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Resonant photoproduction of high-energy electron-positron pairs in the field of a nucleus and a
weak electromagnetic wave

Nikita R. Larin ,* Victor V. Dubov,† and Sergei P. Roshchupkin ‡

Department of Theoretical Physics Peter the Great St. Petersburg Polytechnic University St. Petersburg, Russia

(Received 8 August 2019; published 8 November 2019)

The resonant photoproduction of ultrarelativistic electron-positron pairs (PPPs) in a nuclear field and a weak
laser field is theoretically studied. Under resonance conditions, the intermediate virtual electron (positron) in the
laser field becomes a real particle. As a result, the initial process of the second order in the fine structure constant
in the laser field effectively reduces into two successive processes of the first order: single-photon production
of electron-positron pair in the laser field (laser-stimulated Breit-Wheeler process) and laser-assisted process
of electron (positron) scattering on a nucleus. Resonant kinematics of PPPs is studied in detail. It is shown
that for the considered laser intensities resonance is possible only for the initial photon energies greater than
the characteristic threshold energy. At the same time, the ultrarelativistic electron and positron propagate in a
narrow cone along the direction of the initial photon momentum. The resonant energy of the positron (electron)
can has two values for each outgoing angle that varies from zero to some maximum value determined by the
energy of the initial photon and the threshold energy. Resonant differential cross section of the studied process
was obtained. It is shown that the resonant differential cross section of the PPP can significantly exceed the
corresponding cross section of the PPP without an external field. The project calculations may be experimentally
verified by the scientific facilities of pulsed laser radiation (SLAC, FAIR, XFEL, ELI, XCELS).
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I. INTRODUCTION

Due to the use of the powerful laser sources in modern
applied and fundamental research [1–5] a theoretical study
of quantum electrodynamics (QED) processes in strong light
fields seems to be one of the priorities that is developing in-
tensively (see, for example, Refs. [6–51]). The main research
results were systematized in monographs [11–14] and reviews
[15–21].

In particular, the process of photoproduction of an electron-
positron pair (PPP) on the nucleus is of great interest since
starting from energies above 3 MeV this process is a pre-
vailing mechanism of the interaction of γ radiation with
matter. A lot of works are devoted to this problem [12–14,18–
20,26–28,35,38,42]. Separately, an article should be noted
[50] where authors theoretically analyzed the formation of
the electron-positron pair by the photon in a multifrequency
electromagnetic field as well as an article [51], which is
dedicated to influence of a strong laser field on the Bethe-
Heitler photoproduction process by a relativistic nucleus.

It is important to emphasize that QED processes of higher
than the first order in the fine structure constant in a laser field
(laser-assisted QED processes) can occur in both nonresonant
and resonant channels. In the laser field so-called Oleinik’s
resonances [9,10] can take place associated with the fact that
in the light field lower-order processes in the fine structure
constant are allowed (laser-stimulated QED processes) [15].
It is important to note that the probability of the resonant
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QED processes in a laser field can significantly (by several
orders of magnitude) exceed the corresponding probability of
the process without an external field.

We underline that the Oleinik’s resonances for the PPP on
the nucleus in the wave field were studied only for one of the
possible channels, where the initial γ -quantum decay into a
positron and an intermediate electron in the wave field, which
is then scattered by the nucleus. The second channel, where
the initial photon decay into an electron and an intermediate
positron, which is then scattered by the nucleus has not been
studied. We also emphasize that for the first channel, only
the case of an ultrarelativistic pair was considered, when the
positron propagates in a narrow cone with the direction of the
initial photon momentum, and the electron is scattered at large
angles [12–14,19,20].

In this paper, the theory of the resonant PPP of ultrarela-
tivistic energies is developed for the case where the positron
and the electron propagate in a narrow cone along the di-
rection of momentum of the initial photon, i.e., with taking
into account channels a and b (see Fig. 2). The process is
considered in the Born approximation for interaction with the
field of the nucleus. (v/c � Z/137, v is the electron velocity,
c is a speed of light in vacuum, Z is the nuclear charge
number).

We point out that there are two characteristic parameters in
a problem of PPP: classical relativistically invariant parameter
[15,19–22],

η = eFλ̄

mc2
, (1)

numerically equal to the ratio of the work of the field at a
wavelength to the rest energy of the electron (where e and m
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(a)

(b)

FIG. 1. Feynman diagrams of the PPP process on the nucleus
in the field of a plane electromagnetic wave. Double incoming and
outgoing lines correspond to the Volkov functions of the electron and
positron in the initial and final states, the inner line corresponds to the
Green’s function of the fermion in the field of a plane wave (4). Wavy
line corresponds to four-momentum of the initial gamma quantum.
Dashed line stands for four-momentum of pseudophoton of recoil

are the charge and mass of the electron, F and λ̄ = c/ω are
the strength of the electric field and wavelength, correspond-
ingly, ω is the frequency of wave) and quantum multiphoton
parameter (Bunkin-Fedorov parameter) [8,11,19–22]:

γi = η
mvic

h̄ω
. (2)

Herein vi is the velocity of the initial electron. Within the
optical range of the frequencies (ω ∼ 1015s−1) the classical
parameter is η ∼ 1 for the fields of F ∼ 1010/1011 V/cm,
quantum multiphoton parameter is γi ∼ 1 for the fields of F ∼
(105/106)(c/vi ) V/cm. Therefore, when η � 1 the quantum
multiphoton parameter γi may be large. However, this is
true only when the electrons (positrons) are scattered on the
nucleus at large angles. In this case, the main parameter
determining multiphoton processes is the Bunkin-Fedorov
quantum parameter. Accordingly, the problem is usually stud-
ied in the intensity of moderately strong fields, in which these
parameters satisfy the following conditions: η � 1, γi � 1.
It is important that for the process of PPP with the scattering
of electrons (positrons) on the nucleus at small angles, the
Bunkin-Fedorov quantum parameter does not appear [44]. In
this case, the main parameter of multiphoton processes is the
classical parameter η and the laser field can be considered as

(a)

(b)

FIG. 2. Resonant photoproduction of the electron-positron pair
in the field of the nucleus and a plane electromagnetic wave.

weak [44]:

η � 1. (3)

Equation (3) is a basic condition in the present paper.
Further in this paper we use the relativistic system of units:
h̄ = c = 1.

II. AMPLITUDE OF THE PPP ON A NUCLEUS IN
A LIGHT FIELD

Let us take a four-potential of the external elliptically
polarized light wave propagating along the axis z in the
following form:

A(φ) = F

ω
(ex cos φ + δey sin φ), φ = kx = ω(t − z). (4)

Here δ is the ellipticity parameter (δ = 0 is the linear polar-
ization, δ = ±1 is the circular polarization), ex,y = (0, ex,y)
and k = ωn = ω(1, n) are four-vectors of polarization and the
momentum of the electromagnetic wave, particularly: k2 =
0, e2

x,y = −1, (ex,yk) = 0.
We study the problem of PPP on the nucleus in the field of

a plane electromagnetic wave in the Born approximation on
the interaction of electrons and positrons with the field of the
nucleus. This is a second-order process in the fine structure
constant and it is described by two Feynman diagrams (see
Fig. 1).
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The amplitude of such process after simple calculations
can be represented as follows (see [12–14,18,19,27]):

S f i =
∞∑

l=−∞
Sl , (5)

where the partial amplitude with emission and absorption of
|l| photons of the wave has the following form:

Sl = i
8Ze3π5/2

√
2E−E+ωi

exp(iφ̃)[ūMlv]
δ(q0)

q2
, (6)

Ml =
∞∑

l1=−∞

[
H0

l+l1 ( p̃−, q−)
q̂− + m∗
q2− − m2∗

εμHμ

l1
(q−, p̃+)

+ εμHμ

l1
( p̃−, q+,)

q̂+ + m∗
q2+ − m2∗

H0
l+l1 (q+, p̃+)

]
. (7)

In the relations (6)–(7) φ̃ is the independent from the sum-
mation indexes phase, εμ is the four-vector of polarization of
initial photon v, u and p̃± = (Ẽ±, p̃±) are the Dirac bispinors
and the four-quasimomenta of the positron and electron. The
four-momenta of the intermediate positron and electron q±
and the transmitted four-momentum q are determined by the
expressions:

q− = ki + k − l1 p̃+, q+ = ki + k − l1 p̃−, (8)

q = p̃+ + p̃− − ki − lk. (9)

Here ki = ωi(1, ni) is the four-momentum of the initial pho-
ton, m∗ is the effective mass of the electron in the light field
[15,47,48]:

p̃± = p± + (1 + δ2)η2 m2

4(kp±)
k, (10)

p̃2
± = m2

∗, m∗ = m

√
1 + 1

2
(1 + δ2)η2. (11)

Here p± = (E±, p±) are four-momenta of positron and elec-
tron. Notation with the hat in relation (7) and further stands
for the dot product of the corresponding four-vector with
Dirac γ matrices: γ̃ μ = (γ̃ 0, γ̃ ), μ = 0, 1, 2, 3. For example,
q̂+ = qμ

+γ̃μ = q0
+γ̃0 − q+γ̃ . The amplitudes Hμ

l1
and H0

l+l1
(see Fig. 1) in relation (7) have the following form:

Hμ

l1
(p2, p1) = aμLl1 (p2, p1) + bμ

−Ll1−1

+ bμ
+Ll1+1 + cμ(Ll1+2 + Ll1−2), (12)

H0
l+l1 (p2, p1) = a0Ll+l1 (p2, p1) + b0

−Ll+l1−1

+ b0
+Ll+l1+1 + c0(Ll+l1+2 + Ll+l1−2), (13)

matrices aμ, bμ
±, cμ are determined by the expressions:

aμ = γ̃ μ + (
1 + δ2)η2 m2

4(kp1)(kp2)
kμ, (14)

bμ
± = 1

4
ηm

[
ε̂±k̂γ̃ μ

(kp2)
+ γ̃ μk̂ε̂±

(kp1)

]
, ε̂± = êx ± iδêy, (15)

cμ = −(1 − δ2)η2 m2

8(kp1)(kp2)
kμ. (16)

Special functions Ll and their arguments have the following
form [46]:

Ll (γ , β, χ ) = e−ilχ
∞∑

n′=−∞
e2in′χJl−2n′ (γ )Jn′ (β ), (17)

tanχ = δ
(eyQ)

(exQ)
, Q = p2

(kp2)
− p1

(kp1)
, (18)

γ = ηm
√

(exQ)2 + δ2(eyQ)2, (19)

β = 1

8
(1 − δ2)η2m2

[
1

(kp2)
− 1

(kp1)

]
. (20)

For the amplitudes H0
l+l1

( p̃−,q−) and H0
l+l1

(q+, p̃+) in the
expressions (13), (14)–(20) we have to assume p1 →
q−, p2 → p̃−, and p1 → p̃+, p2 → q+, and for the ampli-
tudes Hμ

l1
(q−, p̃+,) and Hμ

l1
( p̃−, q+,) in the relations (12),

(14)–(20) we have to make a transform p1 → p̃+, p2 → q−,
and p1 → q+, p2 → p̃−.

III. POLES OF THE PPP AMPLITUDE

Resonant behavior of the studied process is explained
by the fact that the low-order processes in the fine struc-
ture constant in the field of the electromagnetic wave are
allowed, since intermediate particle enters the mass shell
[12–14,18,19,27] (see Fig. 2):

q2
− = m2, q2

+ = m2, (21)

where four-momenta of the intermediate electron q− and
positron q+ under conditions (3) are defined as follows:

q− = ki + k − p+, q+ = ki + k − p−. (22)

It is easy to verify that with the coincidence of the di-
rections of propagation of the initial photon and the external
field the simultaneous fulfillment of the resonant conditions
(21) and (22) is impossible. We also note that for the process
of electron-positron pair production by a photon in the field
of a plane electromagnetic wave the main parameter is the
classical relativistically invariant parameter η. Therefore for
the fields (3) the processes with absorption of one photon
from the external field l1 = 1 are the most probable. At the
same time, for the process of electron or positron scattering
on the nucleus at large angles in the field of a wave, the main
parameter is the Bunkin-Fedorov quantum parameter γi � 1.
Because of this, electron or positron can emit and absorb a
large number of photons of the external field. However, if
electron or positron is scattered at small angles, then the clas-
sical parameter becomes the main parameter for the process
of electron or positron scattering on the nucleus and under
conditions (3) the process with one photon of the laser field is
the most probable.

Considering expressions (21) and (22) it is not difficult
to obtain the relations for the initial photon frequency at
resonance for Figs. 2(a) and 2(b). Under conditions (3) we
have:

ωi (a) = l1ω
κ+

κi+ + 2l1ωsin2(θi
/

2)
, (23)

ωi (b) = l1ω
κ−

κi− + 2l1ωsin2(θi
/

2)
. (24)
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Herein

κi± = E± − |p±| cos θi±, κ± = E± − |p±| cos θ±, (25)

θ± = ∠(k, p±), θi± = ∠(ki, p±), θi = ∠(ki, k). (26)

Further, we study the case of high energies of the initial
γ quantum, when the electron-positron pair is ultrarelativistic
and propagates in a narrow cone along the momentum of the
initial photon.

E± � m, (27)

θi± � 1, θ = ∠(p+, p−) � 1, θi ∼ 1. (28)

Under conditions (27), (28) and also by virtue of the law of
conservation of energy in the external field (3)

ωi ≈ E+ + E− (29)

we can get the following relations:

κ± ≈ 2E±sin2 θ±
2

, κi± ≈ m2

2E±
(1 + δ̃2

±), (30)

Denoted here

δ̃± = E±θi±
m = 2x±δ±, x± = E±

ωi
, δ± = ωiθi±

2m . (31)

Taking into account (25)–(30), and (23), (24) it is easy to
obtain possible values of the resonant energies of the electron
and positron for channels a and b:

x(a)+(δ2
+) = 1

2(δ2+ + εi )
· [εi ±

√
εi(εi − 1) − δ2+], (32)

x(b)−(δ2
−) = 1

2(δ2− + εi )
· [εi ±

√
εi(εi − 1) − δ2−], (33)

where

x( j) = E( j)

ωi
, j = a+, b−,

εi = ωi

ωthr
, ωthr = m2

ωsin2(θi
/

2)
. (34)

Note that the energies of the electron (channel a) and the
positron (channel b) might be obtained from the energy
conservation law x(a)−(δ2

+) ≈ 1 − x(a)+(δ2
+), x(b)+(δ2

−) ≈ 1 −
x(b)−(δ2

−).
From the relations (32) and (33) it follows that the mini-

mum energy of the initial γ quantum at resonance will be at
εi min = 1 and δ2

± = 0, i.e., ωthr is the threshold energy. The
threshold energy is determined by the electron rest energy, the
frequency of the electromagnetic wave and the angle between
the momenta of the initial photon and the electromagnetic
wave. For the frequencies from the optical range the threshold
energy is of the order of magnitude ωthr ∼ 105/106 MeV, and
for x-ray laser ωthr ∼ 102/103 MeV.

Thus, the resonant energies of the positron and the electron
are determined by two parameters: parameter εi is the energy
of the initial photon in units of the threshold energy, and also
ultrarelativistic parameters δ2

± (31) determining possible out-
going angles of the positron and the electron. It is important
to emphasize that the resonant energies of the positron and the
electron for channel a are determined only by the outgoing

angle of the positron (δ2
+) and for channel b only by the

outgoing angle of the electron (δ2
−). Moreover, the resonant

energy of the electron-positron pair can take two different
values for each angle. Possible values of angles of the pair
substantially depend on the value of the parameter εi and are
enclosed in the interval

0 � δ2
± � εi(εi − 1), εi � 1. (35)

This shows that if the energy of the initial photon is equal
to the threshold energy (εi = 1) then the electron-positron
pair propagates exactly along the momentum of the initial γ

quantum (δ2
± = 0) and the possible two values of the energy

of the positron (electron) differ as much as possible from
each other. With the increase of the outgoing angles of the
electron-positron pair due to the relation (35) the difference in
the two possible energies of the positron (electron) decreases.
With the maximum possible outgoing angle

δ2
max = εi(εi − 1) (36)

the energy of the positron (electron) takes a single value [see
(32), (33), also Fig. 3]. It is also important to note that energies
of the electron and positron (for channels a and b) can be
equal to each other (E(a)+ = E(a)−, E(b)+ = E(b)−) for one
of the two possible values of energies [with “+” in front of
square root in the relations (32) or (33)]. It takes place for the
outgoing angle of positron (electron) δ2

± = δ2
∗ , where

δ2
∗ = 1

2
[
√

1 + 4εi(εi − 1) − 1]. (37)

Thus, if the outgoing angles of the positron (for channel a) or
the electron (for channel b) are enclosed in the interval

0 < δ2
± < δ2

∗ (38)

then the energy of the positron (electron) is always greater
than the energy of the electron (positron). If

δ2
∗ < δ2

± � δ2
max (39)

then the energy of the positron (electron) is always less than
the energy of the electron (positron) (see Fig. 3, the solid
lines). If we choose an another value of the energy of the
positron (electron) [the “–” sign in expressions (32) or (33)],
then the energy of the electron (positron) will always be
greater than the energy of the positron (electron) in the range
of outgoing angles (35) (see Fig. 3 the dashed lines).

Note that in the papers [12–14,18,19,27] resonances were
studied only for channel a, when the positron propagates along
the initial photon momentum (δ2

+ = 0), and the electron is
scattered on the nucleus at large angles. Here we study the
resonances for channels a and b in the case of high energies
of the initial γ quantum [εi > 1 (ωi > ωthr )], when the ultra-
relativistic electron-positron pair propagates in a narrow cone
along the momentum of the initial photon. The interference
of the channels under the resonant conditions will occur when
the energies of the positron (electron) for channels a and b
are equal (E(a)+ = E(b)+) (see Fig. 3). If we exclude these
cases, the interference of channels a and b in the conditions
of resonance will not take place. This case will be considered
in this paper, when

E(a)+ �= E(b)+ (E(a)− �= E(b)−). (40)
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FIG. 3. Dependencies of the electron and positron resonant en-
ergies (in the units of energy of the initial photon) on the ultrarela-
tivistic parameters δ2

+ and δ2
−. The energy of the initial γ quantum

ωi = 249.9 GeV (ωthr = 83.3 GeV). (a) channel a, (b) channel b.
Solid lines represent energies of particles with sign “+”, dashed
lines with “–” [see (32) and (33)]. Green (light gray) color stands
for positrons, blue color stands for electrons.

It is important to emphasize that in the nonresonant case,
the energies of the positron and the electron change indepen-
dently according to the law of energy conservation (29). In
this case, the outgoing angles of the positron and the electron
do not affect the energies of these particles. In the resonant
case, we have a fundamentally different situation. In this case,
the energies of the positron and the electron are determined
from two equations: the energy conservation law (29) and the
resonant equations [see (21)]. At the same time, the outgoing
angle of a positron or electron relative to the momentum of
the initial γ quantum determine the possible energy spectrum
of the particles for channels a (32) or b (33).

IV. RESONANT DIFFERENTIAL CROSS SECTION

The resonant differential cross section of the PPP for
unpolarized electrons, positrons, and the initial γ quantum in
the field of a plane electromagnetic wave of weak intensity

(3) with l1 = 1 is obtained in the standard way (see Ref. [52]
and Eqs. (37)–(46) in Ref. [49]). As a result, the resonant
differential cross section of the PPP at the nucleus in the field
of a plane electromagnetic wave for channels a (dσ(a)res) and
b (dσ(b)res) takes the form:

dσres = dσ( j)res, j = a, b, (41)

where

dσ(a)res = dσl+1(p−, q−)
m2|q−|

2π |q2− − m2|2
dW1(q−, p+), (42)

dW1(q−, p+) = α

ωiE+
η2

[
γ 2

p+q−

η2
+(1+δ2)(2u(a) − 1)

]
d3 p+,

(43)

dσl+1(p−, q−) = 2Z2r2
e

|p−|
|q−|

m2(m2 + p0
−q0

− + p−q−)

(p− + p+ − ki − (l + 1)k)4 ·

·|Ll+1(p−, q−)|2d�−, (44)

dσ(b)res = dW1(p−, q+)
m2|q+|

2π |q2+ − m2|2
dσl+1(q+, p+), (45)

dW1(p−, q+) = α

ωiE−
η2

[
γ 2

p−q+

η2
+(1 + δ2)(2u(b)−1)

]
d3 p−,

(46)

dσl+1(q+, p+) = 2Z2r2
e

|p+|
|q+|

m2(m2 + p0
+q0

+ + p+q+)

(p− + p+ − ki − (l + 1)k)4 ·

·|Ll+1(q+, p+)|2d�+. (47)

Here in the relations (44) and (47) solid angles of positron
and electron are denoted by d�± and re stands for classical
radius of electron. In expressions (43) and (46) parameters
γp+q− and γp−q+ are determined by the relations (18), (19),
where it is necessary to replace: p1 → p+, p2 → q− for γp+q−
and p1 → q+, p2 → p− for γp−q+ . Relativistic-invariant pa-
rameters u(a) and u(b) equals to:

u(a) = (kki )
2

4(kq−)(kp+)
, u(b) = (kki )

2

4(kq+)(kp−)
. (48)

From the relations (42)–(47) we can see that for chan-
nels a and b, the resonant differential cross section of the
PPP at the nucleus in the field of the plane electromagnetic
wave effectively reduce into two first-order processes in the
fine structure constant. For channel a, laser-stimulated Breit-
Wheeler process first takes place (dW1(q−, p+) is the proba-
bility of this process per unit of time [15,48]), and then laser-
assisted process of scattering of the intermediate electron on
the nucleus (dσ (p−, q−) is the differential cross section of
this process [8,11]). A similar situation exists for channel b.
However, here we have laser-assisted process of scattering of
the intermediate positron on the nucleus [dσ (q+, p+) is the
differential cross section of this process].

We transform relativistic resonant cross sections (42) and
(45) into resonant kinematics (27)–(31). In this case, we
consider that for scattering of the electron or the positron
on the nucleus at small angles, the following relations take
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a place [44]:

|Ll+1(p−, q−)|2 = J2
l+1(γp−q− ) ≈ 1,

|Ll+1(q+, p+)|2 = J2
l+1(γq+ p+ ) ≈ 1. (49)

Since (γp−q− ∼ η � 1) and (γq+ p+ ∼ η � 1) in the process of
scattering of electron or positron on the nucleus, the process
with absorption of a one photon from electromagnetic wave is
more probable, i.e., l = −1.

Further we consider circular polarization of the electro-
magnetic wave (δ2 = 1). Elimination of the resonant infinity
in the channels a and b can be accomplished by adding of an
imaginary term to the mass of the intermediate electron and
positron. So, for channel a we have:

m → μ = m + i�(a), �(a) = q0
−

2m
W(a). (50)

Here W(a) is the total probability (per unit time) of laser-
stimulated Breit-Wheeler process [15].

W(a) = αm2

8πωi
η2Ki, (51)

Ki =
(

2 + 2

εi
− 1

ε2
i

)
Artanh

(√
εi − 1

εi

)

−
(

εi + 1

εi

)√
εi − 1

εi
. (52)

Here in the relation (51) α is the fine structure constant. Taking
into account the relations (50), the resonant denominator can
be represented as:

|q2
− − μ2|2 = 16m4

[
x2

(a)+
(
δ2
+ − δ2

(a)+
) + 4�2

(a)

m2

]
(53)

the parameter δ2
(a)+ is related to the resonant frequency of the

initial γ quantum for channel a by the expression:

δ2
(a)+ = 4εix(a)+(1 − x(a)+) − 1

4x2
(a)+

. (54)

Similarly, we can define the expression for the resonant de-
nominator of channel b:

|q2
+ − μ2|2 = 16m4

[
x2

(b)−
(
δ2
− − δ2

(b)−
) + 4�2

(b)

m2

]
(55)

the parameter δ2
(b)− is related to the resonant frequency of the

initial γ quantum for channel a by the expression:

δ2
(b)− = 4εix(b)−(1 − x(b)−) − 1

4x2
(b)−

. (56)

After the simple transformations of (42) and (45) we obtain
the following expressions for the resonant differential cross
sections of PPP in the case of an ultrarelativistic pair:

dσ(a)res = Z2η2αr2
e

[d (x(a)+)]2

(1 − x(a)+)3G(x(a)+)[(
δ2+ − δ2

(a)+
)2 + �2

δ+

]
× dx(a)+

x(a)+
dδ2

+dδ2
−dϕ, (57)

dσ(b)res = Z2η2αr2
e

[d (x(b)−)]2

(1 − x(b)−)3G(x(b)−)[(
δ2− − δ2

(b)−
)2 + �2

δ−

]
× dx(b)−

x(b)−
dδ2

−dδ2
+dϕ. (58)

Here ϕ is an angle between planes (ki, p+) and (ki, p−). �δ+
and �δ− are the angular radiative resonant width for channels
a and b

�δ+ = αη2

32π

(
1 − x(a)+

)
x(a)+

Ki, �δ− = αη2

32π

(
1 − x(b)−

)
x(b)−

Ki, (59)

G(x±) = 4δ̃2
±

(1 + δ̃2±)
2 +

(
x±

1 − x±
+ 1 − x±

x±

)
, (60)

d (x±) = d0(x±) +
(

m

2ωi

)2[
d2

1 (x±)

+ 4εi

sin(θi
/

2)
{4εi − d1(x±)}

]
, (61)

d0(x±) = δ̃2
+ + δ̃2

− + 2δ̃+δ̃− cos ϕ, (62)

d1(x+) = 1 + δ̃2
+

x+
+ 1 + δ̃2

−
1 − x+

, d1(x−) = 1 + δ̃2
−

x−
+ 1 + δ̃2

+
1 − x−

.

(63)

For the same energies of the positron and the electron for
the resonant process in the wave field, the differential cross
section of the PPP without an external field dσ0 has form
[52]:

dσ0 = 128

π
Z2r2

e αx3
±(1 − x±)3 M0 + (m/ωi )2M[

d0 + (m/2ωi )2d2
1

]2

× dδ2
+dδ2

−dx±dϕ, (64)

M0(x±) = − δ̃2
+

(1 + δ̃2+)
2 − δ̃2

−
(1 + δ̃2−)

2

+ 1

2x±(1 − x±)

δ̃2
+ + δ̃2

−
(1 + δ̃2+)(1 + δ̃2−)

+
(

x±
1 − x±

+ 1 − x±
x±

)
δ̃+δ̃− cos ϕ

(1 + δ̃2+)(1 + δ̃2−)
, (65)

M(x±) =
(

1

x2±
+ 1

(1 − x±)2

)
b±, (66)

b±(x±) = δ̃2
±

12(1 + δ̃2±)
3

[
2(1 − δ̃2

±)(3 − δ̃2
±)

− 1

x±(1 − x±)
(9 + 2δ̃2

± + δ̃4
±)

+
[

x±
1 − x±

+ 1 − x±
x±

]
(9 + 4δ̃2

± + 3δ̃4
±)

}
. (67)

Note that in the formulas for the differential cross section
of the PPP without a laser field (64)–(67) for channel a we
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must select the plus sign (x+) and for channel b the minus
sign (x−). It is important to emphasize that in differential cross
sections (57), (58), and (64) introduced small corrections,
which are proportional to the value ∼ (m/ωi )2 � 1. We note
that these corrections make the dominant contribution to the
corresponding differential cross sections under conditions:

|ϕ − π | <∼
m

ωi
,
∣∣δ̃+ − δ̃−

∣∣ <∼
m

ωi
. (68)

In this case, the values M0 → 0 and d0 → 0 and correspond-
ing differential cross sections has sharp maximum. So, the
differential cross sections without field (64) and in the field
of wave (57), (58) in the kinematic range (68) will have the
following order of magnitude:

dσ0 ∼ Z2αr2
e

(ωi

m

)2
, dσ(a)res <∼

Z2αr2
e

(αη)2

(ωi

m

)4
. (69)

We integrate the resonant differential cross sections, as well
as cross section in the absence of the field with the respect to
the azimuth angle ϕ. After a simple calculations we obtain:

dσ(a)res = 2π
(
Z2αr2

e

)
η2 (1 − x(a)+)3

x(a)+

× H1(+)G(x(a)+)[(
δ2+ − δ2

(a)+
)2 + �2

δ+

]dx(a)+dδ2
+dδ2

−, (70)

dσ(b)res = 2π
(
Z2αr2

e

)
η2 (1 − x(b)−)3

x(b)−

× H1(−)G(x(b)−)[(
δ2− − δ2

(b)−
)2 + �2

δ−

]dx(b)−dδ2
+dδ2

−, (71)

dσ0 = 64
(
Z2αr2

e

)
x3
±(1 − x±)3H0dx±dδ2

+dδ2
−, (72)

H0 = (δ̃2
+ + δ̃2

−)[D0 + (m/ωi )2D][(
δ̃2+ − δ̃2−

)2 + 1
2

(
m
ωi

)2
(δ̃2+ + δ̃2−)d2

1

]3/2 , (73)

D0 = − δ̃2
+

(1 + δ̃2+)
2 − δ̃2

−
(1 + δ̃2−)

2

+ 1

2x±(1 − x±)

δ̃2
+ + δ̃2

−
(1 + δ̃2+)(1 + δ̃2−)

+
(

x±
1 − x±

+ 1 − x±
x±

)
2δ̃2

+δ̃2
−

(δ̃2+ + δ̃2−)(1 + δ̃2+)(1 + δ̃2−)
,

(74)

D = M(x±) + d2
1 (x±)

(
x±

1 − x±
+ 1 − x±

x±

)

× δ̃2
+δ̃2

−
2(δ̃2+ + δ̃2−)(1 + δ̃2+)(1 + δ̃2−)

, (75)

H1(±) = (δ̃2
+ + δ̃2

−)

{
(δ̃2

+ − δ̃2
−)

2 + 1

2

(
m

ωi

)2

(δ̃2
+ + δ̃2

−)

×
[

d2
1 (x±) + 4εi

sin(θi
/

2)
{4εi − d1(x±)}

]}−3/2

.

(76)

It is important to emphasize that under the condition

|δ̃2
+ − δ̃2

−| <∼
m

ωi
(77)

the resonant cross sections (70), (71), and also differential
cross section of PPP in the absence of the laser field (72)
have sharp maximum, which is associated with small angels
of scattering. So we need to take into account small relativistic
corrections ∼ (m/ωi )2 � 1. In this case, these differential
cross sections have the following order of magnitude:

dσ0 ∼ Z2αr2
e

(ωi

m

)
, dσ( j)res <∼

Z2αr2
e

(αη)2

(ωi

m

)3
. (78)

Note that the resonant denominators of the expressions
(70), (71) have a characteristic Breit-Wigner form. When
δ2
+ → δ2

+(a) (for channel a) and δ2
− → δ2

−(b) (for channel b) the
resonant differential cross sections has a sharp maximum:

Rmax
( j) = dσ max

( j)res

dσ0
= f0R( j), f0 = 32π3

(αη)2 , j = a, b, (79)

R(a) = G(x+)

x2+(1 − x+)2

H1(+)

H0K2
i

, (80)

R(b) = G(x−)

x2−(1 − x−)2

H1(−)

H0K2
i

. (81)

Expressions (79), (80), and (81) determine the magnitude
of the resonant differential cross section of the PPP (in units
of the corresponding differential cross section of the PPP
without laser field) for channels a and b with simultaneous
registration of the outgoing angles of the positron and the
electron (parameters δ2

+ and δ2
−), as well as the positron energy

in the interval from E(a)+ to [E(a)+ + dE(a)+] (for channel a)
and the electron energy from E(b)− to [E(b)− + dE(b)−] (for
channel b). It is important to emphasize that for channel
a, the positron outgoing angle relative to the initial photon
momentum (parameter δ2

+) defines both the resonant energy
of positron E(a)+ (32) and the energy of electron E(a)− ≈
ωi − E(a)+. At the same time, these quantities do not depend
on the electron outgoing angle (parameter δ2

−). For channel
b we have the opposite situation. Here outgoing angle of the
electron relative to the initial photon momentum (parameter
δ2
−) defines both the resonant energy of electron E(b)− and the

energy of positron E(b)+ ≈ ωi − E(b)−. And these quantities
do not depend on the positron outgoing angle (parameter δ2

+).
From the expression (79) we can see that the magnitude of

the maximum resonant cross section, is determined by func-
tions: f0, R(a), and R(b). From the one hand the magnitude of
the function f0, is mainly determined by the radiation width of
the resonance, and is quite large. For the laser wave intensities
η = 0.1 (I ∼ 1016/1017 W/cm2) function f0 ∼ 109. In a real
experiment, the width of the resonance will be much larger
than the radiation width, and the magnitude of the function f0

will be much less. On the other hand, the magnitude of the
functions R(a) and R(b) are determined mainly by the small
transmitted momentum when the condition (77) is met and
may also be large enough. Dependencies of the functions R(a)

and R(b) on parameters δ2
+ (outgoing angle of positron) and

δ2
− (outgoing angle of electron) for channel a and b with
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FIG. 4. Dependencies of the function R(a)(δ2
+) (80) on outgoing

angle of positron (δ̃2
− = 1 for channel a) and function R(b)(δ2

−) (81)
on outgoing angle of electron (δ̃2

+ = 1 for channel b). Solid and
dashed lines represent two possible values of energies of positron
and electron [see (32) and (33)]. Energy of the initial photon ωi =
249.9 GeV (εi = 3, ωthr = 83.3 GeV).

fixed parameters δ̃2
− and δ̃2

+ are represented on Fig. 4 and
Fig. 5. Solid lines correspond to the energy of the positron
(electron) with the sign “+” in front of square root, dashed
lines correspond to the energy of a positron (electron) with
the sign “–” in front of square root [see (32) and (33)]. We can
see from the figures that when the parameters match δ̃2

+ = δ̃2
−

functions R(a) and R(b) have a sharp maximum and can reach
8–11 orders of magnitude. We note that the physical nature of
these resonances is determined by the high energy of photon
and very small transmitted momenta.

FIG. 5. Dependencies of the function R(a)(δ2
+) (80) on outgoing

angle of positron (δ̃2
− = 3 for channel a) and function R(b)(δ2

−) (81)
on outgoing angle of electron (δ̃2

+ = 3 for channel b). Solid and
dashed lines represent two possible values of energies of positron
and electron [see (32) and (33)]. Energy of the initial photon ωi =
249.9 GeV (εi = 3, ωthr = 83.3 GeV).

Integrate the resonant differential cross section for channel
a (70) with the respect to δ2

− (outgoing angle of electron)
and resonant differential cross section for channel b (71) with
the respect to δ2

+ (outgoing angle of positron). After simple
calculations we get:

dσ res
(a) = 1

8
π

(
Z2αr2

e

)(ωthr

m

)2 (1 − x(a)+)

x(a)+

× η2G(x(a)+)[(
δ2+ − δ2

(a)+
)2 + �2

δ+

]dx(a)+dδ2
+, (82)

dσ res
(b) = 1

8
π

(
Z2αr2

e

)(ωthr

m

)2 (1 − x(b)−)

x(b)−

× η2G(x(b)−)[(
δ2− − δ2

(b)−
)2 + �2

δ−

]dx(b)−dδ2
−. (83)

It takes into account that the function d1(x±) = 4εi for
considered resonant kinematics. The resulting expression for
the resonant differential cross section (82) determines the
angular distribution [and energy (32)] of positron (irrespective
to the directions of electron propagation). And the expression
for the resonant differential cross section (83) determines the
angular distribution [and energy (33)] of electron (irrespective
to the directions of positron propagation).

When δ2
+ → δ2

(a)+ (for channel a) and δ2
− → δ2

(b)− (for
channel b) resonant differential cross sections (82) and (83)
have sharp maximum and take maximum values.

dσ max
(a)res = (

Z2αr2
e

)
giF+(x(a)+)dx(a)+dδ2

+, (84)

dσ max
(b)res = (

Z2αr2
e

)
giF−(x(b)−)dx(b)−dδ2

−, (85)

gi = 128π3

(αη)2

(ωthr

m

)2
, (86)

F+(x(a)+) = x(a)+
(1 − x(a)+)K2

i

G(x(a)+),

F−(x(b)−) = x(b)−
(1 − x(b)−)K2

i

G(x(b)−). (87)

The resulting expression (84) determines the maximum possi-
ble values of the resonant differential cross section for channel
a with simultaneous registration of the outgoing angle, as
well as the positron energy. At the same time, the expression
(85) determines the maximum possible values of the resonant
differential cross section for channel b with simultaneous
registration of the outgoing angle, as well as the electron
energy.

In Fig. 6 represented functions F±(δ2
±) (87) that define

angular and energy distributions of positrons (channel a)
and electrons (channel b). It is seen from the figures that
distributions of positrons and electrons are symmetric with the
respect to the replacing of the positron with the electron. It is
important to note that for each outgoing angle δ2

+ (channel a)
or δ2

− (channel b) from the interval (35) energy of electron-
positron pair can take two values (32) or (33) with different
probabilities (solid and dashed lines Fig. 6). So, for channel
a, the pairs for which positrons have greater energy than
electrons E(a)+ > E(a)− are more probable in the range of
outgoing angles (38) [in expression (32) need to choose sign
“+” in front of square root, also see solid lines Fig. 6 for
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FIG. 6. Dependencies of the functions F+ and F− (81) on out-
going angle of positron δ2

+ (for channel a) and outgoing angle
of electron δ2

− (for channel b). Solid lines represent sign “+” for
energies of positron (32) or electron (33). Dashed lines stands for
sign “–”. Line 1 corresponds to the energy of the initial photon
ωi = 249.9 GeV (εi = 3) and line 2 corresponds to the energy ωi =
166.6 GeV (εi = 2).

δ2
+ < δ2

∗]. For channel b for the same outgoing angles of
electron we have the opposite situation. With more probability
electrons have greater energy than positrons E(b)− > E(b)+ [in
expression (33) need to choose sign “+” in front of square
root]. Upon transition from channel a to channel b, for the
same outgoing angles of particles, the electron and positron
energies transform into each other E(a)+ → E(b)−, E(a)− →
E(b)+. We emphasize that the cross section for the production
of electron-positron pairs with such energies for channels a
and b can be up to two orders of magnitude larger than the
corresponding cross section for the production of pairs with
other possible energies.

As can be seen from Fig. 6, the magnitude of the functions
F±, can vary over a wide range F± ∼ 1/102 determining the
most probable values of the electron-positron pair energies
for channels a and b in the range of outgoing angles (38).
The maximum resonant cross section for channel a (84)
and channel b (85) is mainly determined by the function gi

(86). This function in the field of optical frequencies for the
intensity of the laser wave η = 0.1 (I ∼ 1016/1017 W/cm2)
and the threshold energy of the process ωthr = 83.3 GeV is

equal to:

gi ≈ 2.4 × 1020. (88)

Thus, the maximum resonant differential cross section for
channel a (84) and channel b (85) can be a very large value

dσ max
( j)res

dx±dδ2±
∼ (

Z2αr2
e

)
(1020/1022), j = a, b. (89)

Note that a sufficiently large value of the resonance differen-
tial cross section is associated not only with the small radi-
ation width of the resonance, which contributes to the order
∼ 106/108, but also with very small transmitted momenta in
this resonance process, the contribution of which is decisive.

V. CONCLUSION

The study of the resonant PPP process by high-energy γ

quanta in the field of the nucleus and a weak laser wave allows
us to formulate the main results. In this problem, there is a
threshold energy of the process ωthr (34), which is of the order
of magnitude ωthr ∼ 102 GeV in the optical frequency region.
We studied the resonant production of the ultrarelativistic
electron-positron pairs by high-energy γ quanta with energies
ωi > ωthr when all particles (the initial photon, electron, and
positron) propagate in a narrow cone.

Resonant angular and energy distributions of positrons
from the ultrarelativistic parameter δ2

+ (regardless of the out-
going angles of electrons, channel a) and resonant angular
and energy distributions of electrons from the ultrarelativistic
parameter δ2

− (regardless of the outgoing angles of positrons,
channel b) are symmetrical [see (84)–(87)]. The production
of the electron-positron pairs in the range of outgoing angles
(38) is more probable. Here, for channel a, the positron energy
exceeds the electron energy, and for channel b we have the
opposite situation: the electron energy exceeds the positron
energy.

The maximum values of the resonant differential cross
section of the PPP can be quite large and in units (Z2αr2

e ) have
the order of magnitude ∼ (1020/1022). Moreover, the main
contribution to this quantity is made by very small transmitted
momenta.

The project calculations may be experimentally verified by
the scientific facilities of pulsed laser radiation (SLAC, FAIR,
XFEL, ELI, XCELS).
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