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Complex-scaled relativistic configuration-interaction study of the LL
resonances in heliumlike ions: From boron to argon
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Energies and Auger widths of the LL resonances in He-like ions from boron to argon are evaluated by
means of a complex-scaled configuration-interaction approach within the framework of the Dirac-Coulomb-Breit
Hamiltonian. The nuclear recoil and QED corrections are also taken into account. The results obtained are
compared with other calculations based on the complex-scaling method as well as with the related results
evaluated by using the stabilization and basis balancing methods.
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I. INTRODUCTION

Autoionizing states of atomic or ionic systems are the
excited states which can decay due to the electron-electron
interactions via emission of one (or more) electrons. A special
place among such states is held by the first autoionizing
states of He-like systems; namely, levels of the LL resonance
groups. The simplicity of these systems makes them attractive
for both theoretical and experimental investigations. The in-
vestigations aimed at determining the energies of these levels
are of particular interest for plasma diagnostics [1–4] and
cosmological [5] and fusion research (see, e.g., the review
[6]). A new interest in studying the characteristics of the LL
resonances was caused by a recent experiment [7]. In this
experiment, a new level of accuracy for the energy of the
autoionizing states of the He-like carbon ion was reached.
Experimental data of such accuracy being complemented by
the theoretical predictions of the same precision allow one to
set these states as energy-reference standards at synchrotron
radiation facilities. The precise theoretical predictions for
the energies of the LL resonances are, therefore, highly de-
manded.

For the accurate evaluation of the energies of autoionizing
states, which are strongly affected by electron correlations, the
high-precision many-electron methods such as coupled cluster
and configuration interaction are required. These methods,
although successfully applied for the calculations of bound-
level energies, fail when naively applied for the description
of resonances. The energies of such resonances show a strong
dependence on the parameters of the basis set, e.g., the con-
vergence of the resonance energy with respect to the number
of basis functions, which is one of the basis-set parameters, is
very weak or even absent. This is explained by the fact that
the autoionizing states are embedded into the positive-energy
continuum. As a result, they cannot be described by square-
integrable functions which form the basis set of the coupled-
cluster and configuration-interaction methods. This problem
can be naturally solved with the usage of the complex-scaling
approach which is based on the analytical properties of the
spectrum of a Hamiltonian being dilated into the complex

plane. The first mathematical analysis of these properties was
reported in Refs. [8,9] for the nonrelativistic Hamiltonian
and in Refs. [10–12] for the relativistic one. In these works,
it was shown that in the spectra of the dilated Hamiltonian
the autoionizing states are separated from the continuum.
The wave functions of these states, therefore, become square
integrable and can be investigated with conventional many-
electron methods. That makes the complex-scaling approach
a powerful tool for studying properties of resonances ap-
pearing in various systems and processes. As examples, the
resonances of nuclei [13–16], few-electron systems [17–23],
and molecules [24,25] were investigated by using this method.
More applications, as well as the details of the complex-
scaling approach, can be found in the reviews [26–31]. It is
also worth noting that the dilated Hamiltonian is not a Hermi-
tian but a symmetric operator with complex eigenvalues. The
real and imaginary parts of the eigenvalues corresponding to
the autoionizing states give the energies and Auger widths of
the states, respectively.

Apart from the complex-scaling approach, one can apply
the stabilization or basis balancing methods. The stabilization
method (SM) was pioneered by Holøien and Midtdal [32]
and utilized in numerous investigations [33–37]. The basis
balancing method (BBM) was worked out by Yerokhin with
co-authors just recently [38] and was applied for the calcula-
tion of the energies of the autoionizing levels of Li-like ions in
a wide range of the nuclear charge number [39]. Both methods
are applied to the conventional Hermitian Hamiltonian and,
as a result, only the real arithmetic is involved that provides a
considerable computational advantage. However, the energy
of the autoionizing state obtained within SM or BBM can
differ from the exact energy by a shift arising due to the
inappropriate treatment of the interaction with the continuum.
The advantages of these methods over the complex-scaling
approach, thus, can be completely lost in some cases. In view
of the considerable progress in experimental accuracy for the
energies of the autoionizing states [7], the revision of the
applicability of the SM and BBM is required.

In the present paper, we apply the configuration interaction
(CI) coupled with the complex-scaling (CS) approach to solve
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the Dirac-Coulomb-Breit (DCB) equation for LL resonances
of He-like ions in the range from boron to argon. The config-
uration space is spanned by the one-electron Dirac orbitals
being constructed from the B splines. The DCB energies
are supplemented with the quantum electrodynamics (QED),
nuclear recoil, and frequency-dependent Breit corrections. We
also estimate the difference of the energies obtained within the
SM and BBM with ones calculated employing the complex-
scaling approach. In case of the 2s2 level of the He-like
carbon ion, it is found that the energy difference between these
three methods exceeds the uncertainty reached in the recent
experiment [7].

In the paper, for theoretical expressions the Heaviside
charge unit (e2 = 4παc) and h̄ = 1 are used meanwhile nu-
merical results are presented in atomic units (me = h̄ = e=1).

II. BASIC FORMALISM

We start with the formulation of the basic principles of the
configuration-interaction with the complex-scaling approach
for the solution of the few-electron DCB equation (for a de-
tailed description see, e.g., the review [30]). Here we consider
the simplest variant of the CS; namely, the uniform complex
rotation. In this case, the radial variable r is transformed as

r → reiθ , (1)

with θ being a constant rotation angle. This transformation
leads to the following complex rotated DCB Hamiltonian:

H (θ )
DCB =

∑
j

h(θ )
D ( j) + e−iθ

∑
j<k

[VC ( j, k) + VB( j, k)],

j, k = 1, . . . , N. (2)

Here N stands for the total number of the electrons and h(θ )
D is

the scaled one-electron Dirac Hamiltonian given by

h(θ )
D ( j) = e−iθ cα j · p j + (β j − 1)mec2 + Vnuc(r je

iθ ), (3)

where α and β are the Dirac matrices, p is the momentum
operator, and Vnuc is the nuclear potential. In the present
paper, we use the uniformly charged sphere model for the
nuclear charge-density distribution in order to construct the
electrostatic nuclear potential [40]. After the dilatation into
the complex plane it takes the following form:

Vnuc(reiθ ) =
⎧⎨
⎩

− αZc
2Rnuc

(
3 − e2iθ r2

R2
nuc

)
, r < Rnuc

− e−iθ αZc
r , r > Rnuc.

(4)

In accordance with Eq. (2) the Coulomb and Breit
interelectronic-interaction operators are given by

VC ( j, k) = αc

r jk
, (5)

VB( j, k) = αc

{
e2iθ

2c2

[
h(θ )

D ( j),
[
h(θ )

D (k), r jk
]] − α j · αk

r jk

}
(6)

= − αc

2r jk
[α j · αk + (α j · r̂ jk )(αk · r̂ jk )], (7)

respectively. In Eqs. (5) and (7), r̂ jk = r jk/r jk with r jk = r j −
rk and r jk = |r jk|. Having performed the complex rotation of

the DCB Hamiltonian (2) we now proceed to the construction
of its eigenfunctions.

As in the conventional CI method [41,42], the N-electron
eigenfunction �(PJM ) with the parity P, total angular mo-
mentum J , and its projection M is expressed as a lin-
ear superposition of the configuration-state functions (CSFs)
�(γrPJM ):

�(PJM ) =
NCSF∑
r=1

cr�(γrPJM ), (8)

where γr stands for all additional quantum numbers which
determine uniquely the CSF. The CSFs are eigenstates of
the total angular-momentum operators J2 and Jz, constructed
from antisymmetrized products of one-electron Dirac orbitals.
Here these orbitals are chosen to be the eigenfunctions of the
scaled one-electron Dirac Hamiltonian (3) of the form

ψ (θ )
κm (r) = e−iθ

r

(
G(θ )

κ (r)�κm(r̂)

iF (θ )
κ (r)�−κm(r̂)

)
,

where κ = (−1)l+ j+1/2( j + 1/2) is the Dirac quantum num-
ber determined by the angular momentum j and the parity l ,
and �κm is the spinor spherical harmonic [43]. As usual in
accordance with the basic principles of the relativistic theory
with the DCB approximation, the CSFs are constructed only
from positive-energy one-electron Dirac orbitals.

As already mentioned, autoionizing levels after the com-
plex scaling are described by the square-integrable and local-
ized wave functions. To good accuracy these wave functions
can be represented by the corresponding solutions of the
scaled DCB equation in a spherical cavity of finite radius. For
the solution of this equation, the CI method with the CSFs
constructed from the one-electron Dirac orbitals is utilized. In
the present paper, these orbitals are obtained by solving the
one-electron Dirac equation within the dual-kinetic-balance
finite basis set approach [44] with the basis functions con-
structed from B splines [45,46]:

(
G(θ )

κ (r)

F (θ )
κ (r)

)
=

N∑
i=1

C(θ )
κ,i

(
Bi(r)

e−iθ

2mec

[
d
dr + κ

r

]
Bi(r)

)

+
2N∑

i=N+1

C(θ )
κ,i

(
e−iθ

2mec

[
d
dr − κ

r

]
Bi−N (r)

Bi−N (r)

)
. (9)

Within the framework of this method, the spectrum of the one-
electron Dirac Hamiltonian including positive (and negative)
continuum states is represented by a finite number of the qua-
sistates. The interaction of the resonance with the continuum
is, thus, incorporated via the inclusion of the interaction with
these quasibound and quasicontinuum states. The resulting
scaled DCB Hamiltonian is represented by the symmetric
matrix with complex eigenvalues E − i�Aug/2 where E and
�Aug are the energies and Auger widths of the corresponding
resonances, respectively.
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III. RESULTS AND DISCUSSIONS

A. Comparison of the stabilization and basis balancing methods
with the complex-scaling approach

Let us start with a brief description of the principles of the
stabilization and basis balancing methods, which are applied
to the conventional (Hermitian) Hamiltonian. In the SM [32],
the basis-set parameters are chosen in such a way as to provide
a minimal value for the rate of change of the energy with
respect to a variation of these parameters. Another approach,
which consists of manipulating the basis to place the reso-
nance just in the middle between the closest quasicontinuum
states in the energy scale, is called the basis balancing method
(BBM) [38]. Both these methods utilize the advantages of
the finite basis set constructed from the square-integrable
functions. As already was mentioned, such basis set functions
cannot properly describe the contribution of the continuum to
the autoionizing states. That is expressed in the energy shift
of the state from the exact value. The size of this shift is,
however, strongly resonance dependent and may be negligible
in some cases. Here we estimate the difference between the
results of the complex-scaling approach with results from
the stabilization and basis balancing methods considering the
state which is known to be significantly coupled with the
continuum; namely, the 2s2 autoionizing state of the He-like
carbon ion (Z = 6). For this purpose, we choose the radial
grid, which uniquely defines the basis functions constructed
from the B splines, as in Ref. [38]:

ti = t0eA(i/N )γ , (10)

where A = ln (tmax/t0), tmax is the radial size of the spherical
cavity, t0 is the radius of the nucleus, and γ is the basis set
parameter. The energies of the autoionizing and quasicon-
tinuum states depend strongly on the parameter γ and form
γ -parametric trajectories, which are analyzed in accordance
with the SM and BBM. For the sake of simplicity, we include
only the CSFs being constructed from one-electron s and
p Dirac orbitals. Figure 1 presents the γ -parametric energy
trajectories for the 2s2 state of the He-like carbon (Z = 6) ion
obtained in the basis of 30 B splines. This figure also presents
the energies obtained with the use of the SM and BBM for
each γ -parametric trajectory. From Fig. 1, it is seen that, at γ

less than 0.5, the results of the SM and BBM are very close to
each other. We note that the most accurate results are expected
at small γ for which the density of the quasicontinuum states
in the vicinity of resonance is sufficiently high. On the other
hand, the states have to be well separated from one another
to allow clear identification of the autoionizing state. In our
case, both of these requirements are fulfilled for γ from 0.3 to
0.5. Before we proceed to the investigation of the convergence
with respect to the number of B splines, let us explore how
the results obtained within the CS approach depend on the γ

parameter.
As was discussed in the preceding section, in the uniform

complex rotation approach, the Hamiltonian depends on the θ

parameter. Energies of the bound and quasibound states in this
method are, however, θ independent for θc < θ < π/2, where
θc is the critical angle, which can be approximately evaluated

−8.35

−8.3

−8.25

0.4 0.8 1.2 1.6 2

E
2
s2
(a
.u
.)

γ

SM
BBM

FIG. 1. Energy of the 2s2 state of the He-like carbon (Z = 6)
ion as a function of the parameter γ [see Eq. (10)]. The CSFs
are constructed from one-electron s and p Dirac orbitals obtained
in the basis of 30 B splines. The size of the spherical box was
chosen to be 15 a.u. Blue circles and red squares correspond to the
γ parameters chosen in accordance with the stabilization and basis
balancing methods, respectively.

with the use of the nonrelativistic expression [8,47]

θc = 1
2 arctan

{
�Aug/[2(E − Et )]

}
. (11)

Here �Aug and E are the Auger width and the energy of the
level of interest, respectively, and Et is the autoionization
threshold energy, which for the 2s2 state is provided by the
ground state of the corresponding H-like ion. Note that the
energies do not depend on θ only if the complete or large
basis set is utilized. In practice, however, one has to deal with
an incomplete basis set that requires a search of an optimal
angle for the uniform complex rotation. Although this angle
should be larger than θc, we start the search from zero degrees.
The optimal angle corresponds to the stationary point of the
θ -parametric energy curve in the complex plane. In our case,
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FIG. 2. Dependence of the s function (in a.u.) given by Eq. (12)
on the θ and γ parameters for the 2s2 state of the He-like carbon
(Z = 6) ion. The CSFs are constructed from one-electron s and p
Dirac orbitals obtained in the basis of 30 B splines. The size of the
spherical box was chosen to be 15 a.u.
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TABLE I. Energy (in a.u.) of the 2s2 state of the He-like C
(Z = 6) ion obtained within the stabilization method (SM), the basis
balancing method (BBM), and the complex-scaling (CS) approach.
The CSFs are constructed from one-electron s and p Dirac orbitals
obtained in the basis of N functions. The size of the spherical box
was chosen to be 15 a.u. Parameter γ is varied in the range between
0.3 and 0.5. The calculations within the CS approach are performed
for θ varying from 20◦ to 25◦.

CS

N SM BBM Re(E ) Im(E ) × 103

30 −8.291 30(3) −8.2924(2) −8.291 450(4) −3.529(4)
40 −8.291 34(4) −8.2921(1) −8.291 449 9(2) −3.5290(3)
50 −8.291 37(3) −8.291 97(3) −8.291 449 98(9) −3.529 06(15)
60 −8.291 40(2) −8.2919(1) −8.291 449 98(9) −3.529 07(13)

one needs to find the stationary point of the (γ , θ )-parametric
energy surface in the complex plane. That is equivalent to the
search for the minimum of the function

s(γ , θ ) ≡
√∣∣∣∣dE

dθ

∣∣∣∣
2

+
∣∣∣∣dE

dγ

∣∣∣∣
2

. (12)

Figure 2 presents the s function (12) for the 2s2 state of the
He-like carbon (Z = 6) ion obtained in the basis of 30 B
splines. From this figure it is seen that the s(γ , θ ) function
takes minimal values at γ from 0.3 to 0.5 and θ from 20◦ to
30◦. For γ and θ changing within this area, the energy of the
2s2 state exhibits very stable behavior.

We now turn to the investigation of the convergence of
the results obtained within the SM, BBM, and CS methods
with respect to the number of basis functions. Table I presents
the energy of the 2s2 state of the He-like C (Z = 6) ion for
different numbers of B splines.

The calculations within the stabilization and basis balanc-
ing methods are performed for the γ parameter varying from
0.3 to 0.5. In Table I, we present the average values of the ener-
gies originating from different energetic curves corresponding
to this γ interval (see Fig. 1). The uncertainty reflects the

dependence of the results on the choice of the curve. From
Table I, it is seen that the BBM results depend more strongly
on the energetic curve than do the SM results. This can be due
to the fact that, in the BBM, the resonance position is balanced
with respect to the closest quasicontinuum states whereas in
the SM the whole spectra is effectively taken into account.
For both methods, the dependence on the energetic curve
strongly masks the convergence with respect to the number of
basis functions and gives the main source of the uncertainty.
The calculations within the CS approach are performed for γ

varying from 0.3 to 0.5 and θ varying in the range between
20◦ and 25◦. The dependence of the energy on the γ and θ

parameters forms the uncertainty indicated in Table I. It is
seen that the energy obtained within the CS approach exhibits
extremely fast convergence with respect to the number of
basis functions. It is also seen that the energies obtained within
the SM and BBM differ from the energy calculated by using
the complex-scaling approach by more than 1 and 10 meV,
respectively, the values which actually define accuracy limits
of the SM and BBM. We note also that, working with SM
and BBM, one needs to reselect the basis set parameters each
time when the number of basis functions is enlarged. The
necessity of this procedure drastically increases the required
computation time and, thus, strongly reduces the advantage of
the real arithmetic.

B. Energies and Auger widths of the LL resonances

We now apply the configuration-interaction complex-
scaling method for the calculation of the energies and Auger
width of LL resonances of the He-like ions from boron (Z =
5) to argon (Z = 18). The simplicity of the system studied
allows performing the full CI calculations, i.e., the configu-
ration space is formed from all possible combinations of the
one-electron Dirac orbitals appearing for a given number of B
splines. In the present paper, B splines of order 11 are utilized.
Such a high order of B splines is chosen to guarantee the
correct behavior of the one-electron Dirac orbitals with orbital
angular momenta up to L = 8 at the origin. The one-electron
orbitals with proper behavior at the origin appear to be less

TABLE II. Energy E and Auger width �Aug of the 2s2 state of the He-like carbon (Z = 6) ion obtained within the configuration-interaction
complex-scaling method. The CSFs are constructed from one-electron Dirac orbitals with orbital angular momenta up to Lmax being obtained
in the basis of N B splines. The size of the spherical box was chosen to be 15 a.u., γ = 0.3, and θ = 20◦. The values listed after the second
row are the increments obtained by successively adding configurations while increasing Lmax.

E [a.u.] �Aug × 103 [a.u.]

Lmax N = 30 N = 40 N = 50 N = 30 N = 40 N = 50

1 −8.291 450 6 −8.291 450 0 −8.291 449 9 7.056 59 7.058 01 7.058 00
2 −0.000 796 1 −0.000 796 0 −0.000 796 0 −0.081 75 −0.081 55 −0.081 52
3 −0.000 118 0 −0.000 118 3 −0.000 118 3 −0.018 88 −0.018 72 −0.018 70
4 −0.000 037 5 −0.000 037 8 −0.000 037 8 −0.006 72 −0.006 58 −0.006 56
5 −0.000 015 9 −0.000 016 1 −0.000 016 2 −0.003 02 −0.002 91 −0.002 89
6 −0.000 007 8 −0.000 008 1 −0.000 008 1 −0.001 57 −0.001 49 −0.001 48
7 −0.000 004 3 −0.000 004 5 −0.000 004 5 −0.000 91 −0.000 85 −0.000 83
8 −0.000 002 5 −0.000 002 7 −0.000 002 7 −0.000 57 −0.000 52 −0.000 51
9–∞ −0.000 005 7 −0.000 006 8 −0.000 007 1 −0.001 76 −0.001 49 −0.001 42
Total −8.292 438 3 −8.292 440 2 −8.292 440 7 6.941 41 6.943 91 6.944 07
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TABLE III. Energies Etot and Auger widths �Aug of the LL resonances of the He-like ions from boron (Z = 5) to argon (Z = 18), in a.u.
The CS DCB energy, the QED correction, and the nuclear recoil correction are explicitly shown. Energies Etot are supplemented with the total
uncertainties from all calculated and uncalculated contributions. The nuclear charge radii are taken from Ref. [59].

Ion Resonance J DCB Recoil QED Etot �Aug

11B3+ 2s2
1/2 0 −5.662 877 1 0.000 282 1 0.000 085 6 −5.662 509(24) 6.674(1) × 10−3

2p2
1/2 0 −5.470 235 0 0.000 280 5 −0.000 000 7 −5.469 955 2(88) <10−6

2p2
3/2 0 −5.145 761 9 0.000 276 0 0.000 020 3 −5.145 466(42) 3.0(2) × 10−4

2 −5.469 436 0 0.000 280 4 0.000 001 3 −5.469 154 3(48) <2 × 10−6

2s1/22p1/2 0 −5.615 179 4 0.000 281 1 0.000 054 1 −5.614 844(13) 3.314(7) × 10−4

1 −5.614 917 3 0.000 281 1 0.000 054 8 −5.614 582(13) 3.277(7) × 10−4

2s1/22p3/2 1 −5.381 734 4 0.000 271 0 0.000 046 5 −5.381 417(54) 3.09(4) × 10−3

2 −5.614 327 8 0.000 281 0 0.000 056 2 −5.613 991(13) 3.241(5) × 10−4

2p1/22p3/2 1 −5.469 940 8 0.000 280 5 0.0 −5.469 660 4(36) <10−6

2 −5.404 473 3 0.000 271 1 0.000 001 8 −5.404 200(30) 5.52(1) × 10−3

12C4+ 2s2
1/2 0 −8.292 440 7 0.000 378 6 0.000 167 9 −8.291 894(41) 6.944(1) × 10−3

2p2
1/2 0 −8.057 969 3 0.000 377 0 −0.000 001 5 −8.057 594(13) <2 × 10−7

2p2
3/2 0 −7.653 533 8 0.000 372 4 0.000 041 3 −7.653 120(54) 3.1(1) × 10−4

2 −8.056 242 6 0.000 377 0 0.000 002 8 −8.055 862 8(66) 6.9(9) × 10−7

2s1/22p1/2 0 −8.234 968 6 0.000 377 7 0.000 105 8 −8.234 485(22) 3.377(6) × 10−4

1 −8.234 399 8 0.000 377 6 0.000 107 2 −8.233 915(22) 3.32(1) × 10−4

2s1/22p3/2 1 −7.943 567 5 0.000 366 1 0.000 094 0 −7.943 107(71) 3.35(4) × 10−3

2 −8.233 140 3 0.000 377 6 0.000 110 2 −8.232 653(22) 3.27(1) × 10−4

2p1/22p3/2 1 −8.057 340 5 0.000 377 0 0.0 −8.056 963 5(38) <10−6

2 −7.971 252 5 0.000 366 7 0.000 003 1 −7.970 883(40) 6.017(9) × 10−3

14N5+ 2s2
1/2 0 −11.423 448 0 0.000 447 0 0.000 295 3 −11.42 270 6(64) 7.146(1) × 10−3

2p2
1/2 0 −11.146 890 5 0.000 445 6 −0.000 002 7 −11.146 448(19) 1.1(6) × 10−7

2p2
3/2 0 −10.662 027 6 0.000 441 2 0.000 074 5 −10.661 512(64) 3.3(2) × 10−4

2 −11.143 596 4 0.000 445 5 0.000 005 4 −11.143 145 5(93) 1.8(6) × 10−6

2s1/22p1/2 0 −11.356 413 0 0.000 446 2 0.000 185 6 −11.355 781(34) 3.444(2) × 10−4

1 −11.355 325 6 0.000 446 2 0.000 188 3 −11.354 691(34) 3.363(6) × 10−4

2s1/22p3/2 1 −11.006 211 3 0.000 434 3 0.000 168 9 −11.005 608(88) 3.54(4) × 10−3

2 −11.352 940 9 0.000 446 1 0.000 193 9 −11.352 301(34) 3.289(5) × 10−4

2p1/22p3/2 1 −11.145 698 1 0.000 445 6 0.0 −11.145 252 5(40) <10−6

2 −11.038 563 4 0.000 435 2 0.000 005 1 −11.038 123(40) 6.39(2) × 10−3

16O6+ 2s2
1/2 0 −15.056 486 6 0.000 515 5 0.000 480 2 −15.055 491(96) 7.304(1) × 10−3

2p2
1/2 0 −14.737 464 3 0.000 514 2 −0.000 004 5 −14.736 955(27) 2.3(7) × 10−7

2p2
3/2 0 −14.171 660 3 0.000 509 9 0.000 123 3 −14.171 027(76) 3.4(2) × 10−4

2 −14.731 723 8 0.000 514 0 0.000 009 4 −14.731 200(14) 3.9(3) × 10−6

2s1/22p1/2 0 −14.980 155 6 0.000 514 8 0.000 300 9 −14.979 340(50) 3.516(5) × 10−4

1 −14.978 259 4 0.000 514 8 0.000 305 6 −14.977 439(50) 3.409(6) × 10−4

2s1/22p3/2 1 −14.570 258 8 0.000 502 7 0.000 279 0 −14.569 48(11) 3.69(5) × 10−3

2 −14.974 120 9 0.000 514 6 0.000 315 2 −14.973 291(50) 3.304(5) × 10−4

2p1/22p3/2 1 −14.735 390 8 0.000 514 1 0.000 000 3 −14.734 876 4(44) <10−6

2 −14.606 769 5 0.000 503 7 0.000 008 0 −14.606 258(44) 6.67(3) × 10−3

19F7+ 2s2
1/2 0 −19.192 230 3 0.000 553 3 0.000 735 5 −19.190 94(14) 7.434(3) × 10−3

2p2
1/2 0 −18.830 232 1 0.000 552 2 −0.000 006 9 −18.829 687(37) 4.8(6) × 10−7

2p2
3/2 0 −18.182 869 3 0.000 548 2 0.000 191 0 −18.182 130(88) 3.5(3) × 10−4

2 −18.820 891 7 0.000 551 9 0.000 015 3 −18.820 324(19) 8(1) × 10−6

2s1/22p1/2 0 −19.106 935 9 0.000 552 8 0.000 459 7 −19.105 923(70) 3.600(7) × 10−4

1 −19.103 851 9 0.000 552 7 0.000 467 2 −19.102 832(70) 3.463(7) × 10−4

2s1/22p3/2 1 −18.636 316 1 0.000 541 1 0.000 432 5 −18.635 34(13) 3.81(4) × 10−3

2 −19.097 127 7 0.000 552 5 0.000 482 8 −19.096 092(70) 3.326(8) × 10−4

2p1/22p3/2 1 −18.826 854 3 0.000 552 1 0.000 000 7 −18.826 301 5(50) <2 × 10−6

2 −18.676 234 3 0.000 542 2 0.000 012 3 −18.675 680(50) 6.90(4) × 10−3

20Ne8+ 2s2
1/2 0 −23.831 447 0 0.000 652 7 0.001 075 2 −23.829 72(19) 7.542(1) × 10−3

2p2
1/2 0 −23.425 814 7 0.000 651 6 −0.000 010 0 −23.425 173(50) 9.5(4) × 10−7

2p2
3/2 0 −22.696 122 6 0.000 647 4 0.000 281 1 −22.695 19(10) 3.6(2) × 10−4

2 −23.411 414 9 0.000 651 2 0.000 023 5 −23.410 740(28) 1.47(5) × 10−5

2s1/22p1/2 0 −23.737 593 9 0.000 652 2 0.000 670 1 −23.736 272(96) 3.690(4) × 10−4

1 −23.732 844 2 0.000 652 1 0.000 681 5 −23.731 511(96) 3.518(3) × 10−4
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TABLE III. (Continued.)

Ion Resonance J DCB Recoil QED Etot �Aug

2s1/22p3/2 1 −23.205 029 4 0.000 639 7 0.000 638 1 −23.203 75(16) 3.91(4) × 10−3

2 −23.722 467 3 0.000 651 8 0.000 705 6 −23.721 110(96) 3.346(7) × 10−4

2p1/22p3/2 1 −23.420 584 6 0.000 651 4 0.000 001 6 −23.419 931 6(61) <2 × 10−6

2 −23.247 336 3 0.000 640 9 0.000 018 6 −23.246 677(59) 7.08(4) × 10−3

13Na9+ 2s2
1/2 0 −28.975 002 0.000 690 0.001 514 −28.972 80(25) 7.635(1) × 10−3

2p2
1/2 0 −28.524 916 0.000 689 −0.000 013 −28.524 240(66) 1.72(8) × 10−6

2p2
3/2 0 −27.711 922 0.000 685 0.000 397 −27.710 84(12) 3.7(2) × 10−4

2 −28.503 662 0.000 688 0.000 035 −28.502 939(39) 2.7(1) × 10−5

2s1/22p1/2 0 −28.873 071 0.000 690 0.000 941 −28.871 44(13) 3.790(5) × 10−4

1 −28.866 072 0.000 690 0.000 957 −28.864 43(13) 3.581(2) × 10−4

2s1/22p3/2 1 −28.277 097 0.000 677 0.000 905 −28.275 51(20) 3.99(4) × 10−3

2 −28.850 706 0.000 689 0.000 993 −28.849 02(13) 3.367(3) × 10−4

2p1/22p3/2 1 −28.517 138 0.000 689 0.000 003 −28.516 446 6(78) <2 × 10−6

2 −28.320 470 0.000 679 0.000 028 −28.319 763(70) 7.23(4) × 10−3

24Mg10+ 2s2
1/2 0 −34.623 863 0.000 790 0.002 068 −34.621 01(33) 7.716(1) × 10−3

2p2
1/2 0 −34.128 326 0.000 789 −0.000 017 −34.127 554(85) 2.91(7) × 10−6

2p2
3/2 0 −33.230 798 0.000 785 0.000 542 −33.229 47(14) 3.9(2) × 10−4

2 −34.098 066 0.000 788 0.000 049 −34.097 229(54) 4.49(6) × 10−5

2s1/22p1/2 0 −34.514 412 0.000 790 0.001 281 −34.512 34(17) 3.901(4) × 10−4

1 −34.504 470 0.000 790 0.001 304 −34.502 38(17) 3.652(5) × 10−4

2s1/22p3/2 1 −33.853 273 0.000 777 0.001 243 −33.851 25(24) 4.06(4) × 10−3

2 −34.482 472 0.000 789 0.001 355 −34.480 33(17) 3.387(7) × 10−4

2p1/22p3/2 1 −34.117 134 0.000 789 0.000 005 −34.116 340(10) <2 × 10−6

2 −33.896 040 0.000 778 0.000 040 −33.895 222(86) 7.34(4) × 10−3

27Al11+ 2s2
1/2 0 −40.779 109 0.000 827 0.002 752 −40.775 53(42) 7.788(1) × 10−3

2p2
1/2 0 −40.236 929 0.000 826 −0.000 020 −40.236 12(11) 4.66(6) × 10−6

2p2
3/2 0 −39.253 305 0.000 822 0.000 718 −39.251 77(17) 4.0(2) × 10−4

2 −40.195 135 0.000 825 0.000 067 −40.194 243(72) 7.4(1) × 10−5

2s1/22p1/2 0 −40.662 765 0.000 827 0.001 699 −40.660 24(21) 4.025(8) × 10−4

1 −40.649 071 0.000 827 0.001 730 −40.646 51(21) 3.738(6) × 10−4

2s1/22p3/2 1 −39.934 371 0.000 814 0.001 661 −39.931 90(29) 4.12(5) × 10−3

2 −40.618 454 0.000 826 0.001 801 −40.615 83(21) 3.412(7) × 10−4

2p1/22p3/2 1 −40.221 253 0.000 826 0.000 009 −40.220 418(14) <2 × 10−6

2 −39.974 458 0.000 816 0.000 058 −39.973 58(10) 7.42(4) × 10−3

28Si12+ 2s2
1/2 0 −47.441 930 0.000 928 0.003 583 −47.437 42(52) 7.853(1) × 10−3

2p2
1/2 0 −46.851 709 0.000 927 −0.000 021 −46.850 80(13) 7.1(1) × 10−6

2p2
3/2 0 −45.780 017 0.000 923 0.000 928 −45.778 17(19) 4.1(2) × 10−4

2 −46.795 465 0.000 926 0.000 089 −46.794 451(95) 1.16(1) × 10−4

2s1/22p1/2 0 −47.319 385 0.000 928 0.002 206 −47.316 25(26) 4.157(2) × 10−4

1 −47.301 016 0.000 928 0.002 247 −47.297 84(26) 3.84(1) × 10−4

2s1/22p3/2 1 −46.521 263 0.000 914 0.002 171 −46.518 18(34) 4.17(5) × 10−3

2 −47.259 405 0.000 927 0.002 343 −47.256 14(26) 3.437(9) × 10−4

2p1/22p3/2 1 −46.830 238 0.000 926 0.000 014 −46.829 298(20) 6(3) × 10−7

2 −46.556 124 0.000 916 0.000 082 −46.555 13(13) 7.48(4) × 10−3

31P13+ 2s2
1/2 0 −54.613 632 0.000 965 0.004 579 −54.608 09(64) 7.911(1) × 10−3

2p2
1/2 0 −53.973 757 0.000 964 −0.000 017 −53.972 81(16) 1.05(2) × 10−5

2p2
3/2 0 −52.811 508 0.000 959 0.001 175 −52.809 37(22) 4.3(2) × 10−4

2 −53.899 759 0.000 962 0.000 115 −53.898 68(12) 1.77(2) × 10−4

2s1/22p1/2 0 −54.485 633 0.000 965 0.002 810 −54.481 86(32) 4.305(1) × 10−4

1 −54.461 556 0.000 964 0.002 862 −54.457 73(32) 3.946(7) × 10−4

2s1/22p3/2 1 −53.614 881 0.000 952 0.002 783 −53.611 15(40) 4.21(5) × 10−3

2 −54.406 141 0.000 963 0.002 991 −54.402 19(32) 3.47(2) × 10−4

2p1/22p3/2 1 −53.944 897 0.000 963 0.000 021 −53.943 913(28) 8(4) × 10−7

2 −53.641 418 0.000 953 0.000 114 −53.640 35(17) 7.50(5) × 10−3

32S14+ 2s2
1/2 0 −62.295 647 0.001 066 0.005 757 −62.288 82(78) 7.963(1) × 10−3

2p2
1/2 0 −61.604 283 0.001 065 −0.000 006 −61.603 22(20) 1.48(2) × 10−5

2p2
3/2 0 −60.348 353 0.001 060 0.001 458 −60.345 83(26) 4.5(2) × 10−4

2 −61.230 680 0.001 063 0.000 144 −61.229 47(21) 7.48(5) × 10−3
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TABLE III. (Continued.)

Ion Resonance J DCB Recoil QED Etot �Aug

2s1/22p1/2 0 −62.162 977 0.001 066 0.003 522 −62.158 39(39) 4.468(1) × 10−4

1 −62.132 053 0.001 066 0.003 588 −62.127 40(39) 4.078(6) × 10−4

2s1/22p3/2 1 −61.216 210 0.001 052 0.003 508 −61.211 65(48) 4.24(5) × 10−3

2 −62.059 542 0.001 064 0.003 756 −62.054 72(39) 3.50(2) × 10−4

2p1/22p3/2 1 −61.566 101 0.001 064 0.000 031 −61.565 007(38) 1.0(3) × 10−6

2 −61.508 840 0.001 053 0.000 157 −61.507 63(17) 2.63(3) × 10−4

35Cl15+ 2s2
1/2 0 −70.489 528 0.001 103 0.007 135 −70.481 29(94) 8.012(1) × 10−3

2p2
1/2 0 −69.744 626 0.001 101 0.000 017 −69.743 51(24) 2.01(2) × 10−5

2p2
3/2 0 −68.391 105 0.001 097 0.001 778 −68.388 23(30) 4.7(2) × 10−4

2 −69.324 198 0.001 099 0.000 178 −69.322 92(25) 7.43(4) × 10−3

2s1/22p1/2 0 −70.352 997 0.001 103 0.004 351 −70.347 54(47) 4.641(1) × 10−4

1 −70.313 991 0.001 102 0.004 433 −70.308 46(47) 4.225(8) × 10−4

2s1/22p3/2 1 −69.326 288 0.001 089 0.004 357 −69.320 84(56) 4.27(6) × 10−3

2 −70.220 551 0.001 101 0.004 650 −70.214 80(47) 3.53(2) × 10−4

2p1/22p3/2 1 −69.694 787 0.001 101 0.000 044 −69.693 642(52) 1.3(8) × 10−6

2 −69.623 669 0.001 090 0.000 214 −69.622 36(23) 3.79(3) × 10−4

40Ar16+ 2s2
1/2 0 −79.196 961 0.001 084 0.008 730 −79.187 1(11) 8.056(1) × 10−3

2p2
1/2 0 −78.396 270 0.001 083 0.000 060 −78.395 13(28) 2.66(3) × 10−5

2p2
3/2 0 −76.940 290 0.001 078 0.002 134 −76.937 08(34) 4.9(3) × 10−4

2 −77.922 194 0.001 080 0.000 215 −77.920 90(29) 7.33(4) × 10−3

2s1/22p1/2 0 −79.057 381 0.001 084 0.005 310 −79.050 99(56) 4.833(1) × 10−4

1 −79.008 977 0.001 084 0.005 408 −79.002 49(56) 4.400(6) × 10−4

2s1/22p3/2 1 −77.946 209 0.001 071 0.005 344 −77.939 79(64) 4.30(6) × 10−3

2 −78.890 181 0.001 082 0.005 685 −78.883 41(56) 3.57(2) × 10−4

2p1/22p3/2 1 −78.331 956 0.001 082 0.000 061 −78.330 813(70) 1.7(7) × 10−6

2 −78.245 356 0.001 072 0.000 288 −78.244 00(31) 5.31(4) × 10−4

dependent on the choice of the complex rotation angle θ and,
thus, provide more accurate results. The accuracy of the DCB
eigenvalues, apart from the choice of the θ and γ parameters,
depends on the number of B splines and the number of the
orbital angular momenta L included. To estimate the uncer-
tainty arising from the number of orbital angular momenta
we carry out the CI calculations for L � 8 and estimate the
tail contributions via polynomial least square fitting of the
increments in powers of 1/L, as in Refs. [38,48,49]. An ex-
ample of such an uncertainty analysis is presented in Table II
for the 2s2 state of the carbon (Z = 6) ion. In this table, the
results obtained solely for Lmax = 0 are not presented since
the inclusion of the p orbitals leads to a drastic change of the
energy and Auger width. From Table II, it is seen that, for the
basis of more than 40 B splines, the dominant contribution
to the uncertainty of the DCB eigenvalues is provided by
the configuration states with orbital angular momenta L � 9,
whose contributions are taken into account by extrapolation.
Therefore, in what follows we solve the complex rotated DCB
equation in the configuration space formed from all possible
combinations of the one-electron Dirac orbitals constructed
out of 40 or 50 B splines.

To obtain the energies of the LL resonances with an ac-
curacy at a few meV level, we supplement the solutions of
the complex rotated DCB equation with the nuclear recoil
and QED corrections. Both corrections are obtained with the
use of the conventional (Hermitian) DCB Hamiltonian. The
nuclear recoil effect arising due to the finite nuclear mass M
admits fully relativistic treatment only within the framework
of QED [50,51]. Here we account for this effect in the

lowest-order relativistic approximation and to first order in
me/M via the inclusion of the mass shift operator [50,52]

HMS = 1

2M

∑
i, j

{
pi · p j − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j

}
(13)

into the DCB Hamiltonian. The nuclear recoil correction to
the energy of the particular LL resonance is given by the
first-order perturbation theory with respect to this additional
term [42]. As already mentioned, in addition to the nuclear
recoil corrections we supplement the complex rotated DCB
energies with the QED corrections. The ab initio evaluation
of these corrections still remains a challenging task even for
He-like systems for which the methods of the QED calcula-
tions are currently well established (see, e.g., Refs. [53–55]
and references therein). We thus compute the two-electron
QED effects on the energies of the autoionizing states. In the
present paper, we evaluate the QED corrections utilizing the
model QED operator [56], constructed with the usage of the
QEDMOD package [57]. We evaluate the QED correction as the
difference between the CI results obtained with and without
the model QED operator included into the DCB Hamilto-
nian. This approach has shown its efficiency in numerous
investigations [38,39,49,58]. However, in the QED model
operator method, the screened QED corrections are taken
into account only approximately. These corrections as well
as the QED part of the two-photon-exchange contributions
give rise to another source of uncertainty. We also note that
the frequency-dependent Breit correction was found to be of
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TABLE IV. The comparison of the calculated energies E and Auger widths �Aug of the LL resonances of the He-like ions with other
nonrelativistic [60] and relativistic results [7]. All data are given in atomic units.

This work Other theory

Z Resonance J E �Aug E �Aug

5 2s2
1/2 0 −5.662 502(24) 6.674(1) × 10−3 −5.66 088a 6.650 × 10−3a

2p2
3/2 0 −5.145 465(42) 3.0(2) × 10−4 −5.14 461a 3.010 × 10−4a

2s1/22p1/2 0 −5.614 844(13) 3.314(7) × 10−4 −5.612 99a 3.208 × 10−4a

1 −5.614 581(13) 3.277(7) × 10−4

2s1/22p3/2 2 −5.613 991(13) 3.241(5) × 10−4

6 2s2
1/2 0 −8.291 878(40) 6.944(1) × 10−3 −8.288 20a 6.910 × 10−3a

2p2
3/2 0 −7.653 119(54) 3.1(1) × 10−4 −7.651 06a 3.210 × 10−4a

2s1/22p1/2 0 −8.234 485(22) 3.377(6) × 10−4 −8.230 29a 3.220 × 10−4a

−8.234 485b 3.392 × 10−4b

1 −8.233 915(22) 3.32(1) × 10−4 −8.233 914b 3.327 × 10−4b

2s1/22p3/2 2 −8.232 652(22) 3.27(1) × 10−4 −8.232 654b 3.269 × 10−4b

7 2s2
1/2 0 −11.422 672(64) 7.146(1) × 10−3 −11.415 46a 7.100 × 10−3a

2p2
3/2 0 −10.661 511(64) 3.3(2) × 10−4 −10.657 32a 3.340 × 10−4a

2s1/22p1/2 0 −11.355 781(34) 3.444(2) × 10−4 −11.347 55a 3.230 × 10−4a

1 −11.354 691(34) 3.363(6) × 10−4

2s1/22p3/2 2 −11.352 301(34) 3.289(5) × 10−4

8 2s2
1/2 0 −15.055 424(96) 7.304(1) × 10−3 −15.042 66a 7.250 × 10−3a

2p2
3/2 0 −14.171 026(76) 3.4(2) × 10−4 −14.163 45a 3.440 × 10−4a

2s1/22p1/2 0 −14.979 340(50) 3.516(5) × 10−4 −14.964 81a 3.235 × 10−4a

1 −14.977 439(49) 3.409(6) × 10−4

2s1/22p3/2 2 −14.973 291(50) 3.304(5) × 10−4

9 2s2
1/2 0 −19.190 81(14) 7.434(3) × 10−3 −19.169 83a 7.365 × 10−3a

2p2
3/2 0 −18.182 130(88) 3.5(3) × 10−4 −18.169 51a 3.520 × 10−4a

2s1/22p1/2 0 −19.105 923(70) 3.600(7) × 10−4 −19.082 04a 3.240 × 10−4a

1 −19.102 832(70) 3.463(7) × 10−4

2s1/22p3/2 2 −19.096 092(70) 3.326(8) × 10−4

10 2s2
1/2 0 −23.829 44(19) 7.542(1) × 10−3 −23.796 99a 7.460 × 10−3a

2p2
3/2 0 −22.695 19(10) 3.6(2) × 10−4 −22.675 51a 3.585 × 10−4a

2s1/22p1/2 0 −23.736 271(96) 3.690(4) × 10−4 −23.699 27a 3.243 × 10−4a

1 −23.731 510(96) 3.518(3) × 10−4

2s1/22p3/2 2 −23.721 110(96) 3.346(7) × 10−4

aHo [60].
bMüller et al. [7].

minor importance for the systems under investigation and,
therefore, its contribution can be omitted.

Table III presents the energies and Auger widths of the LL
resonances of the He-like ions from boron (Z = 5) to argon
(Z = 18). In this table, the complex rotated DCB energy, the
QED correction, and the nuclear recoil correction are shown
explicitly. The presented Auger widths �Aug were calculated
only by means of the CS DCB Hamiltonian. The smallness
of the Auger widths of the 2p2

1/2 (J = 0), 2p2
3/2 (J = 2), and

2p1/22p3/2 (J = 1) resonances is explained by the fact that
the Auger decay of the 3P0, 3P2, and 3P1 states corresponding
to these resonances in the LS-coupling scheme, respectively,
is strictly forbidden in the nonrelativistic limit. Indeed, due to
parity and total angular-momentum conservation, the Auger
decay is allowed only to the 1sεs and 1sεd configurations.
In the nonrelativistic case, the transition to these configura-
tions is forbidden by the conservation of the orbital angular
momentum. Energies Etot are supplemented with the total
uncertainties from all calculated contributions as well as from
uncalculated high-order QED corrections. The uncertainty
due to the uncalculated QED corrections was estimated by

analysis of the related contributions for the ground and single-
excited states in He-like ions [53]. In most cases, the accuracy
of the present calculations is limited by the uncertainties from
the QED contributions. Using the presented results with the
available high-precision data for the energies of the ground
and lowest excited states (see Refs. [53–55]), one can easily
find the corresponding transition energies.

In Table IV, we compare some of our results with
other nonrelativistic [60] and relativistic calculations [7].
In Ref. [60], the calculations were performed by using the
complex-scaling technique in combination with Hylleraas-
type functions without taking into account the QED correc-
tions. Since the nonrelativistic method cannot resolve the fine
structure of the 2s2p resonance, for our three values for the
2s1/22p1/2 (J = 0, 1) and 2s1/22p3/2 (J = 2) states there is
only one corresponding value from Ref. [60]. As one can
see from the table, our results are in reasonable agreement
with the nonrelativistic results. We also compared the values
obtained for the carbon ion (Z = 6) with the recent relativistic
calculations of Ref. [7]. These calculations were performed by
employing the many-body perturbation theory in an all-order
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formulation with the complex-scaling technique (see Ref. [30]
and references therein). The QED corrections were taken into
account by using the Welton method, which is different from
the QED model operator approach. However, the results of
Ref. [7] are in excellent agreement with our values.

IV. CONCLUSION

The energies and Auger widths of the LL resonances of
the He-like ions from boron (Z = 5) to argon (Z = 18) have
been evaluated by means of the complex-scaled configuration-
interaction method. The systematic analysis of the uncertainty
arising from the limited size of the configuration space was
performed. The obtained energies have been compared with

those calculated by using the stabilization and basic balancing
methods. It was found that the energies obtained with these
methods differ from the complex-scaling results by a shift that
varies from about 1 to 10 meV.

The nuclear recoil and QED corrections were evaluated
separately and added to the complex rotated Dirac-Coulomb-
Breit energies. As the result, the most accurate theoretical
predictions for the energies of the LL resonances are obtained.
In most cases, the accuracy of the total results is limited by the
uncertainties from the higher-order QED corrections.
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