. 5 for comparison.
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spin-up state, a Rabi oscillation with the momentum electron
pz = +5k with spin up appears. When the electron is initially
in the state |−5,+↑〉, no spin-flipping transition was found
in our simulations. In contrast, the probability starting from
|−5,+↓〉 is distributed through |+5,+↓〉, |+5,+↑〉, and
|−5,+↑〉. In Fig. 5, the interaction time is considered longer,
so a full period of the Rabi oscillation for exchanging modes
is provided. The Rabi oscillation pattern in Fig. 5 consists
of two oscillation modes: fast and slow oscillations. The fast
oscillation is similar to the Rabi oscillation clearly shown in
the previous figures. On the other hand, the fast oscillation is
modulated by the slow oscillation. To compare the electron
with or without transverse momentum px, see Figs. 5 and 6.
Figure 6 is the exact Rabi oscillation with red (circle symbol)
lines in Fig. 4 with the same conditions, but with longer
interaction time. Compared to Fig. 5, only the fast oscillation
mode occurs in Fig. 6. The spin effects of electrons for various
polarization of laser beams in the six-photon KD effect are
similar to the spin effects in the four-photon KD effect [18].
In processes involving an even number of photons with zero
transverse electron momentum, the symmetry of spin flipping
is observed.

IV. CONCLUSION

In this study we investigated the effect of the field po-
larization and the amplitudes of laser beams on the electron
spin in two standing waves, when one of the standing waves
has the fundamental harmonic frequency and the other has
its fourth-, fifth-, sixth-, seventh-, or eighth harmonic. By
increasing the frequency of counterpropagating laser beams
in the multiphoton scattering, the total intensity of both laser
beams increases; however, the spin behavior of the electron
is not disturbed and the Rabi oscillations maintain a special
behavior. Also the period and the form of the Rabi oscillation
with two specific peaks remain unchanged.

The spin dependence of the Rabi matrix of these high-
photon KD effects was obtained and exemplified for several
polarization combinations. Comparing multiphoton scatter-
ing, three-, four-, five-, six-, seven-, and eight-photon Kapitza-
Dirac effects show that the processes with odd and even
numbers of photons have different effects on the electron spin
dynamic. The results of analytical calculations and numerical
simulations confirm that the bichromatic KD effect with an
odd number of photons with circular polarization for high-
order-harmonic fields acts like a spin filter. So, by properly
choosing the polarization setup in the three-, five-, seven-, and
nine-photon KD effects and with zero transverse momentum
for the initial electron beam, the output beam can be spin
polarized. The bichromatic KD effect with an even number
of photons involved (L + N is an even number) can scatter
the electron via symmetric spin flipping. Only by controlling
the polarization state of the two pulses, namely, using a
suitable combination of linearly and circularly polarized light
and nonzero electron momentum along laser polarization, the
electron can maintain its initial spin state.

The possibility of producing spin-polarized electrons with
ultraintense lasers paves the way for new applications. Polar-
ized electrons are fundamental for the study of particle physics
and are used in spin-polarized electron spectroscopy.

APPENDIX: S-MATRIX APPROACH FOR FIVE- AND
SIX-PHOTON KAPITZA-DIRAC EFFECT

Here we describe in detail the derivation of the Rabi
frequency in Eqs. (4) and (5). Our approach is based on the
relativistic Volkov states which are a known solution to the
Dirac equation in the presence of a plane-wave laser field.
The calculation of the S matrix is the same as that used in
the three-photon Kapitza-Dirac effect, except that there is
a further photon that participates in the interaction [17,18].
We express the vector potential as a plane wave in radiation
gauge A1(k1x) = A1(x), with a complex polarization 4-vector
ε1 = (0, �ε) and the wave 4-vector k1 = ω

c (1, �ez ) satisfying
ε∗

1ε1 = −1 and ε1k1 = 0. A similar notation is employed for
the counterpropagating wave A2(x) with ε2 and k2 = 4k = 4k1

for the five-photon Kapitza-Dirac effect and k2 = 5k = 5k1

for the six-photon Kapitza-Dirac effect, respectively.
In the presence of a fourth harmonic, the S matrix for tran-

sition from p = (p0, px, 0,−4h̄k) to p′ = (p0, px, 0,+4h̄k)
by absorbing four photons from A1 as a beam with fundamen-
tal frequency and emitting one photon into A2 as a beam with
4ω frequency is given by

Sω:4ω ≈ ie

h̄cV

∫
d4x ūp′,s′

(
/A(+)

2 J̃4ei(p′−p−4k1 )·x

− e

2c

[
/A(−)

1 /k1 /A(+)
2

k1 p′ + /A(+)
2 /k1 /A(−)

1

k1 p

]
J̃3ei(p′−p−3k1 )·x

+ e2

4c2

[
/A(−)

1 /k1 /A(+)
2 /k1 /A(−)

1

(k1 p′)(k1 p)

]
J̃2ei(p′−p−2k1 )·x

)
up,s

≈ ie

2h̄
T ūp′,s′

[
a2J̃4/̄ε2−

ea1a2

4c
J̃3

(
/ε1/k1/̄ε2

k1 p′ + /̄ε2/k1/ε1

k1 p

)]
up,s.

(A1)

Here, /A(−)
1 = 1

2 a1/ε1e−ik1x is the component that defines the

absorption of one photon from A1 with /ε1 = ε1γ , and /A(+)
2 =

1
2 a2/̄ε2eik2x where /̄ε2 = ε∗

2γ is the component that describes the
emission of one photon into A2. Also J̃1,2,3,4,5 are generalized
Bessel functions. In this derivation only a resonant scattering
process was considered, which fulfills the Bragg condition.
Therefore, the d4x integration results in the factor cV T , where
T is the interaction time and V is the quantification volume
[17]. Moreover, the last part of Eq. (A1) is zero and thereby it
is not included in the following calculations.

The initial and scattered electron momenta for six pho-
tons are set respectively to p = (p0, px, 0,−5h̄k) and p′ =
(p0, px, 0,+5h̄k). Thus, the S matrix in Eq. (1) reads

Sω:5ω ≈ ie

h̄cV

∫
d4x ūp′,s′

(
/A(+)

2 J̃5ei(p′−p−5k1 )x

− e

2c

[
/A(−)

1 /k1 /A(+)
2

k1 p′ + /A(+)
2 /k1 /A(−)

1

k1 p

]
J̃4ei(p′−p−4k1 )x

+ e2

4c2

[
/A(−)

1 /k1 /A(+)
2 /k1 /A(−)

1

(k1 p′)(k1 p)

]
J̃3ei(p′−p−3k1 )x

)
up,s

≈ ie

2h̄
T ūp′,s′

[
a2J̃5/̄ε2−

ea1a2

4c
J̃4

(
/ε1/k1/̄ε2

k1 p′ + /̄ε2/k1/ε1

k1 p

)]
up,s.

(A2)
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The Dirac spinors mentioned above in Eqs. (A1) and
(A2) are constructed from the corresponding Pauli spinors χs

through

u(p,s) = 1√
2mc(p0 + mc)

(
(p0 + mc)χs

�p · �σχs

)
. (A3)

Keeping the mentioned conditions in mind, we can calculate
the first parts of Eqs. (A1) and (A2), respectively, as

(ūp′,s′ /̄ε2up,s)s′,s = − px

mc
�ε ∗

2 · �ex + 4ih̄ω

mc2

(
�ε ∗

2 × �ez
) · �σ , (A4)

(ūp′,s′ /̄ε2up,s)s′,s = − px

mc
�ε ∗

2 · �ex + 5ih̄ω

mc2

(
�ε ∗

2 × �ez
) · �σ . (A5)

In a similar way for the second part of Eqs. (A1) and (A2) we
find respectively(

ūp′,s′

[
/ε1/k1/̄ε2

k1 p′ + /̄ε2/k1/ε1

k1 p

]
up,s

)
s′,s

≈ 2�ε1 · �ε∗
2

mc
− 8ih̄ω

m2c3
(�ε1 × �ε∗

2 ) · �σ , (A6)(
ūp′,s′

[
/ε1/k1/̄ε2

k1 p′ + /̄ε2/k1/ε1

k1 p

]
up,s

)
s′,s

≈ 2�ε1 · �ε∗
2

mc
− 10ih̄ω

m2c3
(�ε1 × �ε∗

2 ) · �σ . (A7)

Also from the Taylor series of the generalized Bessel func-
tions, we can estimate

J̃1 ≈ αp − α′
p

2
, J̃2 ≈ (αp − α′

p)2

8
− ε2

1

(βp − β ′
p)

2
,

J̃3 ≈ (αp − α′
p)3

48
− (αp − α′

p)

2
ε2

1

(βp − β ′
p)

2
,

J̃4 ≈ (αp − α′
p)4

384
− (αp − α′

p)2

8
ε2

1

(βp − β ′
p)

2

+ ε4
1

(βp − β ′
p)2

8
,

J̃5 ≈ (αp − α′
p)5

3840
− (αp − α′

p)3

48
ε2

1

(βp − β ′
p)

2

+ (αp − α′
p)

2
ε4

1

(βp − β ′
p)2

8
. (A8)

Considering αp − α′
p = −8ea1 px (�ε1·�ex )

m2c3 and βp − β ′
p = e2a2

1
m2c4 for

the bichromatic (ω : 4ω) Kapitza-Dirac effect and putting all
this together, the S matrix of Eq. (A1) for small transverse
momentum is estimated as

Sω:4ω ≈ i

2
T

e5a4
1a2

m5c10

[−1

8h̄
pxc �ε1

4( �ε∗
2 · �ex )

− i

h̄
pxc( �ε1 · �ex ) �ε1

2( �ε1 · �ε∗
2 ) + i

2
ω �ε1

4( �ε∗
2 × �ez ) · �σ

+ 4i

mc
pxω( �ε1 · �ex ) �ε1

2( �ε1 × �ε∗
2 ) · �σ

]
= i

2
T ξ 4

1 ξ2�̂.

(A9)

Here, ξ1,2 = ea1,2

mc2 are the common dimensionless field am-
plitudes used in atomic physics. Finally, the Rabi frequency
�ω:4ω leading order in m−1 is derived as

�̂ω:4ω = + i

2
ω �ε1

4( �ε∗
2 × �ez ) · �σ

− pxc

[
1

8
�ε1

4( �ε∗
2 · �ex ) + i( �ε1 · �ex ) �ε1

2( �ε1 · �ε∗
2 )

]

+ 4i
px

c
ω( �ε1 · �ex ) �ε1

2( �ε1 × �ε∗
2 ) · �σ . (A10)

From αp − α′
p = −10ea1 px (�ε1·�ex )

m2c3 and βp − β ′
p = 10e2a2

1
8m2c4 for the

bichromatic (ω : 5ω) Kapitza-Dirac effect in the order of m−1,
the matrix is

Sω:5ω ≈ i

2
T

e6a5
1a2

m6c12

[
+125i

256
ω �ε1

4( �ε1 × �ε∗
2 ) · �σ

− 625i

128

pxω

mc
( �ε1 · �ex ) �ε1

4( �ε∗
2 × �ez ) · �σ

]
= i

2
T ξ 5

1 ξ2�̂,

(A11)

and the final Rabi frequency of the six-photon Kapitza-Dirac
effect has the form of

�̂ω:5ω = +125i

256
ω �ε1

4( �ε1 × �ε∗
2 ) · �σ

− 625i

128

px

c
ω( �ε1 · �ex ) �ε1

4( �ε∗
2 × �ez ) · �σ . (A12)
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