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High-precision measurement and ab initio calculation of the (6s26p2) 3P0 →3 P2

electric-quadrupole-transition amplitude in 208Pb
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We have completed a measurement of the (6s26p2) 3P0 → 3P2 939 nm electric quadrupole (E2) transition
amplitude in atomic lead. Using a Faraday rotation spectroscopy technique and a sensitive polarimeter, we have
measured this very weak E2 transition, and determined its amplitude to be 〈3P2||Q||3P0〉 = 8.91(9) a.u. We also
present an ab initio theoretical calculation of this matrix element, determining its value to be 8.86(5) a.u., which is
in excellent agreement with the experimental result. We heat a quartz vapor cell containing 208Pb to between 800
and 940 ◦C, apply a ∼10 G longitudinal magnetic field, and use polarization modulation and lock-in detection to
measure optical rotation amplitudes of order 1 mrad with noise near 1 μrad. We compare the Faraday rotation
amplitude of the E2 transition to that of the 3P0-3P1 1279 nm magnetic dipole (M1) transition under identical
sample conditions.
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I. INTRODUCTION

Atoms have long served as testbeds for precision measure-
ments and low-energy tests of fundamental physics. Searches
for new physics, including potential candidate particles for
dark matter, are ongoing using, for example, the technology
of atomic magnetometers [1], atomic clocks [2,3], and atom
interferometers [4]. A comprehensive recent review of the role
of atoms and molecules in these searches can be found in [5].

A particular class of these atomic physics experiments has
exploited the symmetry-violating properties of the weak inter-
action to study atomic parity nonconservation (PNC), and thus
potentially probe both electroweak standard model physics
and potential new physics. A number of these measurements
have reached the 1% level of experimental accuracy [6–9].
Since electroweak effects in neutral atoms scale rapidly with
the atomic number Z , such atomic-physics-based tests have
focused on heavy atoms, and require independent theoretical
wave-function calculations in the relevant atomic systems
to link measured experimental observables to fundamental
parameters [10].
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Cesium, the heaviest stable alkali-metal element, is an
example of an atomic system where very high-precision ab
initio atomic theory [11,12] has come together with pre-
cise experimental efforts [7] to provide an important low-
energy test of electroweak physics. More recently, significant
progress has been made in ab initio calculational techniques
for multivalence atomic systems [13,14]. In the trivalent thal-
lium system, an existing high-precision PNC measurement
[8], coupled with high-precision calculations [15], has yielded
another atomic-physics-based electroweak test. Current the-
ory accuracy lags that of experiment by roughly a factor of 2,
so that modest further improvements in multivalence theory
will have a significant impact. In a close experiment and
theory collaboration, we have completed a series of precise
measurements of atomic properties of thallium and its triva-
lent cousin indium [16–18], which have served as benchmarks
for ongoing calculational efforts [19]. In particular, by com-
paring a series of excited-state polarizability measurements
in indium to theoretical predictions from two complementary
calculational approaches, we were able to show that a configu-
ration interaction (CI) approach, combined with the coupled-
cluster (CC), all-orders method to the three-valence system
gave better agreement with experiment than the pure CC
method [18].

Recently, Porsev et al. have undertaken an ab initio calcula-
tion of the atomic structure of tetravalent lead [20]. Two high-
precision parity nonconservation optical rotation experiments
were completed in the 1990s [9,21], but the atomic theory
accuracy at that time in this complicated system was estimated
to have an uncertainty near 10%, limiting the potential impact
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FIG. 1. Low-lying energy levels of 208Pb, with the M1 and E2
transitions shown in red and blue, respectively.

of the measurements on testing electroweak parameters. The
2016 theory work [20] improves the precision of the PNC
calculation by better than a factor of 2. Testing the accuracy
of this new calculation and guiding forward further improve-
ments will require a similar suite of benchmark measurements
in lead. Beyond some energy level measurements and hyper-
fine structure measurements in 207Pb [22,23], measurements
of atomic properties such as transition amplitudes and polar-
izabilities at the 1% level of accuracy do not exist for this
element.

Here we present a measurement and accompanying
ab initio calculation of the lead ground-state 3P0 → 3P2

electric quadrupole (E2) transition amplitude. We intend to
follow up this result with future measurements of lead excited-
state polarizability within the 6s26p7s manifold (see Fig. 1)
using similar techniques and apparatus used for our earlier
polarizability work in thallium and indium. Thus, we also
include relevant ab initio polarizability calculations in Sec. V.

In the present transition amplitude work, we measure
the ratio of the E2 amplitude to the that of the ground-
state 3P0 → 3P1 magnetic dipole (M1) transition amplitude.
This allows us experimentally to eliminate a number of
common factors responsible for measured absorptivity of
both transitions and extract a ratio of quantum-mechanical
amplitudes. Because the M1 amplitude is precisely calcu-
lable without detailed wave-function knowledge [20], we
ultimately can determine the E2 amplitude (proportional
to the transition quadrupole moment) from our experimen-
tal ratio measurement. Comparative absorptivity measure-
ments have been completed recently [24–26] in Cs, pro-
ducing high-precision determinations of transition amplitude
ratios for electric dipole (E1) transitions. Here, using our

Faraday-rotation-amplitude technique, we have extended
these measurements to E1-forbidden transitions.

The E2 transition line strength is roughly a factor of 30
weaker than that of the already weak M1 transition. In this
work, a highly sensitive optical polarimetry technique [27–29]
was used to measure the Faraday rotation signals of the two
transitions in an identical longitudinal magnetic field. An
analogous precision measurement of the E2/M1 amplitude
ratio within the Tl 6p1/2 → 6p3/2 transition was completed
in our laboratory using a similar technique some years ago
[28]. In Sec. II we outline the atomic structure details involved
with extracting transition amplitude information from the
observed Faraday rotation line shapes. Sections III and IV
include a description of the experimental apparatus, method,
and data analysis. Section V outlines the ab initio theoretical
calculation of the electric quadrupole matrix element, and also
the atomic polarizability of several relevant excited states of
lead. We conclude with a comparison of experiment to theory.

II. ATOMIC STRUCTURE AND FARADAY ROTATION
LINE SHAPE

For these spectroscopic studies, we made use of an isotopi-
cally enriched (99.9%) sample of 208Pb (I = 0), providing us
with a simple, single-feature spectroscopic line shape for both
transitions studied. Figure 1 shows an energy level diagram
for the relevant states. Due to the intrinsically weak nature
of the E2 transition, there is no detectable direct absorption
feature, even at the highest sample temperature and density we
can achieve. We therefore choose to focus on the real, rather
than imaginary, part of the refractive index, and measure the
milliradian-sized Faraday rotation line shape induced by a
small longitudinal magnetic field. The observed optical rota-
tion results from the difference in the Zeeman-shifted refrac-
tive indices n± for right and left circularly polarized electric
field components driving �m = ±1 transitions originating
from the |3P0, m = 0〉 ground state. The Faraday rotation
signal can be written

�F (ω) = ω�

2c
[n+(ω) − n−(ω)], (1)

where � is the interaction path length through the optically
active medium, ω is the laser frequency, c is the speed of light,
and n± represents the dispersive real part of the refractive
index for a given circular polarization.

The application of a small magnetic field B = B0ẑ parallel
to the laser propagation direction causes equal and opposite
Zeeman shifts to the resonant frequency of the circular polar-
ization components ω → ω0 ± μBgJ B0

h̄ , where μB = |e|h̄
2me

is the
Bohr magnetion, e is the electron charge, me is the electron
mass, and gJ is the Landé g factor for a given transition. When
the Zeeman shift is small compared to the linewidth, we can
approximate

n+(ω) − n−(ω) ≈ dn(ω)

dω

(
2μBgJB0

h̄

)
. (2)

In Sec. IV B we explore the differences between the deriva-
tive approximation and the (exact) difference forms of the
resonance line shape in order to assess potential systematics
associated with the line shape model. According to Eq. (2), the
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Faraday rotation line shape follows a symmetric derivative-
of-dispersion shape. Its amplitude is also proportional to the
atomic density N , and the appropriate quantum mechanical
line strength factor 〈T 〉2,

n(ω) ∝ N〈T 〉2 2μBgJB0

h̄

d

dω

(
ω − ω0

(ω − ω0)2 + �2/4

)
, (3)

where � is the homogeneous linewidth (due here to collisional
broadening). Finally, we must convolve this function with a
normalized Gaussian, accounting for the velocity distribution
of the atomic ensemble. We define the convolved line shape L
as follows:

L(ω,ω0, �, σ ) ≡ C
σ
√

2π

∫ +∞

−∞

d

dω

(
ω − ω′

(ω − ω′)2 + �2/4

)

× exp

[−(ω′ − ω0)2

2σ 2

]
dω′, (4)

where σ , the Doppler width, is proportional to the laser
frequency and the root-mean-square velocity of the hot atoms.
Our experimental optical rotation spectra are carefully cali-
brated in terms of radians. We fit our spectra to a line shape
of the form of Eq. (4) (see Sec. IV) allowing the amplitude
scaling factor C to link the numerical value of the integrand on
resonance (which itself is a function of the component widths)
to the peak value of the experimental spectrum. Making use
of Eqs. (1)–(3) and ignoring a number of common numerical
factors and fundamental constants, we find the following
expression for the ratio of Faraday rotation amplitude factors:

CE2

CM1
= ωE2

ωM1

(B0�N )E2 gE2
J

(B0�N )M1 gM1
J

|〈3P2, m = 1|E2|3P0〉|2
|〈3P1, m = 1|M1|3P0〉|2

. (5)

Here ωE2 (ωM1) is the resonant frequency for the 939 nm
(1279 nm) transition.

To find the matrix elements in Eq. (5) for many-electron
states, we define the electric quadrupole and magnetic dipole
moment operators Qν and μ as the sum of one-particle opera-
tors,

Qν = −|e|
Ne∑

i=1

[
r2

i C2ν (ni )
]
,

μ = −μB

c

Ne∑
i=1

[ji + si], (6)

where Ne is the number of the electrons in the atom, ni ≡
ri/ri, and ri is the radial position of the ith electron. ji and
si are the unitless total angular momentum and spin of the ith
electron, as defined in [30], and C2ν (ni ) are the normalized
spherical harmonics [31]. While the sums in Eq. (6) extend
over all electrons, in practice the valence p electrons provide
the main contribution to the matrix elements for the case of Pb.

Though, in general, each amplitude factor is proportional
to the interaction length, we work hard to ensure that both
laser beams traverse nearly identical physical paths through
the cell. We also alternate scans in a sequence that mini-
mizes drift-related systematic errors associated with density
and magnetic field changes (see Sec. IV). We have inserted
into Eq. (5) matrix elements for the E2 and M1 transitions
that reflect the |�m| = 1 selection rule appropriate to the
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FIG. 2. Schematic of the experimental setup. Two commercial
external cavity diode lasers (ECDLs) are scanned across the tran-
sitions’ center frequencies in a sequence determined by computer-
controlled shutters. The laser scans are monitored using a pair of
Fabry-Pérot cavities. A calcite prism linearly polarizes the light
before the furnace, after which the polarization is modulated and
analyzed using a second calcite prism. The transmitted light is
separated using a diffraction grating prior to detection. See text for
further details.

transitions we study. We make use of the fact that the matrix
elements are the same for �m = +1 and �m = −1 for both
the E2 and M1 transitions. It is possible, when the laser
beam propagation direction is not precisely collinear with the
B-field axis, for the E2 transition to exhibit small �m = ±2
components, and potential consequences of this are discussed
below in Sec. IV B.

Assuming then that the relevant path length, atomic den-
sity, and magnetic field are identical for sequential laser scans
for the two transitions, so that (B0�N )E2 = (B0�N )M1, we
arrive at an expression for the (unitless) quantum mechanical
transition amplitude ratio χ in terms of experimental ampli-
tudes, resonant frequencies, and g factors:

χ ≡
∣∣∣∣ 〈3P2, m = 1|E2 |3P0〉
〈3P1, m = 1|M1 |3P0〉

∣∣∣∣ =
√
CE2 ωM1 gM1

J

CM1 ωE2 gE2
J

. (7)

A comparison of this expression with the theory prediction
will be presented below in Sec. VI.

The g factors are well known [20], so that the statistical
uncertainty in our ratio χ is entirely determined by the results
of our line shape fits which determine CE2 and CM1.

III. EXPERIMENTAL DETAILS

A. Furnace and vapor cell

A schematic of the experimental layout is shown in Fig. 2.
The centerpiece of the experiment is the furnace, in the middle
of which sits a 1-in.-diameter, 6-in.-long evacuated quartz
vapor cell, containing a small quantity of isotopically enriched
208Pb (99.9% purity). The quartz cell windows are welded to
the body at 10◦ angles to eliminate the possibility of etalon
effects in the optical path. Because of the inherent low vapor
pressure of lead and the weak transition amplitudes being
studied, we focus on temperatures in the 800–940 ◦C range
where the density is sufficiently high for easily detectable
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optical rotation signals. This is achieved using four ceramic
clamshell heaters, which surround a meter-long ceramic tube
that contains the cell. The tube is sealed at both ends with
endcaps that include fused silica windows, and is evacuated
and backfilled with 20 Torr of argon in order to minimize
optical beam path fluctuations due to convective air currents.
A function generator operating at 10 kHz drives four audio
amplifiers, which in turn drive the heaters. The frequency is
sufficiently high that it does not interfere with the lock-in
detection and signal analysis described below. Two thermo-
couple probes are positioned at the center of the vapor cell
and one of the edges, which provide a temperature estimate, as
well as a measure of temperature uniformity. A software p-i-d
servo loop controls the amplitude of the function generator
signal, allowing us to set and stabilize the oven temperature.
The furnace contains a pair of Helmholtz coils to apply the
magnetic field used to create the Faraday rotation signal, and
the entire assembly is enclosed in μ-metal magnetic shielding.
The roughly 100-fold reduction in ambient field afforded by
the shielding is sufficient to bring magnetic field fluctuations
to a negligible level, especially since we take the difference
between sequential magnetic field-on and field-off laser scans.

B. Optical setup

Two commercial external cavity diode lasers (ECDLs) at
939 (E2) and 1279 nm (M1) (Toptica DL pro series and
Sacher Lasertechnik Lynx series, respectively) pass through
optical isolators before a small fraction of each is directed
into one of two Fabry-Pérot (FP) cavities which monitor the
frequency scan range and linearity. The confocal FP cavities
(finesse near 30) are constructed with invar spacers, and con-
tained inside insulated boxes for passive thermal stabilization.
The cavity free spectral ranges for the E2 and M1 lasers
were independently calibrated and measured to be 361.0(2)
and 501.0(3) MHz, respectively. A pair of shutters allow
measurements of the two transition to be made in quick
succession. The beam paths are combined using a dichroic
filter, and directed first through a calcite prism polarizer, then
into the furnace and through the vapor cell interaction region.

Upon exiting the furnace, the laser beams pass through a
1-cm-diameter, 5-cm-long glass rod with a large Verdet con-
stant (“Faraday glass”) which is contained within a solenoid
to which we can apply AC and DC currents, thus either
modulating or tilting the laser polarization. We typically drive
the solenoid with 2 A of AC current at ω = 2π × 500 Hz,
which results in a polarization modulation amplitude of a
few milliradians. The laser beams then traverse a second,
crossed calcite polarizer. Our polarizer pair in isolation has
a finite extinction ratio of better than 10−6, but the presence of
the furnace, vapor cell windows, and Faraday glass limit the
effective extinction ratio of our polarimeter to about 2 × 10−5.
The polarizers are each housed in a rotational lever mount
actuated with a differential micrometer. Given the geometry
of our mount and the 1 μm resolution of the differential
micrometer, we can reliably set and control the polarizer tilt
angle at the 10 μrad level.

The light is then incident on a diffraction grating, which
separates the two laser beam paths. With the aid of collima-
tors and lenses, we focus each laser beam onto a high-gain,

low-noise photodiode detector. This arrangement also allows
us to reject nearly all of the substantial (but incoherent) black-
body radiation emanating from the furnace. This is important
given that the coherent laser radiation reaching our detector
after exiting the polarimeter is never more than about 100 nW.

C. Modulation, lock-in detection, and calibration

The detection scheme, similar to that described in [27],
uses the modulator combined with a pair of lock-in amplifiers
for each wavelength in order to extract the optical rotation
signal. After passing through the atomic vapor, the laser
intensity is I ( f ), reflecting the absorption line shape, and
there is also a frequency-dependent rotation of �F( f ), due
to the atomic Faraday effect. We also account for a small
frequency-dependent optical birefringence �br( f ), unrelated
to the atoms. The Faraday modulator introduces an additional
sinusoidal rotation of �rot cos(ωt ). The resulting intensity
through the second polarizer is thus (using the small angle
approximation)

Iout = I ( f ) sin2[�Pb( f ) + �br( f ) + �rot cos(ωt )]

≈ I ( f )
{
�2

Pb( f ) + �2
br( f ) + 2�Pb( f )�br( f )

+ 2�rot cos(ωt )[�Pb( f ) + �br( f )] + �2
rot cos2(ωt )

}
,

(8)

where we have ignored the small constant transmission com-
ponent from the finite polarimeter extinction. This expan-
sion results in three important components: a constant term,
one oscillating at ω, and another oscillating at 2ω. Lock-in
detection at ω and 2ω removes the DC term; the 2ω term
is only dependent on the transmitted intensity, whereas the
1ω term is proportional to the Faraday optical rotation times
the transmission. Thus, the ratio of the two signals S1ω/S2ω

yields a signal proportional to the optical rotation only. Four
lock-in amplifiers (Stanford Research Systems SRS 810) are
set to the fundamental and second harmonic of the modulation
frequency for the two lasers, and the extracted signals from the
four are collected using a data acquisition board.

The size of the lock-in signal we detect is also proportional
to the the amplitude of the modulation �rot. However, we
know that the Verdet constant of our Faraday glass is sub-
stantially different at our two laser frequencies. To account
for this in our calibration procedure, we first perform the
following off-line exercise for each laser in turn. We fix the
laser frequency at a value away from the atomic resonance.
While still modulating the magnetic field, we add a stepwise
series of increasing DC currents to the solenoid. At each
step, we use the micrometer controlling the second polarizer
to “recross” the polarimeter by noting when the 1ω lock-in
output reaches exactly zero. In this way we can accurately find
the ratio of the rotatory effects of the Faraday glass for our two
laser frequencies. Repeated calibration exercises such as these
were performed over the one-month period of data collection
to study reproducibility upon laser beam and polarimeter re-
alignment. With these measurements in hand, we can, as noted
below, incorporate a second procedure into our data collection
sequence in which we apply a large, discrete DC current step
to the solenoid, and, while directing both lasers through the
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TABLE I. Data acquisition sequence. Each individual up and
down scan pair takes 15 s. The “x” in the Bext row reflects application
of the longitudinal magnetic field to the atoms.

Data Calib. Frequency scan (×5) Calib.

λ E2/M1 E2 E2 M1 M1 M1 E2 E2 M1 E2/M1

Bext x x x x

cell (at fixed frequencies), detect the corresponding step-size
changes in the lock-in outputs. When we include the results of
both calibration procedures, we can then convert the units of
the experimental signal of interest (ratio of lock-in outputs) to
absolute radians for each transition.

D. Data acquisition procedure

Data acquisition was performed at a range of temperatures
(800–940 ◦C) and with a range of applied currents to the
Helmholtz coils (1 – 4 A). Acquisition was done in three
steps: an initial calibration sequence, the main measurement
sequence, and a final calibration sequence. The main measure-
ment sequence has eight components and is typically looped
five times. Table I summarizes the data collection sequence.
We refer to this as a “run.” The goal of the sequence is to
examine possible sources of systematic error by measuring
each transition’s rotation with a background scan without an
applied magnetic field either immediately before or immedi-
ately after the field is applied and the rotation is measured.
We acquire field-on and field-off scans, and also E2 and M1
scans in an “ABBA” sequence configuration to allow us to
study and minimize temporal drift-related systematic errors.
Such a collection sequence typically required 1 h to complete.

An individual scan is based upon a triangle wave applied to
a laser’s intracavity piezoelectric transducer (PZT), changing
its frequency and scanning across the transition’s line center,
which typically requires 20 s to complete. The atomic spectral
features of interest extend over roughly 1 GHz, and a typical
laser scan extended over 4 GHz. We separately analyzed the
frequency-increasing portion of the scan (“upscan”) as well
as the portion with a downward slope (“downscan”). For
each run with a particular laser, a data acquisition computer
recorded the triangle voltage wave, the transmission of the
Fabry-Pérot cavity, the 1ω lock-in amplifier signal, and the
2ω lock-in amplifier signal.

At each temperature, we acquired between 4 and 6 runs,
between which optical realignments, changes of laser beam
powers, and changes in laser sweep characteristics were ap-
plied. In all, roughly 40 h of data were collected, representing
800 distinct E2/M1 amplitude ratio measurements. The tem-
perature range over which we worked corresponds to more
than an order of magnitude change in lead vapor density. The
corresponding M1 Faraday rotation amplitudes range from 2
to 50 mrad, while the E2 amplitudes were in the 200 to 5 mrad
range.

IV. DATA ANALYSIS AND RESULTS

A. Data analysis procedure

The first step in data analysis involves using the Fabry-
Pérot transmission data to linearize and calibrate the fre-
quency scans. Using the FP peak locations, we model the
frequency as a fourth-order polynomial function of scan point
number to account for small nonlinearity in the PZT voltage
response. We found that higher-order polynomials did not
improve the statistical quality of the FP peak fits. Using this
frequency axis, we construct the unitless ratio of the 1ω to
2ω lock-in outputs, and then apply the calibration factors
described above to convert this ratio to units of radians. In
each case, we use the average step calibration values obtained
by the pre- and post-calibration scans for that particular data
run. This procedure is applied to both the M1 and E2 scans for
both the field-on and field-off configurations. We next subtract
the field-off scans proximate to the associated field-on scan,
removing background features unrelated to the atoms that are
typically a few percent of the field-on Faraday signals.

The subtracted line shape is then fitted using a standard
nonlinear least squares algorithm to the convolution function
described in Eq. (4). With two thermocouple temperature
monitors near the cell, we have a fairly accurate estimate of
the temperature. We choose then to fix the Doppler width
to a calculated value for the case of each laser scan. Below
we discuss our exploration of line shape changes and associ-
ated systematic amplitude errors resulting from our estimated
temperature uncertainty. We note that, since ultimately we
determine the ratio of the E2 to M1 amplitudes, overall
temperature uncertainty largely cancels in this ratio, since
the ratio of Doppler widths is temperature independent. We
therefore analyzed our Faraday line shapes by fitting to two
key parameters: the Lorentz width �, due here to lead-lead
collisional broadening, and the amplitude parameter C in-
troduced in Sec. II, connecting our convolution line shape
to the experimental peak height. We find this homogeneous
linewidth component to be roughly ten times smaller than
the Doppler width for the case of both transitions. In order
to account for imperfect background subtraction, we also add
constant and linear background parameters to the fit, which
are always quite small, and, in the case of the linear term,
often statistically unresolved. Examples of single background-
subtracted scans of each transition at 800 ◦C (near the low end
of our temperature range) are shown in Figs. 3 and 4, along
with the residuals of the fits. Each scan shown represents
about 40 s of data collection. As one can see, the residual
rms optical rotation noise is at the few μrad level in both
cases. Because of its much larger amplitude, the M1 scan
exhibits a baseline signal-to-noise ratio of more than 1000:1.
Interestingly, in this case there is a significant increase in the
size of the residuals near the line center. In fact, this can
be easily modeled as an effective amplitude noise induced
by short-term frequency jitter of the diode laser as it scans
across the transition—something that would manifest in the
regions of the line shape where the slope is steepest. The
dashed envelope included in the lower box of Fig. 3 shows the
expected amplitude noise from a frequency jitter of 1 MHz—
something quite typical of ECDL systems such as ours.
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FIG. 3. Sample data from 800 ◦C M1 Faraday rotation signal
(black dots, every fifth point shown) and fit result (red line). Resid-
uals, expanded by a factor of 20, are shown below; solid blue shows
the unweighted residual, while the dashed black line shows the
envelope of the noise expected from a model that includes laser
frequency jitter (see text).

FIG. 4. Sample data from 800 ◦C E2 Faraday rotation signal
(black dots, every fifth point shown) and fit result (red line). Ex-
panded residuals are shown below.

FIG. 5. Distribution of χ measurements from all 95 individual
scan ratios taken at 800 ◦C. Main figure: χ and corresponding error
bars, with mean and standard deviation (solid blue) shown. Inset:
Histogram of χ (red bar plot) and a fitted Gaussian (thick blue
curve). Intrinsic precision of χ values varies for subsets of these data
depending, for example, on magnetic field employed for a given run.

Fit results are organized by laser scan direction and order
of field-on and field-off sequencing. We scale our amplitude fit
parameters using the calibration factors discussed above. The
difference between the pre- and post-calibration scans within a
data run yields a measure of calibration uncertainty, which can
be combined with the error bar generated by the fit procedure
to arrive at a final uncertainty for the corrected fit amplitude.
We then construct the ratio of the fit amplitudes for the two
transitions CE2/CM1 for each set of consecutive E2 and M1
scans. Inserting the values for the ratios of the frequencies and
g factors of these transitions, we finally obtain experimental
values for χ as defined in Eq. (7). We accumulated statis-
tics on all amplitude ratios taken at a given temperature. In
some cases, the scatter between the weighted mean value for
different data runs at a given temperature slightly exceeded
their respective standard errors, due, for example, to small
changes in experimental conditions, thermal drift, or relative
beam path changes of the two lasers due to purposeful optical
realignment. In each case, we expanded our error bars to
account for this measured variance. We also took the approach
of generating a histogram for all values at a given temperature
and fitting this distribution to a Gaussian (see Fig. 5). The
mean values arrived at by these two methods agreed very well
within statistical uncertainties. Figure 6 shows the complete
data set for our measured values of χ plotted as function of
temperature, and corresponding M1 absorptive optical depth.
Final weighted mean and 1σ statistical uncertainty are in-
dicated in blue. This range of temperatures corresponds to
a roughly a factor of 15 in vapor density, and as such is
associated with changes in amplitude, and component spectral
widths of the Faraday line shape. Below 800 ◦C, the E2 ampli-
tudes were too small to achieve reliable fit results. At the upper
end of our temperature range, where relatively large rotation
amplitudes should have provided the best statistical precision,
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(°C)

FIG. 6. The amplitude ratio χ as a function of optical depth
(bottom axis) and temperature (top axis). The mean and standard
error are shown in solid and dashed blue lines, respectively.

we observed a large scan-to-scan and run-to-run variation in
ratios, likely due to much larger thermal drifts and optical
birefringence effects at this temperature. Ultimately, while the
mean value at 940 ◦C agrees well with other data sets, the
uncertainty is significantly higher due to this increased scatter,
and we did not seek to increase the temperature further. Our
final value and 1σ statistical uncertainty in the measured ratio
is χ = 0.1496(7)stat.

B. Exploration of systematic errors

Potential systematic errors in our experimental value for χ

were studied extensively, and the results are summarized in
Table II, where systematic error contributions to the unitless
ratio are expressed in percentages. Potential error sources
which did not show statistically resolved effects are listed
with a dash. In many cases, the fact that we are taking the
ratio of two amplitudes tends to reduce systematic error im-
pact (such as for temperature uncertainties, or magnetic field
inhomogeneities). In addition, since χ is proportional to the
square root of the amplitude ratio, the size of potential errors
in χ associated with extracting Faraday signal amplitude are
immediately reduced by a factor of 2. Furthermore, 1/ f -
type noise associated with thermal, mechanical, or magnetic
field drifts occurring on timescales comparable to our scan
sequence would tend to show up as increased scatter between
measurements rather than systematic bias, especially given
our choice of sequencing repeated measurements in an ABBA
pattern.

As can be seen in Fig. 6, we importantly do not see a
resolved systematic trend in our measured ratio as a function
of temperature or density. In addition to comparing results at
a number of different temperatures, we compared results for
laser scan direction, different scan speeds and scan ranges,
different temporal order of field-on and field-off scans, and

TABLE II. Summary of error contributions and sources, ex-
pressed as percentage errors in the experimental ratio χ . Dashes
reflect the lack of a resolved systematic error contribution.

Source Error in χ (%)

Statistical error 0.48

Fitting
Frequency linearization 0.02
Fixing vs floating Lorentz widths 0.37
Linear background 0.27
Line shape weighting 0.32
Incorrect Doppler widths 0.10
Include and discount scan wings 0.13

Signal modeling
Derivative vs difference 0.19
Magnetic field dependence –

Geometry
E2 �m = 2 transitions 0.35

Laser scanning properties
Scan direction 0.22
Scan speed and width –

Data collection
Field-on vs. field-off order –
E2/M1 order 0.13

Angle calibration
Off-line calibration 0.28
Pre and post variance 0.29

Other
Isotopic purity 0.02

Total 0.98

different temporal order of E2 vs M1 scans. Occasionally
we saw comparisons of subsets of data that differed by 1.5
to 2.0σ , where σ is the combined error of the data subsets,
and these contributions to the net systematic uncertainty are
included in the table.

1. Calibration

Errors in any aspect of our calibration procedure would
directly impact our amplitude ratio measurement, and these
were explored as follows. We completed several of the off-line
calibration exercises over the course of our data-collection
period, and compared the ratio of calibration factors obtained
in these procedures. We assign a systematic error component
based on the variation of these measurements (most likely due
to small changes in the relative optical paths of the lasers,
or possibly small thermal drifts over the timescale of the
measurements). Also, for all of our data collection runs, we
studied the differences between the pre- and post-calibration
scans to estimate the potential errors associated with using
their average to calibrate all scans in that run. An estimate
of the systematic error associated with taking our approach of
calibrating all runs based on the average of the two calibration
values is also included in Table II.
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2. Fitting methods

We explored a number of alternative approaches to fitting
our Faraday rotation spectra to quantify systematic effects
associated with line shape analysis. First, as noted above,
we explored different polynomial orders for parametriza-
tion of the ECDL scan nonlinearity, finding that beyond
fourth order, no statistically significant changes to the fitted
amplitude were seen. Our nominal method for fitting our
spectra involved equal weighting of all points in the scan.
We explored two alternatives. First, we explored a model that
weighted data points according to a model that accounted
for the frequency noise and associated fluctuations as noted
in Fig. 3 and discussed in the previous section. Second, we
explored truncating our fit ranges to exclude portions of the
scan farther away from the resonant line shape. We saw small
changes in our fitted amplitude results, always well below the
1% level, and include small error contributions for these in
Table II.

We studied the reliability of our Lorentzian and Gaussian
(Doppler) width determinations in detail. Possible errors in
these parameters impact the peak value of the line shape
convolution function defined in Eq. (4), and thus directly
affect the fitted amplitude parameters C, from which we de-
termine χ . As noted, since the ratio of the Doppler widths for
the two transitions is temperature independent, a potential sys-
tematic error in χ due to temperature error could only come
from the secondary effect of producing associated changes in
other fit parameters that would affect the two transition line
shapes in different ways. We explored this by systematically
choosing a temperature (and hence Doppler widths) over a
±20-deg range centered on the nominal temperature (which
is taken to be the average of our two thermocouple readings).
We then fit both experimental line shapes, extracting the
Lorentzian width � and peak amplitude factor C in our usual
fashion. Even using this relatively large temperature range,
roughly equal to the difference in our thermocouple readings,
we saw changes in the value of χ only at the ±0.1% level, and
have included this in our error table.

Of more concern is the accuracy of our Lorentz width de-
terminations. These widths are an order of magnitude smaller
than the Doppler widths, and thus more challenging to extract.
However, their value clearly affects the amplitude of our line
shape function [Eq. (4)]. Our standard analysis method starts
with fixed Doppler widths and optimizes the Lorentz width
parameter in the fit process. In order to explore the effect
of potential errors in Lorentz width values on our ratio χ ,
we proceeded as follows. Since the E2 Faraday amplitudes
have substantially lower signal-to-noise ratio, we assumed, for
the purpose of this exercise, that the standard M1 fit procedure
is able to extract the “correct” Lorentz width �M1. Then we
fit E2 line shapes using a modified procedure where instead
we fix the Lorentz width (in addition to the Doppler width)
to a series of values above and below the apparent “best
fit” value, and allow only the peak amplitude factor to be
optimized (this optimized value is clearly correlated with the
choice of �E2). We then recorded the summed chi-squared
value of the overall line shape fit for each fixed choice of
�E2. Figure 7 summarizes this exploration for the case of
all the data runs taken at one temperature (here 900 ◦C). The

FIG. 7. Exploration of a potential systematic error from a fixed,
miscalculated Lorentzian width. The amplitude ratio χ is plotted
with black dots and dashes on the left y axis. The corresponding fit
error for those values and Lorentz widths are plotting with red pluses,
on the right y axis. The orange star indicates the Lorentz width and
χ of a floated Lorentz width. Further details are provided in the text.

red curve indicates the changing “quality of fit” for the entire
collection of fits at 900 ◦C at each fixed choice of �E2. The
black line simply maps out the correlation between χ and
�E2, assuming that �M1 remains constant. The orange “star”
shows the average Lorentz width parameter generated by our
standard fitting procedure, in which �E2 is “floated.” The
excellent agreement between the two methods in terms of
finding the optimal value �E2 ≈ 35 MHz is reassuring, and
we can see even a very large fractional change in �E2 of
± 10 MHz that yields a change in χ of only ±1%. A more
extensive analysis of data sets at all temperatures allows us
to place a ±0.4% systematic error based on our estimated
uncertainty in the extracted Lorentz widths.

3. Line shape model

We also considered the systematic error associated with
using the derivative approximation to the Faraday line shape.
First, for a series of Zeeman splittings in our experimental
range, we generated theoretical line shapes with typical values
for component widths using the difference (rather than the
derivative) of the dispersive real part of the refractive index
line shapes. We then proceeded to fit these line shapes using
our standard (derivative approximation) fitting function and
studied the changes in fitted amplitude as a function of the
Zeeman splitting. Since the g factors and component widths
of the two transitions are different, this would impact the two
transitions differently, and hence would produce a systematic
error in χ . From this investigation, we put a limit of the
potential systematic error of our derivative approximation at
the 0.2% level. As a second experimental check, we studied
the correlation of χ with the current applied to the Helmholtz
coils for the data we collected. This showed no statistically
resolved trend over the ≈3–15 G range of magnetic fields that
we explored.
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4. Geometrical misalignment

Finally, we note that our analysis assumes that the laser
beam paths are exactly collinear with the magnetic field axis
within the vapor cell interaction region. This effectively al-
lows us to view the electric quadrupole interaction as an oper-
ator proportional to the � = 2, m = 1 spherical harmonic (see
Sec. VI below). For small deviations from collinearity, δθ ,
one can show that �m = ±2 transitions are possible, and that
the size of these components relative to the dominant �m =
±1 transitions is proportional to | sin(δθ )| [32]. Given our
apparatus geometry and laser beam collimation, we estimate
that |sin(δθ )| � 2◦. We were able to explore the implications
of this by generating simulated Faraday rotation spectra with
small �m = ±2 components, and then analyzing these modi-
fied line shapes using our standard fitting routine. By studying
the impact of this nonideal geometry on the fitted line shape
amplitudes, we can place a limit on its potential systematic
error contribution to χ , which is included in Table II. We
note that, even with perfect collinearity, small stray magnetic
fields, either from external sources or mu-metal remanence,
would ultimately produce a small systematic geometric uncer-
tainty. For the experimental fields employed here, we estimate
this contribution to misalignment to be several times smaller
than the current optical collinearity contribution.

We lastly mention that such geometrical misalignment also
produces more complicated magneto-optical effects, includ-
ing the so-called “Voigt” effect. As discussed in detail in [33],
the size of these additional components, given the estimated
size of our misalignment, would produce changes to our
Faraday line shape that are well below our level of statistical
sensitivity.

5. Isotopic purity

Given the quoted isotopic purity of the vapor cell (99.9%),
we generated realistic simulated line shapes and fit these using
our standard analysis procedure to produce the systematic
relevant error estimate in Table II.

6. Final experimental ratio

Combining all of the systematic error contributions in
quadrature gives an uncertainty roughly twice that of the
statistical error. Combining these leads to a final experimental
value for our unitless amplitude ratio: χ = 0.1496 ± 0.0015.
In Sec. VI we establish the connection between this ratio and
the reduced electric quadrupole matrix element, the ab initio
theoretical derivation for which we present next.

V. THEORY

We evaluated the reduced matrix elements (MEs) of the
6p2 3P0 − 6p2 3P2 and 6p2 3P0 − 6p2 1D2 E2 transitions as
well as the static scalar and tensor polarizabilities of the
6p2 3P1 and 6p7s 3Po

0 states of Pb using the high-precision rel-
ativistic CI+all-order method [14]. This method was adopted
by us for calculating the PNC amplitude for the 6p2 3P0 −
6p2 3P1 transition [20].

We consider Pb as a four-valence atom. The basis set was
constructed using a V N−2 approximation in the framework
of the Dirac-Fock-Sturm approach (see Ref. [20] for more

details). In this calculation, we use the wave functions ob-
tained in [20] in the CI+MBPT [34] and CI+all-order approx-
imations. We carry out calculations in both approximations
considering the CI+all-order results as the recommended
ones. Atomic units (h̄ = |e| = m = 1) are used throughout
unless stated otherwise.

A. E2 transitions

Using the expression for the electric quadrupole moment
operator, given by Eq. (6), we obtain for the E2 6p2 3P0 −
6p2 3P2 transition,

|〈3P0||Q||3P2〉| ≈ 8.91 a.u. (CI + MBPT),

≈ 8.86 a.u. (CI + all − order). (9)

Inclusion of the Breit interaction correction increases the
absolute value of the matrix element (ME) by 0.02 a.u. The
quantum-electrodynamic (QED) correction is negligible at the
current level of calculation accuracy. The difference of the val-
ues obtained at the CI+MBPT and CI+all-order stages gives
us an estimate of the uncertainty. Thus, the final recommended
value is

|〈3P2||Q||3P0〉| = 8.88(5) a.u. (10)

We have also estimated the reduced ME of the electric
quadrupole 6p2 3P0 − 6p2 1D2 transition. This is an inter-
combination transition (the initial and final states have dif-
ferent total spin S). As a result, it is an order of magnitude
smaller than |〈3P2||Q||3P0〉|. We find

|〈1D2||Q||3P0〉| ≈ 0.63 a.u. (11)

B. Polarizabilities

The scalar dynamic polarizability α(ω) can be separated
into three parts:

α(ω) = αv (ω) + αc(ω) + αvc(ω), (12)

Where αv is the valence polarizability and αc is the ionic core
polarizability. A small term αvc is included due to the presence
of the four valence electrons and possible excitation of a core
electron to the occupied shell. Thus, αvc serves to restore the
Pauli principle and slightly modifies the core polarizability
[36].

The valence part of the AC electric dipole polarizability of
the |�0〉 state can be written in the following form:

αv (ω) = 2
∑

k

(Ek − E0)|〈�0|D0|�k〉|2
(Ek − E0)2 − ω2

=
∑

k

[ |〈�0|D0|�k〉|2
Ek − E0 + ω

+ |〈�0|D0|�k〉|2
Ek − E0 − ω

]
, (13)

where D0 is the z component of the effective electric dipole
operator D, defined (in a.u.) as D = −r. By the effective (or
“dressed”) electric dipole operator, we mean that the operator
also includes the random-phase approximation (RPA) correc-
tions [37].

To account for intermediate high-lying discrete states and
the continuum, we calculated αv (ω) by solving the inhomoge-
neous equation in valence space. We use the Sternheimer [38]
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or Dalgarno-Lewis [39] method implemented in the CI+all-
order approach [40]. Given the �0 wave function and energy
E0 of the |�0〉 state, we find intermediate-state wave functions
δψ± from an inhomogeneous equation,

|δψ±〉 = 1

Heff − E0 ± ω

∑
k

|�k〉〈�k|D0|�0〉

= 1

Heff − E0 ± ω
D0|�0〉. (14)

Using Eq. (13) and δψ± introduced above, we obtain

αv (ω) = 〈�0|D0|δψ+〉 + 〈�0|D0|δψ−〉 , (15)

where the subscript v emphasizes that only excitations of the
valence electrons are included in the intermediate-state wave
functions δψ± due to the presence of Heff .

The αc and αvc terms were evaluated in the RPA. The small
αvc term was calculated by adding αvc contributions from the
individual electrons. For example, for the 6s26p2 3P1 state, we
find αvc = 2αvc(6s) + αvc(6p1/2) + αvc(6p3/2).

For the case of static polarizabilities, where ω = 0,
Eq. (13) is written as

αv (0) = 2
∑

k

|〈�0|D0|�k〉|2
Ek − E0

. (16)

To establish the dominant contributions to the valence po-
larizabilities, we combine the electric-dipole matrix elements
and energies according to the sum-over-states formula given
by Eq. (16). We have carried out two calculations of the
dominant contributions of the intermediate states to the po-
larizabilities using our theoretical and experimental energies.
In Table III we present results obtained in the CI+all-order
approximation. The absolute ab initio values of the corre-
sponding reduced electric-dipole matrix elements are listed
(in a.u.) in column labeled “D.” The theoretical and exper-
imental [35] transition energies are given in columns �Eth

and �Eexpt. The remaining valence contributions are given
in rows labeled “Other.” The contributions from the core and
αvc terms are listed together in the row labeled “Core + Vc.”
The dominant contributions to α0, listed in columns α0[A]
and α0[B], are calculated with CI+all-order+RPA matrix
elements and theoretical [A] and experimental [B] energies
[35], respectively. The results listed in the column α0[A] are
the recommended ones.

The results obtained in the CI+MBPT and CI+all-order
approximations, their differences, and the recommended val-
ues are presented in Table IV.

VI. COMPARISON OF EXPERIMENT TO THEORY

We turn now to the connection between our unitless
E2/M1 amplitude ratio χ and the theoretical expressions for
the respective matrix elements. It is helpful to recall that both
the M1 and E2 matrix element components emerge from the
same term in the expansion of the interaction Hamiltonian.
Following a standard textbook derivation of these higher-
order terms [41], we find that both the M1 and E2 transition
amplitudes originate from a matrix element Tf i containing

TABLE III. Polarizabilities obtained using the CI+all-order ap-
proximation. Contributions to the 6s26p2 3P1 and 6s26p7s 3Po

0 scalar
static polarizabilities α0 of Pb (in a.u). The dominant contributions
to the valence polarizability from intermediate states |n〉 are listed
separately with the corresponding absolute values of electric-dipole
reduced matrix elements given (in a.u.) in the column labeled D. The
theoretical and experimental [35] transition energies �E ≡ E (n) −
E (6p2 3P1) and �E ≡ E (n) − E (6p7s 3Po

0 ) are given (in cm−1) in
columns �Eth and �Eexpt. The remaining contributions to the valence
polarizability are given in the row labeled Other. The values listed
in the row labeled Total val. are obtained as the sum of all listed
contributions and Other. The dominant contributions to α0, listed in
columns α0[A] and α0[B], are calculated with CI+all-order+RPA
matrix elements and theoretical [A] and experimental [B] energies
[35], respectively.

State |n〉 �Eth �Eexpt D α0[A] α0[B]

6p2 3P1 6p7s 3Po
0 27 207 27 141 1.92 6.6 6.6

6p7s 3Po
1 27 533 27 468 1.41 3.5 3.5

6p6d 3F o
2 38 222 37 624 0.08 0.01 0.01

6p6d 3Do
2 39 046 38 242 3.45 14.9 15.2

6p6d 3Do
1 39 110 38 249 0.63 0.5 0.5

6p7s 3Po
2 40 572 40 370 0.78 0.7 0.7

6p8s 3Po
1 41 737 40 868 1.13 1.5 1.5

6p8s 3Po
0 42 275 40 907 0.65 0.5 0.5

6p7s 1Po
1 42 670 41 621 0.20 0.04 0.05

Other 25.9 25.9
Total val. 54.2 54.6

Core + Vc 3.8 3.8
Total 58.0 58.4

6p7s 3Po
0 6p2 3P1 −27 207 −27 141 1.92 −20 −20

6p7p 3P1 7 837 7 959 3.99 298 293
6p7p 3D1 9 605 9 715 5.43 450 445
6p8p 3P1 17 800 16 361 0.17 0.2 0.2
6p8p 3D1 18 336 16 957 1.04 8.6 9.4

Other 19 19
Total val. 756 747
Core +Vc 4.1 4.1

Total 760 751

both the position and momentum operators,

Tf i (M1,E2) ∝ 〈 f |(k̂ · r) (ε̂ · p)|i〉, (17)

where k̂ (ẑ in our case) is the laser propagation direction,
and ε̂ (x̂ in our case) is the laser polarization axis. We can
ignore overall multiplicative factors since they will cancel in
the eventual E2/M1 amplitude ratio.

TABLE IV. The static scalar (α0) and tensor (α2) polarizabilities
obtained in the CI+MBPT and CI+all-order approximations (in a.u.)
are presented. The differences of the CI+all-order and CI+MBPT re-
sults are given (in %) in the column labeled Diff. The recommended
values and their uncertainties are given in the last column.

State CI+MBPT CI+all-order Diff. (%) Recom.

6p2 3P1 α0 58.7 58.0 1.2 58.0(7)
α2 −5.8 −5.7 1.5 −5.7(1)

6p7s 3Po
0 α0 752 760 1.1 760(8)
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After some vector algebra and use of a commutator to
reexpress the momentum operator in terms of position [41],
we can separate the M1 (vector) and E2 (second-rank tensor)
components of the matrix element in Eq. (17). We note that
this process introduces a factor of ωE2/c into the E2 compo-
nent. In our case, the M1 final state of interest is |3P1, m = 1〉,
where as for the E2 component it will be |3P2, m = 1〉.

According to the Wigner-Eckart theorem, for the case of
the |J = 0〉 → |Jf , m = 1〉 transitions, the multiplicative fac-
tor connecting the |�m| = 1 matrix elements that we measure
with the associated reduced matrix element is 1/

√
2Jf + 1.

Given our geometry, the operator for the E2 term is pro-
portional to 〈xz〉. This can then be rewritten in terms of the
operator 〈r2C21〉 as introduced in Sec. II.

Assembling a theoretical expression that is equivalent to
the (unitless) experimental amplitude ratio χ , given by Eq. (7),
we arrive at

χ = 1

2
√

5

ωE2

c

〈3P2||Q||3P0〉
〈3P1||μ||3P0〉

. (18)

Here the reduced ME 〈3P2||Q||3P0〉 is expressed in |e|a2
B

(where aB is the Bohr radius; note that for this ME 1 a.u. =
1 |e|a2

B) and 〈3P1||μ||3P0〉 is expressed in μB/c.
Inserting our experimental value, χ = 0.1496(15), as well

as the (highly accurate) theoretical value for the M1 reduced
matrix element 〈3P1||μ||3P0〉 = 1.293(1) μB/c [20], we can
compute an experimentally derived value for the reduced
quadrupole matrix element: 〈3P2||Q||3P0〉expt = 8.91(9) a.u.
This is in excellent agreement with, and of comparable preci-
sion to, the recommended ab initio theory value from Eq. (10)
in Sec. V: 〈3P2||Q||3P0〉th = 8.88(5) a.u. Together we have
demonstrated consistency between experiment and theory for
this lead E2 transition amplitude at the 1.2% level of accuracy.

VII. CONCLUDING REMARKS

We have completed a precise measurement of the elec-
tric quadrupole 3P0 → 3P2 transition amplitude within the
6s26p2 configuration in atomic lead. This result is in excel-
lent agreement with a precise ab initio calculation of this
amplitude, which has also been presented here. The calcu-
lation builds upon on recent theoretical work in the four-
valence lead system aimed at improving PNC calculations
in this element [20]. The experimental work relies critically
on a high-precision polarimetry technique used previously to
measure PNC optical rotation in Pb and Tl [8,9], and has
allowed direct measurement of this forbidden E2 transition.
We have also presented ab initio calculations of the static
polarizability of several low-lying states in lead. This now
provides additional opportunities to test the accuracy and
further guide the refinement of theory through precise atomic-
beam-based measurements of Stark shifts in this element,
employing experimental techniques analogous to those used
by our group in recent indium and thallium polarizability
measurements [16–18,42].
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