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Relativistic formalism of nonadiabatic electron-nucleus-radiation dynamics in molecules:
Path-integral approach
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Many-electron relativistic quantum theories of stationary molecular electronic states have been developed
in so-called quantum chemistry, in which nuclear configuration is frozen in space-time under the Born-
Oppenheimer approximation. These time-independent methods are concerned with energetics, which are
supposed to determine molecular structures and dominate low-energy chemical reactions. Yet, rapid progress
in laser technology demands that theoretical chemistry should get prepared for relativistic electron-nucleus
coupled dynamics driven by unconventional ultrastrong laser pulses. We therefore generalize our previously
developed path-integral formalism of nonadiabatic electron dynamics [Hanasaki and Takatsuka, Phys. Rev. A 81,
052514 (2010)] to cover the relativistic regime in radiation fields. Starting from a formal relativistic path-integral
formulation of electron-nucleus coupled systems interacting with quantum radiation fields, we reduce it to a
tractable level of approximations to set a theoretical foundation for future applications.
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I. INTRODUCTION

The Born-Oppenheimer (BO) approximation, having
emerged from the large discrepancy between the timescales of
the dynamics of electrons and nuclei in molecules, effectively
separates the molecular quantum mechanics into two sub-
fields, one mainly treating energetics given by the stationary
electronic states at each frozen nuclear configuration and the
other for dynamics, which is represented by nuclear wave
packets running on thus derived electronic energy hypersur-
faces. Within the BO approximation, systematic ab initio
calculation methods for many-electron stationary states have
been developed [1] and have contributed to great successes
in understanding static properties of molecules and also in
explaining a large number of chemical reactions in which
most of the electronic states under study adiabatically stay in
the lowest energy level.

On the other hand, the breakdown of the BO approxi-
mation in the so-called nonadiabatic reactions has also long
been known [2–4]. Such breakdown has become critically
important with the advent of femtosecond laser techniques [5],
which enabled direct observation and control over dynamical
electronic state transitions with a timescale of typical nuclear
vibrational motion. The notion of ultrafast electron wave
packets undergoing kinematic interactions with moving nuclei
is a key to studying those dynamical processes [6–9]. Further
progress in laser technology has offered even more powerful
tools including free-electron laser sources [10] that generate
ultraintense laser pulses of variable wavelengths including
x rays [11,12] and attosecond techniques [13,14] that enable
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direct observation of electron dynamics, including those in
relativistic regime.

Electrons accelerated close to the speed of light exhibit
relativistic effects [15–17]. In molecular science, relativistic
electrons have long been studied in heavy atoms [18–21] and
their static properties have been subjects of intensive research.
Radiation corrections arising from those electrons have been
extensively studied using field-theoretical approaches and
have achieved accurate reproduction of experimental observa-
tions [20,22]. The roles of those states on the static chemical
properties of many-electron atoms and molecules [21] have
been studied by chemists using quantum chemical ab initio
calculations, which include detailed analysis of the relativistic
orbitals [23,24] and clarification of characteristic bonding
properties of those materials [21,25,26].

Dynamics of those electrons, on the other hand, has not
yet been fully investigated, partly because those inner-shell
electrons hardly take part in dynamics of typical energy scales
in conventional atomic and molecular experiments. However,
the advent of intense ultrafast x-ray laser sources [10,12] and
development of core-excitation spectroscopic techniques [27]
have been removing such limitations. Core electrons as deep
as several keV can now be controlled with femtosecond time
resolution [12,28]. Indeed, a number of pioneering studies
including heavy elements [28–30] lead us to believe that
core-hole dynamics with significant relativistic effects can be
observed in the near future. Another type of dynamically con-
trolled relativistic electrons is realized in ultraintense infrared
optical fields by directly accelerating electrons close to the
speed of light [31,32], though the latter type of field-induced
dynamics, which requires nonperturbative treatment of strong
external optical fields, is not a subject of this paper, but has
been discussed in our recent publication [33].

Relativistic dynamics of interacting electrons is de-
scribed by the quantum electrodynamics (QED), which was
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established in the first half of the twentieth century by a
number of researchers including Tomonaga [34], Schwinger
[35], and Feynman [36,37]. The framework, including the
covariant perturbation theory and renormalization as its core
components, was soon applied to bound systems in the pi-
oneering works by Bethe and Salpeter [38] and Gell-Mann
and Low [39]. The bound-state QED was then applied to
the calculation of static properties of atoms [18–20], includ-
ing the radiative energy corrections of heavy-element ions
as a typical example, and realized accurate reproduction of
experimental observations. Study of atomic properties has
further been developed and is reviewed in Refs. [18–20,40–
42]. More recent progress in these studies include efficient
calculation techniques applicable to non-Coulombic potential
[43], Coulomb gauge formulation [44–46], and inclusion of
many-body perturbation theory (MBPT) techniques [47,48],
which should realize more accurate calculation of many-
electron systems.

Apart from these works, a number of low-energy effective
theories have been invented including the theory of Breit [49]
and Pauli [50], which provides low-energy expansions of the
Dirac Hamiltonian [51]. These theories provide useful tools
for inclusion of relativistic corrections into the nonrelativistic
Hamiltonian framework. However, we do not proceed in
this direction since the validity of these effective theories is
often limited to low-energy physics and their applicability to
dynamical processes is not clear.

A more systematic ab initio numerical calculation of
relativistic electronic states has also been developed by a
number of quantum chemists [17,52]. Advantages in their
approach include applicability to arbitrary molecular systems,
taking account of electron correlation effects and ability to
construct relativistic wave functions. Practical calculations
of chemical properties of large molecules are often best
achieved by two-component theories including the Douglass-
Kroll theory [53,54] and the exact two-component (X2C)
approaches [55–57] because of the smaller computational cost
than that of its four-component counterpart. In this paper,
however, we concentrate on the original four-component rep-
resentation. Such four-component wave functions can then
be constructed by a variational approach [58], by relativistic
density-functional theory [59,60], or even by exactly solving
the Dirac equation [61]. Multiconfiguration calculation proce-
dures to include correlation effects beyond the self-consistent
field (SCF) level include the relativistic multiconfigurational
self-consistent field [62] and the relativistic configuration in-
teraction [63,64]. On the other hand, those quantum chemical
approaches usually rest on the Hamiltonian formalism and the
equal-time (i.e., all Ne electrons lies on the same spacelike
surface) wave functions. Although such formulation is essen-
tial for enabling direct extension of nonrelativistic quantum
chemistry, retardation effects, and/or dynamical coupling to
the radiation field are usually missing. Here, we note the
recent works [65–67] that explore systematic reformulation
of relativistic quantum chemistry with direct correspondence
to the QED formulation. They succeed in including one-loop
QED effects, including the vacuum polarization effects and
the electronic self-energy, into the framework of quantum
chemistry. At this point, however, it is not clear if such
advanced formulation extends to dynamical problems. In this

paper, we work on a formulation that explicitly takes account
of the radiation field degrees of freedom, which is beyond the
framework of quantum chemistry.

We start from the QED Lagrangian or the full Hamilto-
nian to formulate relativistic dynamics of molecular systems,
which is then reduced to a more feasible form. In the latter
step, we can take two independent tracks: a path integral ap-
proach and a wave-packet approach. These two bear their own
distinguished advantages and applicability. We here discuss
the path-integral approach, whereas the wave-packet approach
has been discussed in our recent paper [33]. The molecular
relativistic path integral, to be presented in this paper, is
formulated by extending our formerly built nonrelativistic
nonadiabatic path integral [68] into the relativistic domain.
We use the standard perturbation expansion [15,16] to include
electron-radiation couplings. Although such perturbative ap-
proach is close in idea to the most standard established
approach in QED [15,16], it also limits its application range
to perturbative dynamics such as dynamics induced by high-
energy x-ray irradiation. We consider that nonperturbative
dynamics is better formulated by the wave-packet approach,
which has been discussed in our recent publication [33]. In
the present molecular studies, nuclear dynamics is treated
within the nonrelativistic approximation, taking account of
their much heavier masses. Nevertheless, it must be formu-
lated in such a manner that is consistent with relativistic
electron-radiation coupled dynamics.

This paper is organized as follows. In Sec. II, we discuss
a formal theory of relativistic dynamics of molecules. After
formulating fundamental quantities and defining initial and
final states, we decouple the nuclear degrees of freedom and
construct perturbation expansion to derive a formal path-
integral expression of dynamical observables of our interest.
We then proceed to practical formulation in Sec. III, which
is the main part of this paper. We construct an effective
Hamiltonian and reformulate the formal path-integral expres-
sion derived in Sec. II to a feasible form in that matrix
elements required in practical calculations are within the reach
of existing techniques [41,42], which is briefly discussed in
Sec. IV. Section V is devoted to summary and discussion.

II. FORMAL THEORY OF ELECTRON-
NUCLEUS-RADIATION COUPLED DYNAMICS

A. Fundamental quantities in relativistic dynamics

We first define fundamental quantities required in our
discussion. In this paper, we use the sign convention
(1,−1,−1,−1), and the metric tensor ημν is a diagonal
tensor with η00 = 1, η11 = η22 = η33 = −1. Symbol qe rep-
resents the electronic charge, which takes a negative value:
qe = −|e|. We use the Gauss unit for the electromagnetic
field and the fine-structure constant is e2/h̄c ≈ 1/137. Unless
specified otherwise, we consider a molecular system with
Nnuc nucleus and Ne electrons allowing for additional vir-
tual electron-positron pairs arising from the electron-radiation
coupling. The nuclear coordinates are denoted by 3Nnuc-
dimensional vector R which collects Nnuc three-dimensional
vectors R .= (R1,R2, . . . ,RNnuc ). We assume the ath nucleus
as a nonrelativistic pointlike particle with mass Ma and charge
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Qa at spatial coordinate Ra. Other notations, which follow the
standard convention in QED [16], are described explicitly in
the main text.

We first introduce an abstract expression of dynamical
observables, which represents the target quantity in dynamical
calculations. We consider a transition matrix element of a
set of arbitrary observables OA,OB, . . . at given space-time
points XA,XB, . . . , along the time evolution of the system
from an electron-nucleus coupled state |�i : Ri〉 at time ti to
|� f : R f 〉 at time t f to define

M f i(XA,XB, . . . ; R f ,Ri )

= 〈� f : R f |e−iεHtot/h̄ . . .OA(XA) . . . e−iεHtot/h̄|�i : Ri〉,
(1)

where Htot is the total Hamiltonian in the Heisenberg picture.
The Coulomb gauge path-integral expression of the quantity
M f i reads

M f i =
∫ ∏

dR
∫ ∏

dAtr
∫ ∏

dψ∗
∫ ∏

dψ

×O(XA) . . . δ(∇ · Atr )〈� f |ξ f 〉〈ξi|�i〉e i
h̄ S, (2)

where R, Atr , and ψ represent the nuclear coordinate,
transversal radiation field, and electronic field, respectively,
whereas S represents the action as a functional of these fields.
Symbols |ξi〉 and |ξ f 〉 represent the initial- and final-state vec-
tors, respectively. The numerical factor 〈� f |ξ f 〉〈ξi|�i〉 adds to
an infinitesimal imaginary part to the action integral by which
the field propagators have the correct boundary conditions
[16]. The action integral S reads

S =
∫

dtLnuc(R, Ṙ) +
∫

d4x
{
Ltr

F + Lel + LCoul + Ltr
int

}
,

(3)
with

Lnuc = −
∑

a

Mac2
√

1 − Ṙa
2
/c2 ≈

∑ MaṘ2

2
+ const.,

(4a)

Ltr
rad = 1

8π
{(Ȧtr/c)2 − (∇ × Atr )2}, (4b)

Lel = ψ†

[
ih̄∂t −

(
cα · h̄

i
∇ + βmec2

)]
ψ, (4c)

LCoul = −1

2

∫
d3yρmat (x, t )

1

|x − y|ρmat (y, t ), (4d)

Ltr
int = Jmat · Atr, (4e)

where Ma and me indicate the nuclear and electron masses,
respectively, and ρmat (Jmat) represents the matter field charge
density (current) or the summation of the electronic and
nuclear charge densities (currents). Symbols α and β represent
the Dirac matrices, and c is the speed of light. Symbol x
represents the four-dimensional coordinate of the field oper-
ator, whose components are denoted by xμ .= (x0 = ct, x).
Following the standard convention, those denoted by bold
symbols, x, y, . . . represent the (three-dimensional) spatial
part of coordinates.

For later convenience, we also write down an equivalent
Hamiltonian,

Htot =
∑

a

1

2Ma

{
P2

a +
[

Qa

c
A(Ra)

]2
}

+
∫

d3x
1

2

[
4πc2�tr2 + 1

4π
(∇ × A)2

]
+

∫
d3xψ†

(
cα · h̄

i
∇ + βmec2

)
ψ

+ 1

2

∫
d3x

∫
d3yρmat(x, t )

1

|x − y|ρmat(y, t )

− 1

c

∫
d3xJmat · Atr, (5)

where �tr = Ȧtr/(4πc2), negative of the transversal part of
the electric field, is the canonical conjugate of Atr . We then
introduce an electronic mean-field potential WHF(x, y, t ) to
rewrite the electronic Coulombic term as

LCoul(x, t ) = −ψ†(x, t )Unuc(x)ψ (x, t ) −
∫

d3yψ†(x, t )

× WHF(x, y, t )ψ (y, t ) + L′
C, (6)

where Unuc represents the nuclear Coulombic potential acting
on electrons

Unuc(x) ≡ qe

∫
d3y

1

|x − y|
∑

a

Qafa(y) (7)

with fa(y) being the normalized charge distribution of the
ath nucleus. An obvious choice of fa is a δ function fa(y) =
δ3(y − Ra) but we also allow the use of a finite-size distribu-
tion function taken from existing nuclear models [69]. Such
nontrivial charge distribution is, however, only be used for
convenience of electronic wave-function calculations. Other-
wise, nuclei are treated as nonrelativistic point charges. The
last term in Eq. (6), L′

C , represents the difference between the
Coulombic interaction and the mean-field potential defined as

L′
C (x, t ) ≡ −1

2

∫
d3yρel(x, t )

1

|x − y|ρel(y, t )

+
∫

d3yψ†(x, t )WHF(x, y)ψ (y, t ). (8)

We then introduce a Fermionic eigenvalue equation[
cα · h̄

i
∇ + βmec2 + Unuc

]
ϕ�(x, t )

+
∫

d3yWHF(x, y, t )ϕ�(y, t ) = ε�ϕ�(x, t ), (9)

whose eigenfunctions are hereafter referred to as the molec-
ular orbitals (MOs). Here we are interested in the state with
a given configuration of Ne positive-energy MOs represented
by an index set Iocc (if we are interested in the ground state,
for example, the lowest Ne are occupied and occupied orbitals
are Iocc = {1, 2, . . . ,Ne}):

ρ(x, t ) =
∑
�∈Iocc

ϕ
†
� (x, t )ϕ�(x, t ). (10)
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The mean-field potential WHF is set in such a manner that
makes later calculation easier. The most natural choice should
be the Hartree-Fock potential

WHF(x, y)ij = δ3(x − y)δij

∫
d3x′ q2

e

|x − x′|ρ(x′, t )

−
∑
�∈Iocc

ψ
†
� j(y, t )

q2
e

|x − y|ψ�i(x, t ), (11)

with i and j representing the spinor indices. However, the
nonlocal nature of WHF will later appear to be inconvenient
in perturbation expansion, which is discussed in Sec. IV. We
therefore replace the original WHF by its local approximation
W loc

HF obtained by one of existing techniques [70–73]. Our
action integral now becomes

S =
∫

dtLnuc(R, Ṙ; Atr ) +
∫

d4x
(
Ltr

F +Lmf +LCoul +Lint
)
,

(12)

with

Lmf = ψ†(x, t )

(
ih̄∂t − cα · h̄

i
∇ − Unuc

)
ψ (x, t )

−ψ†(x, t )W loc
HF (x, t )ψ (x, t ), (13a)

Lint = Ltr
int + L′

C, (13b)

Lnuc(R, Ṙ) =
∑

a

(
1

2
MaṘ2

a + Qa

c
Ṙa · Atr (R, t )

)
−

∑
a>b

QaQb

|Ra − Rb| . (13c)

Then, the Hamiltonian representation Htot = Hnuc + H el
mf +

H el
int + Hrad follows with

Hnuc =
∑

a

1

2Ma

(
h̄

i
∇a − Qa

c
A
)2

+
∑
a>b

QaQb

|Ra − Rb| , (14a)

H el
mf =

∫
d3xψ (x, t )†

[
cα · h̄

i
∇ + βmec2

+Unuc(x, t ) + W loc
HF (x, t )

]
ψ (x, t ), (14b)

H el
int = q2

e

2c2

∫
d3x

∫
d3yJ0

el(x, t )
1

|x − y|J0
el(y, t )

−
∫

d3xψ (x, t )†W loc
HF (x, t )ψ (x, t )

− qe

c

∫
d3xJel · Atr, (14c)

Hrad = 1

2

∫
d3x

[
4πc2�tr2 + 1

4π

(∇ × Atr
)2
]
, (14d)

where Jμ
el represents the electronic current operator formally

defined as [74]

Jμ
el (x, t ) ≡ 1

2

∑
i,j

[ψ†

i
(x, t )ψj(x, t ) − ψj(x, t )ψ†

i
(x, t )]cαμ

ij
,

(15)

with αμ .= (1,α). In addition to those internal degrees of
freedom, we also allow possible addition of an external field
into H el

mf in the form

Hext (t ) = −qe

∫
d3xψ†(x, t )αψ (x, t ) · Aext (x, t ),

which is to be added into the mean-field Hamiltonian H el
mf .

In what follows, our discussion therefore takes account of
possible time dependence of H el

mf .

B. Decoupling of nuclear degrees of freedom

We extend the path-integral formulation we developed
in Ref. [68], which closely follows the novel nonadiabatic
path-integral formulation established in pioneering work by
Pechukas [75]. The Pechukas formalism uses a formal step-
wise integration of the fast (electron and radiation field) and
slow (nucleus) components of the system. Application of this
technique gives our target quantity M f i the following form:

M f i(XA,XB, . . . ; R f ,Ri )

=
∫ R f

Ri

DRt e
i
h̄ Snuc[Rt ]Mel,rad

f i [Rt ](XA,XB, . . . ), (16)

where
∫ R f

Ri
DRt represents a formal nuclear coordinate path

integral connecting the initial (Ri) and final (R f ) nuclear
configurations and Mel,rad

f i is a functional of nuclear path Rt ,
defined by the electron-radiation path integral

Mel,rad
f i [Rt ](XA,XB, . . . )

≡ 〈� f |e−iεHel,rad
n−1 /h̄ . . . e−iεHel,rad

ja+1/h̄OA(XA)e−iεHel,rad
ja

/h̄ . . . |�i〉,
(17)

where |�i〉 and |� f 〉 are the initial and final electron-radiation
coupled state vectors in the Heisenberg representation, respec-
tively, whereas Hel,rad is defined as

Hel,rad(R, t ) ≡ H el,rad(R, t ) −
∑

a

Qa

c
Ṙa · Atr (Ra) (18)

with electron-radiation part of the Hamiltonian H el,rad

H el,rad(R, t ) ≡ H el
mf (R, t ) + H el

int + Hrad, (19)

where possible explicit time dependence of H el
mf arises from

external fields. In Eq. (17), we have discretized the time in
the interval [ti, t f ] into n infinitesimal slices of width ε ≡
(t f − ti )/n and each step point is denoted by tn ≡ ti + nε. We
assume that time points X 0

A , X 0
B , . . . are approximated by the

step points ja, jb, jc, . . . . In such discretized time represen-
tation, for notational simplicity, we use shorthand notations
such as R j ≡ R(t j ) and Hel,rad

j ≡ Hel,rad(R j, t j ). We also drop
the explicit reference to the nuclear coordinate when obvious,
for example, |� f : R f 〉 → |� f 〉. No approximation, except
for nonrelativistic approximation on the nuclear dynamics, is
formally involved in Eq. (16), provided that one can perform
the nuclear coordinate path integration exactly. In practice,
however, there is no established general way of performing
such path integration but the stationary phase approximation.
Nevertheless, we can formally treat Rt as a given function
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of time in the evaluation of electron-radiation path integral,
Eq. (17), and thereby formally decouple the nuclear dynamics.

C. Formal perturbation expansion

We next formulate a perturbation expansion of the
electron-radiation part Mel,rad

f i , defined as Eq. (17). Since
we have decoupled the nuclear degrees of freedom, we can
treat the nuclear coordinates as a given function of time, Rt .
We first set the zeroth-order Hamiltonian to the mean-field
Hamiltonian, that is,

H0 = H el
mf (Rt , t ) + Hrad, (20)

which has an explicit dependence on the nuclear configu-
ration Rt and additional explicit time dependence arising
from possible external field. We then introduce an interaction
representation for an arbitrary operator O by

Ŏ(t ) ≡ e−i
∫ 0

t H0dτ/h̄O(t = 0)e−i
∫ t

0 H0dτ/h̄, (21)

where O(t ) represents the Heisenberg operator, and we also
introduced time-evolution operator

e−i
∫ a

b Adτ ≡ lim
M→∞

e−i a−b
M A(b+(n−1) a−b

M )

× e−i a−b
M A(b+(n−2) a−b

M ) · · · e−i a−b
M A(b) (22)

or alternatively, using the time-ordering (T ) and anti-time-
ordering (T̃ ) operators, we may compactly write

e−i
∫ a

b Adτ ≡
{
T exp

[−i
∫ a

b A(τ )dτ
]

for a � b

T̃ exp
[
i
∫ b

a A(τ )dτ
]

for b > a
. (23)

The right-hand side (RHS) of Eq. (21) can further be rewritten
as

Ŏ(t ) = ŭ(t, 0)O(t )ŭ(0, t ) (24)

with time-evolution operator ŭ, defined as

ŭ(t, t ′) ≡ e−i
∫ 0

t H0dτ/h̄e−i
∫ t

t ′ Hdτ/h̄e−i
∫ t ′

0 H0dτ/h̄. (25)

Since this time evolution operator satisfies the following dif-
ferential equation,

ih̄
∂

∂t
ŭ(t, t ′) = [

e−i
∫ 0

t H0dτ/h̄H el
int (Rt , t )e−i

∫ t
0 H0dτ/h̄

]
ŭ(t, t ′),

(26)

with the boundary condition ŭ(t, t ) = 1, a formal solution can
be obtained as

ŭ(t, t ′) = T exp

[
1

ih̄

∫ t

t ′
dsH̆ el

int (Rs, s)

]
. (27)

Without loss of generality, we can assume the initial and
final states of the dynamics to be the adiabatic states, or the
energy eigenstates of the electron-radiation coupled system
with a fixed nuclear configuration. We can also assume the
“adiabatic connectivity” between the zeroth-order eigenstates
of H0(R) and the radiation-corrected eigenstate of H (R). The
initial state of the dynamics should then be obtained by a
formal infinite time integral

|�α : R〉 = 1

N∓
α

lim
η→0

Uη(0,∓∞ : R)|�α : R〉
〈�α : R|Uη(0,∓∞ : R)|�α : R〉 ,

(28)
where N∓

α represents an appropriate normalization factor,
|�α : R〉 is the eigenstate of H0(R), and |�α : R〉 is its
radiation-corrected counterpart. The adiabatic wave operator
Uη(0,∓∞ : R) is defined as

Uη(0,∓∞ : R) = (T /T̃ ) exp

[
1

ih̄

∫ 0

∓∞
dse−η|s|H̆ el

int (R, s)

]
,

(29)

with η being a small damping factor and H̆ el
int (R) being the

electronic interaction Hamiltonian for a fixed nuclear con-
figuration R. In Eq. (29), T (T̃ ) should be taken in case of
−∞(+∞).

We can thus define a formal perturbation expansion of our
target quantity for a given nuclear trajectory Rτ

Mel,rad
f i [Rτ ] = lim

η→+0

〈� f : R f |T Ŭ (∞,−∞; R̃τ )ŎA(XA) . . . |�i : Ri〉
N+

f
∗N−

i 〈� f : R f |Ŭ (∞, 0)|� f : R f 〉〈�i : Ri|Ŭ (0 : −∞)|�i : Ri〉
, (30)

where the nuclear trajectory is extended to an infinite time
domain,

R̃τ =
⎧⎨⎩Rti for t � ti

Rt for ti � t � t f

Rt f for t � t f

, (31)

and the initial and final states in Eq. (30), |�i : Ri〉 and |� f :
R f 〉, are the eigenstates of H0 corresponding, in the sense
of Eq. (29), to |�i : Ri〉 and |� f : R f 〉, respectively. In what
follows, we drop the tilde over R for the sake of simplicity.

D. Lagrangian formulation of nuclear dynamics

Having thus formulated the Lagrangian and Hamiltonian
as well as the initial and final adiabatic states, we now

proceed to the study of electron-nucleus coupled dynamics.
We first consider a direct relativistic extension of the Pechukas
formulation.

We first introduce a path-integral expression of the transi-
tion amplitude K f i and its associated electron-radiation path
integral Kel,rad

f i by removing operators OA, OB, etc. such that

K f i =
∫ R f

Ri

DRt e
i
h̄ Snuc[Rt ]Kel,rad

f i [Rt ]. (32)

The stationary phase condition for the nuclear trajectory Ra(t )
gives a Newtonian classical equations of motion

MaR̈a = Fa(t ) (33)
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but with a nonclassical force derived by a functional differentiation of the effective action Snuc + h̄ lnK f i/i as

Fa(t ) = Re
δ

δRa(t )

(
Snuc[Rt ] + h̄

i
lnK f i[Rt ]

)
, (34)

where the real part projection has been introduced, following Pechukas [75], in order to obtain a real-valued force. Applying the
same idea, our path integral leads to the following nuclear equation of motion:

MaR̈a(tk ) = Re

[
〈� f |e−iεHel,rad

n−1 /h̄ . . . e−iεHel,rad
k /h̄

(−∂Unuc

∂Ra
+ Qa

c

{
− ∂

∂t
Atr (Ra) + Ṙa × [∇a × Atr (Ra)]

})
× e−iεHel,rad

k−1 /h̄ . . . e−iεHel,rad
0 /h̄|�i〉/〈� f |e−iεHel,rad

n−1 /h̄ . . . e−iεHel,rad
0 /h̄|�i〉

]
, (35)

where the operators in the curly bracket represent the Coulomb and Lorentz force acting on the nucleus. While the Coulombic
term, −∂Unuc/∂Ra, is essentially the same as what we find in the nonrelativistic theory [68], the rest arises from interaction with
the radiation field. In actual calculations, the radiation field is a summation of possible external field Aext plus the internal fields
arising from the electronic current evaluated by a perturbation expansion, the latter formally leading to the following expression:

A
tr
j (x, t ) ≈ 〈� f | qe

ih̄c

∫
d4yT

{
ψ (y)γ �ψ (y)Atr

� (y)Atr
j (x, t )

}|�i〉/〈� f |Ŭη(∞,−∞)|�i〉

= 1

c

∫
d4yDtr

j�(x, t ; y)J
�

el(y), (36)

with Dtr
j� representing the transversal photon propagator and J

�

el(y) representing the expectation value of the electronic current.
For classical nuclear dynamics, however, one should replace Dtr

j�(x, t ; ξ ) with the retarded Green’s function in order to get
a physically clearer picture. Such expressions recover the retardation effects and electronic current effects missing in the
Coulombic interaction.

In the nonrelativistic regime, the force given by Eq. (35) is sometimes referred to as the Pechukas force and the corresponding
dynamics, formally represented by a pair of self-consistent equations (33) and (35), is referred to as the Pechukas dynamics
[note that the Pechukas force expression Eq. (35) implicitly depends on the nuclear trajectory, and hence the Pechukas dynamics
requires self-consistency of the solution]. Although it is one of the most accurate formal expressions of the mixed quantum-
classical nonadiabatic dynamics, the Pechukas dynamics has a severe problem: There is no established scheme [76] to solve
these self-consistent equations. A more practical approach is then to replace it by the equal-time expectation value of the force
operator,

Fa(tk ) = 〈�i|eiεHel,rad
0 /h̄ . . . eiεHel,rad

k−1 /h̄

[−∂U

∂Ra
+ Qa

c

{
− ∂

∂t
Atr (Ra, tk ) + Ṙa × [∇a × Atr (Ra, tk )]

})
e−iεHel,rad

k /h̄ . . . e−iεHel,rad
0 /h̄|�i〉,

(37)

which can be evaluated by a perturbation expansion of the form

Fa(tk ) = 〈�i|Ŭη(−∞, ti )Tcŭ(ti,T, ti )

[−∂U

∂Ra
+ Qa

c

{
− ∂

∂t
Atr (Ra, tn) + Ṙa × [∇a × Atr (Ra, tk )]

})
× Ŭη(ti,−∞)|�i〉/〈�i|Ŭη(−∞, ti )Tcŭ(ti,T, ti )Ŭη(ti,−∞)|�i〉, (38)

with |�i〉 (|� f 〉) being the initial (final) zeroth-order state
vector corresponding to |�i〉 (|� f 〉), the symbol Tc represent-
ing the ordering of operators along a folded timelike contour
represented by (ti,T, ti ), which starts from ti and increases to
some far future time T > tk and then decreases back to ti. Here
the nuclear configuration in the time range t > tk can be fixed
as Rtk , since all the contributions from the time range t > tk
cancels out. In nonrelativistic theory, the force represented
by an equal-time expectation value of the gradient of the
electronic Hamiltonian is referred to as the Ehrenfest force
and the corresponding dynamics is the Ehrenfest dynamics.
Equation (37) is a relativistic extension of the Ehrenfest force
[68,77]. The Ehrenfest dynamics, which is a combination of
Eqs. (33) and (38), can be solved in an explicit manner since

Eq. (38) does not depend on the future trajectory, Rt , with
t > tk . A well-known deficiency of the Ehrenfest dynamics
is that a system evolves into a fictitious superposition of
multiple adiabatic states with nuclei moving in an averaged
force field. Such problem is, however, avoidable by additional
modifications, including those proposed in Refs. [78,79]. For
simplicity of the discussion, we hereafter assume validity of
Eq. (38).

III. PRACTICAL FORMULATION OF
ELECTRON-RADIATION COUPLED DYNAMICS

Evaluation of the matrix elements represented by Eq. (30),
which contains time-dependent H0, requires real-time
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integrations, whose numerical implementation should require
large computational cost if not impossible. In order to get a
tractable expression, we propose an alternative formulation.
Below we construct an effective Hamiltonian that includes
radiation corrections.

A. Construction of an effective Hamiltonian

We first consider a d-dimensional subspace of the Fock
space, H0, which we require to be invariant with respect to
the operation of H0,

∀|φ〉 ∈ H0, H0|φ〉 ∈ H0. (39)

We also introduce a projection operator P which projects an
arbitrary state vector to H0. As is discussed in Refs. [80,81]
(also see Appendix A), one can construct a wave operator �

having the following properties:

H el,rad�P = �PH el,rad�P, (40a)

P� = P; (40b)

i.e., the image of the linear map �, which is hereafter denoted
by �H0, is a d-dimensional space and is invariant by the
operation of the full electron-radiation Hamiltonian H el,rad.
An explicit expression of � is given as (see Appendix A)

� = lim
η→+0

Uη(0,−∞)
1

PUη(0,−∞)P , (41)

with Uη being the perturbative time evolution operator with
a damping factor η, given in Eq. (29). It follows that �H0

is spanned by a set of eigenvectors of the full Hamiltonian,
{|�α〉 : α = 1, 2, . . . , d}, such that

H el,rad|�α〉 = Eα|�α〉, (42)

with Eα being the αth energy eigenvalue. We also intro-
duce a set of projected eigenvectors {|Fα〉 ≡ P|�α〉 : α =
1, 2, . . . , d}, which are also the preimages of the eigenvector
in the sense |�α〉 = �|Fα〉 by virtue of Eq. (40b). The map-
ping operator � can then be expanded as

� =
∑
α

|�α〉〈F̃α| (43)

with {|F̃α〉 : α = 1, 2, . . . , d} being the set of conjugate vec-
tors to the preimages in the sense

〈F̃α|Fβ〉 = δαβ. (44)

In order for the conjugate set of vectors to be well defined, we
here require the overlap matrix Sαβ ≡ 〈Fα|Fβ〉, which is by
construction Hermitian, to be positive definite. It then follows
that S is invertible and one can construct the conjugate vector
by 〈F̃α| = ∑

β,I (S−1)αβF I
β

∗〈I|.
We can identify PH el,rad� appearing in Eq. (40a) as an

effective Hamiltonian H el,rad
eff :

H el,rad
eff ≡ PH el,rad�P . (45)

Although not being Hermitian in general, H el,rad
eff maps H0 to

itself and decomposes as

H el,rad
eff =

d∑
α=1

|Fα〉Eα〈F̃α|, (46)

which shows that the (right) eigenvalues are the true adiabatic
energies.

In practical application, we calculate H el,rad
eff by a (finite-

order) perturbation expansion using a set of orthonormal basis
set {|I〉 : I = 1, 2, 3, . . . , d}. We then calculate right eigenvec-
tors of the matrix representation of H el,rad

eff as

∑
J

〈I|H el,rad
eff |J〉F J

α = EαF I
α (47)

to obtain each eigenvalue Eα and the associated preimage
vector |Fα〉 = ∑

I |I〉F I
α .

We can also switch to a Hermitian expression of H el,rad
eff by

a transformation

H̃ el,rad
eff ≡ S−1/2H el,rad

eff S1/2, (48)

together with an associated transformation on the state vector,
from |χ〉 to |χ̃〉 ≡ S−1/2|χ〉. Note that matrices S±1/2 are both
well defined under the assumption of positive definiteness
of the overlap matrix S. Such symmetrization can poten-
tially be useful in numerical calculation, however, we here
keep the original non-Hermitian H el,rad

eff for simplicity of the
discussion.

Up to this point, the requirements on the choice of H0

are the invariance with respect to H0 and the additionally
introduced positive definiteness of the overlap matrix S. We
may then expect that H0 can include an arbitrarily large
number of eigenvectors of H0. Reference [80], for example,
discusses an infinite dimensional H0 that consists of the
whole set of two-particle states, though their analysis is based
on a model different from ours. On the other hand, as we
discuss in Appendix A, at least in our present model with
Coulombic bound states as the main target, there can be fur-
ther restrictions on H0 in order for the perturbative expression
Eq. (41) to be meaningful. We will later come back to this
problem.

B. Effective time-evolution operator and derivative couplings

We now formulate the molecular time evolution. Here-
after, the nuclear coordinate dependence of the operators
and vectors discussed above is written down explicitly. We
first consider the exact dynamics of the state vector start-
ing from a given superposition of adiabatic states |�t0〉 =∑

α |�α : R0〉Cα (t0) at time t0 and evolving in time to t f . By
discretizing the time in the interval [t0, t f ] into small slices
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ε ≡ (t f − t0)/n, the time evolution can be described as

|�t f 〉 = e−iεH el,rad
n−1 /h̄ . . . e−iεH el,rad

0 /h̄

[∑
α

|�α : R0〉Cα (t0)

]

= e−iεH el,rad
n−1 /h̄ . . . e−iεH el,rad

1 /h̄

⎡⎣∑
α,β

|�α : R0〉
(
e−iεH el,rad

0 /h̄
)
αβ

Cβ (t0)

⎤⎦
= e−iεH el,rad

n−1 /h̄ . . . e−iεH el,rad
1 /h̄

⎡⎣∑
α,β,γ

|�α : R1〉(e−εṘ0·X(R0 ) )αβ
(
e−iεH el,rad

0 /h̄
)
βγ

Cγ (t0)

⎤⎦
...

=
∑

αn,··· ,α0,βn−1,··· ,β0

|�αn : Rn〉
[

n−1∏
k=0

(e−εṘk ·X(Rk ) )αk+1βk

(
e−iεH el,rad

k /h̄
)
βkαk

]
Cα0 (t0), (49)

where quantities at the jth time slice are denoted as t j ≡ t0 + jε, R j ≡ R(t j ), and H el,rad
j ≡ H el,rad(R j, t j ), etc. The symbol X

represents the derivative coupling of the true adiabatic states

Xαβ = 〈�α : R| ∂

∂R
|�β : R〉. (50)

We then define a corresponding effective time evolution operator by

U (n)
eff (t f , t0) ≡ e−iεH el,rad

eff n−1/h̄ . . . e−iεH el,rad
eff 0/h̄ (51)

with H el,rad
eff j ≡ H el,rad

eff (R j, t j ). The superscript (n) in the left-hand side (LHS) of Eq. (51) represents the number of time slices,
which should be sufficiently large. It acts on the projected initial state vector |F (t0)〉 ≡ P|�t0〉 = ∑ |Fα : R0〉Cα (t0) as

U (n)
eff (t f , t0)|F (t0)〉 = e−iεH el,rad

eff n−1/h̄ . . . e−iεH el,rad
eff 0 /h̄

[∑
α

|Fα : R0〉Cα (t0)

]

= e−iεH el,rad
eff n−1/h̄ . . . e−iεH el,rad

eff 1 /h̄

⎡⎣∑
α,β

|Fα : R0〉
(
e−iεH el,rad

0 /h̄
)
αβ

Cβ (t0)

⎤⎦
= e−iεH el,rad

eff n−1/h̄ . . . e−iεH el,rad
eff 1 /h̄

⎡⎣∑
α,β,δ

|Fα : R1〉
(
e−εṘ0·Xeff (R0 ))

αβ

(
e−iεH el,rad

0 /h̄
)
βγ

Cγ (t0)

⎤⎦
...

=
∑

αn,...,α0,βn−1,...,β0

|Fαn : Rn〉
n−1∏
k=0

[(
e−εṘk ·Xeff (Rk )

)
αk+1βk

(
e−iεH el,rad

k /h̄
)
βkαk

]
Cα0 (t0). (52)

In Eq. (52), Xeff defines an approximate derivative coupling
associated with the projected adiabatic states

Xeff
αβ = 〈F̃α : R| ∂

∂R
|Fβ : R〉, (53)

which is related to the true adiabatic derivative coupling Xαβ

by (see Appendix B)

Xeff
αβ = Xαβ +

〈
∂

∂R
F̃α

∣∣∣∣(1 − P )|�β : R〉, (54)

and the difference between Xeff
αβ and Xαβ , represented by the

second term, is negligible or at least can be reasonably trun-
cated [82]. If we neglect differences between the derivative

couplings, Eq. (52) describes the same time evolution of the
coefficient ca(t ) as that of the true dynamics, Eq. (49). We
therefore propose Eq. (51) as an approximate time evolution
operator.

One can in principle calculate the true derivative couplings
between two adiabatic state vectors using the formula

Xαβ (R) = 1

Eβ − Eα

〈�α : R|∂H el,rad(R)

∂R
|�β : R〉 (55)

where the matrix elements in the RHS are to be evaluated
by perturbation expansions. Nevertheless, Eq. (52), which
requires that we should neglect the small difference between
X and Xeff , is practically important since it allows basis set

052501-8



RELATIVISTIC FORMALISM OF NONADIABATIC … PHYSICAL REVIEW A 100, 052501 (2019)

transformation in the projected space H0. It is well known in
(nonrelativistic) nonadiabatic dynamics that numerical calcu-
lation can be much easier and more stable by avoiding the adi-
abatic basis set and using quasidiabatic basis set with smaller
derivative couplings [83]. We can indeed switch to an arbitrary
orthonormal basis set B ≡ {|I : R〉 : I = 1, 2, ..., d}, which
has nonsingular dependence on the nuclear configuration, and
start our calculation from |F (t0)〉 = ∑

α,I |I : R0〉F I
α (R0)Cα

0 ,
thus deriving

∣∣Ft f

〉 =
∑

In,··· ,I0,Jn−1,··· ,J0

|In : Rn〉
[

n−1∏
k=0

(
e−εṘk ·XB

eff (Rk )
)

Ik+1Jk

× (
e−iεHB

eff (Rk ,tk )/h̄
)

JkIk

]∑
α

F I0
α (R0)Cα

0 , (56)

where HB
eff (R) is expanded by the basis set B and the deriva-

tive coupling is defined by [XB
eff (R)]IJ = 〈I : R|∂/∂R|J : R〉.

One can indeed show that Eq. (56) is equivalent to Eq. (52)
[but not directly equivalent to Eq. (49)] within the basis set
expansion.

C. Path-integral expression using the effective Hamiltonian

We have thus rewritten the electron-radiation coupled time
evolution into a more managable form, Eq. (51). In order
to obtain the corresponding practical approximation for the
electron-radiation path integral in Eq. (17), we reintroduce the
radiation-nucleus coupling part

∑
a QaṘa · A(Ra, t )/c, where

A(Ra, t ) represents a combination of the transversal radiation

field Atr plus possible external field. Because of the factor
|Ṙa|/c, which is small for nonrelativistic nuclear motion, we
can assume that its effect on the radiation-field dynamics
is negligible. We therefore treat it within the first-order ap-
proximation in the following sense: (i) We use H el,rad, which
neglects the nucleus-radiation coupling, in evaluation of the
wave operator � and the effective Hamiltonian H el,rad

eff , etc.
(ii) In evaluation of the path integral,

∑
a QaṘa · A(Ra, t )/c

is included in the action integral as a small external pertur-
bation that virtually does not affect the time evolution of the
system. (iii) In the calculation of the nuclear dynamics, for
example, by solving Eqs. (33) and Eq. (37), we apply the
perturbative expression, Eq. (36), to evaluate the transversal
fields at the space-time points (Ra, t ). We also reintroduce the
operators OA appearing in Eq. (17) with an analogous manner
to Eq. (45) as

Oeff
A ≡ POA�P, (57)

with RtA being the nuclear coordinate at time tA. The meaning
of Eq. (57) should be clear from the following expansion:

〈F̃α|Oeff
A |Fβ〉 = 〈F̃α|POA

(∑
c

|�c〉〈F̃c|
)

|Fβ〉

= 〈F̃α|P
∑
c,d

|�d〉〈�d |OA|�c〉〈F̃c|Fβ〉

= 〈�α|OA|�β〉, (58)

where the last side represents the matrix element of O eval-
uated between the exact energy eigenstates. We can then
formulate our approximation on Mel,rad

f i as

Mel,rad
f i [Rτ ] ≈ 〈F̃ f |e− i

h̄ ε{H el,rad
eff N−1−

∑
a Ṙa·[ Qa

c AaN−1+ih̄Xeff
a (RN−1 )]}e− i

h̄ ε{H el,rad
eff N−2−

∑
a Ṙa·[ Qa

c AaN−2+ih̄Xeff
a (RN−2 )]}

. . .Oeff (tA) . . . e− i
h̄ ε{H el,rad

eff 0 −∑
a Ṙa·[ Qa

c Atr+ih̄Xeff
a (R0 )]}|Fi〉 (59)

with Aa j being a shorthand notation for A(Ra, t j ), and [Xeff
a (R)]αβ ≡ 〈F̃α : R|∂/∂Ra|Fβ : R〉 being the effective derivative

coupling with respect to the ath nucleus. In Eq. (59), we have included the derivative coupling Xeff in an explicit manner.
We see that it appears together with the vector field in the form exp {i ∑a Ṙa · [ih̄Xeff

a + Qa

c A(Ra, t )]/h̄}, which is an expected
behavior by the (generalized) gauge symmetry and partly supports the appropriateness of our first-order treatment of the vector
field. We also note that, in Eq. (59), in contrast to Eq. (17), both the initial and final states belong to the model space, the initial
state being the model state projection of the adiabatic state, |Fi〉 = P|�i : Ri〉, whereas the final state 〈F̃ f | is the conjugate [in
the sense Eq. (44)] of the projected adiabatic state |Ff : R f 〉 = P|� f : R f 〉. In practice, those vectors are computed from the
right eigenvectors of Heff at the initial and final nuclear configurations.

There are yet more advantages in this approach relevant to solving nuclear dynamics. From Eq. (59), we find that the path-
integral expression using the effective Hamiltonian has the same form as that of the nonrelativistic electron-nucleus coupled
dynamics. It can therefore be mapped onto a Schrödinger dynamics [68]. To see this more clearly, we first recall that the full
time evolution of the system is described by Eq. (32). Applying the time evolution operator Eq. (51) for electron-radiation
coupled time evolution, we obtain

K f i =
∫ R f

Ri

DRt e
i
h̄ Snuc[Rt ]〈F̃f : R f |e− i

h̄ ε{H el,rad
eff n−1−

∑
a Ṙa·[ Qa

c Atr+ih̄Xeff
a (Rn−1 )]}

× e− i
h̄ ε{H el,rad

eff n−2−
∑

a Ṙa·[ Qa
c Atr+ih̄Xeff

a (Rn−2 )]} . . . e− i
h̄ ε{H el,rad

eff 0 −∑
a Ṙa·[ Qa

c Atr+ih̄Xeff
a (R0 )]}|Fi : Ri〉

=
∫ n−1∏

j=1

dR j

∑
αn−1

· · ·
∑
α1

∏
〈R j+1|〈F̃α j+1 : R j+1|e i

h̄ ε
∑

a Ma (
R(a)

j+1−R(a)
j

ε
)2

e− i
h̄ ε{H el,rad

eff j −∑
a

R(a)
j+1−R(a)

j
ε

·[ Qa
c Atr+ih̄Xeff

a (R j )]}|Fα j : R j〉|R j〉
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=
∫ n−1∏

j=1

dR j

∫ n−1∏
j=1

dP j

∑
αn−1

· · ·
∑
α1

∏
〈R j+1|〈F̃α j+1 : R j+1|e− i

h̄ ε
∑

a
1

2Ma
[P(a)

j − Qa
c Atr−ih̄Xa (R j )]2

× e
i
h̄ P j ·(R j+1−R j )e− i

h̄ εH el,rad
eff j |Fα j : R j〉|R j〉

=
∫ n−1∏

j=1

dR j

∫ n−1∏
j=1

dP j

∑
αn−1

· · ·
∑
α1

∏
〈R j+1|〈F̃α j+1 : R j+1|ve

− i
h̄ ε

∑
a

1
2Ma

[ h̄
i

∂

∂R(a)
j

− Qa
c Atr−ih̄Xa (R j )]2

× |P j〉〈P j |e− i
h̄ εH el,rad

eff j |Fα j : R j〉|R j〉, (60)

where |P j〉 represents a momentum eigenstate, the boundary
terms, j = 0 and j = n are fixed by the initial and final
conditions in a such manner that |R0〉 ≡ |Ri〉, |Rn〉 ≡ |R f 〉,
|Fα0〉 = |Fi〉, |Fαn〉 = |Ff 〉, etc. In Eq. (60), we have also
slightly rearranged subscripts and superscripts for notational
clarity; either R(a)

j (P(a)
j ) represents the ath component of

R (P) at the jth time slice, etc. From Eq. (60), one can
extract an operator expression of the full time propagation
of the system. Switching from the path-integral picture to the
wave-packet picture, we expand the time-dependent electron-
nucleus coupled state as

|�t 〉 =
∫

dR|R)〉
∑

I

|�I : R〉χI (R, t ), (61)

where
∑

I |�I : R〉χI is an expansion of the electron-radiation
state vector at time t using a given orthonormal basis set {|I :
R〉 : I = 1, . . . , d} which expands the model space H0 asso-
ciated with the nuclear configuration R. The initial condition
on the state vector should be set so that

∑
I |�I : R〉χI (R, 0)

equals the projection of the initial adiabatic state∑
I

|�I : Ri〉χI (Ri, 0) = |Fαi : Ri〉χ0(Ri ), (62)

where αi is the index of the initial adiabatic state and χ0(R)
is the initial nuclear wave function. The time evolution of the
wave packet is then represented by the Schrödinger equation

ih̄χ̇I (R, t ) =
∑

J

[∑
a

1

2Ma

(
h̄

i
∇a − ih̄Xeff

a − Qa

c
A
)2

+ H el,rad
eff (R, t )

]
IJ

χJ (R, t ), (63)

where, since we are treating the nucleus-radiation coupling
by the first-order approximation, A is not a dynamical de-
grees of freedom but a summation of possible external field
plus an expectation value of the dynamical radiation field
evaluated in a similar manner as Eq. (36). Depending on the
strength of the induced current in the target system, the latter
can even be completely neglected. The Schrödinger equation
Eq. (63) then enables application of almost all the types of
existing nonadiabatic calculation tools. In particular, besides
the effective Newtonian-like equation of motion of Eq. (35),
it allows for larger number of choices of nuclear dynamics

implementation, including quantum-mechanical wave-packet
approaches (see Ref. [84–86] for just a few examples) or
various semiclassical wave-packet approaches developed for
nonadiabatic dynamics [87–89].

D. Discussion

We here discuss the validity and limitations of our present
approach. Our effective Hamiltonian H el,rad

eff includes radiation
corrections through the wave operator � which is rewritten as
a perturbation series as shown in Eq. (41). Unlike the formal
perturbative expression given in Eq. (30), the perturbation
series Eq. (41) is evaluated at a fixed nuclear position, and
thus it allows application of the standard techniques in QED.
In Sec. IV, we calculate the lowest few order terms in the
perturbation series.

Another implicit advantage of the present approach is that
our working equations, Eqs. (60) or (63), formally reduce
back to the corresponding equations for the conventional
radiation-free nonadiabatic dynamics for vanishing electron-
radiation coupling. This aspect is important since we empir-
ically know that such conventional radiation-free approxima-
tion has successfully been applied to numerous nonrelativistic
dynamics of molecules.

Yet we also need to take care of the limitations in the
present approach. First, the size of the Hilbert space H0

(or �H0) is limited to a d-dimensional linear space. Unlike
in the nonrelativistic dynamics, there are certain restrictions
on the choice of H0 as we discuss in Appendix A, though
we are at this point not certain about maximal extensibility
of H0.

Second, a considerable part of radiational excited states
are missing. While our effective Hamiltonian reflects radiation
field excitations that are coupled to the electronic states, other
types of excitations, for example, excited states of a pure
radiational character, are missing. Such missing effects should
only be recoverable by explicitly taking summation over all
possible radiational excited states in all the intermediate time
steps (see Ref. [90] for path-integral expressions connecting
different excitation levels of the radiation field). In this paper,
we assumed that those missing effects to be negligible but it
certainly illustrates formal deficiency of our present scheme
that expands the electron-radiation dynamics with a purely
electronic (photon free) basis set.

Third, we clearly need another formulation if there are
short-lived excited states with the radiative decay processes
within the timescale of the target dynamics. We discuss such
dynamics separately in Appendix C.
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IV. EVALUATION OF THE RADIATION CORRECTIONS

Here we discuss explicit expressions of the effective
Hamiltonian H el,rad

eff [Eq. (45)] and the effective operator for
a given observable Oeff

A [Eq. (57)].

A. General strategy

Below we consider an Ne electron molecule with a fixed
nuclear configuration and we assume that the solutions of
the set of electronic mean-field equations, Eqs. (9), (10),
and (11), are already at our hands. We also assume that the
exchange terms are localized by application of one of existing
techniques [70–73]. To our knowledge, such locality is pre-
requisite for performing QED calculation using established
techniques [20,40,43], though there are attempts to lift this
restriction as discussed in Ref. [66]. We set the zeroth-order
Hamiltonian as Eq. (20) and consider perturbative corrections
by H el

int = H el,rad − H0. The full expression of H el
int, given

as Eq. (14c), is, however, not convenient for a systematic
perturbation expansion because of its complexity arising from
the Coulombic and mean-field subtraction terms. Instead of
the full expression of H el

int, we start with much simplified one,

H el
int

tr
(t ) = −1

c

∫
d3xJμ

el (x, t )Atr
μ(x, t ), (64)

to construct the diagrammatic expression of the perturbation
series. The remaining part, H el

int
′ ≡ H el

int − H el
int

tr , can be rein-
troduced afterward by exploiting the one-to-one correspon-
dence between the Coulombic interactions and the transversal
photon exchange interactions (i.e., one should accompany the
other in order for the final expression to be gauge invariant).
We “reinterpret” the (transversal) photon lines in the obtained
diagram to include the Coulombic effects according to the
following scheme: (i) All transversal photon lines of the
self-interaction type, i.e., those emitted and reabsorbed by an
identical electron lime, are reinterpreted as the summation of
the Coulombic and transversal photon exchange interactions,

−Dλ
μν (x − y) = −

∫
d4k

(2π )4

4π

k2 + iε
e−ik(x−y)�λ

μν, (65)

where ε represents an infinitesimal positive constant, whereas
the symbol λ, representing the gauge choice, takes either the
Coulomb gauge (λ = C) or the Feynman gauge (λ = F ) with
corresponding factor �λ

μν given as

�C
μν = −δ0

μδ
0
ν

k2

k2
− (

1 − δ0
μ

)(
1 − δ0

ν

)(
δμν − kμkν

k2

)
, (66a)

�F
μν = ημν. (66b)

(ii) All transversal photon lines of the other type, i.e., those
connecting distinct two photon lines are to be reinterpreted as
the summation of −DC or −DF plus the mean-field subtrac-
tion term

−Dλ
μν (x − y) = −Dλ

μν (x − y) − δ(x0 − y0)δ0
μδ

0
ν

× W loc
HF (x) + W loc

HF (y)

2
. (67)

Hereafter, we use the Feynman gauge for its simplicity,
whereas we also note on the recent progress in the Coulomb

gauge formalism [44–46], which indicates that the Coulomb
gauge is also be applicable in practical calculations and it can
be even more suitable choice [91] for molecular systems with
strong electron-electron correlation effects.

B. Radiation corrections to the total energy

We first consider the relativistic radiation corrections to
the total energy. For this purpose, there are a number of ad-
vanced techniques available including the S-matrix approach
[92,93], the two-time Green’s function technique [42], and the
covariant time-evolution method [41]. A detailed comparison
among those three was given in Ref. [41] where they argued
that the latter two are more flexible in that they are applicable
to (quasi)degenerate multidimensional model spaces which
we discussed in Subsec. III A. We here adopt the two-time
Green’s function technique [42,94] for its clarity and broad
applicability.

Following Ref. [42], we introduce an Ne electron Green’s
function defined as

GNe
T T (x1, . . . ; t ; x′

1, . . . ; t ′)

≡ 〈�0| 1

ih̄
T
(
�(x1, t )�(x2, t ) . . .�

(
x′

Ne
, t ′)

× �
(
x′

Ne−1, t ′) . . . )|�0〉, (68)

with �0 representing the vacuum and � being the electronic
annihilation operator in the Heisenberg representation, and its
Fourier transformation,

GNe
T T (x1, . . . ; x′

1, . . . ;ω)2πδ(ω − ω′)

≡
∫

dt
∫

dt ′iωt−iω′t ′
GNe

T T (x1, . . . ; t ; x′
1, . . . ; t ′), (69)

which is then expanded in the basis functions of the model
space, {�I : I = 1, 2, . . . , d} as

GIJ (z) ≡
∫ ∏

d3x j

∫ ∏
d3x′

j�
†
I (x1, . . . , xN )

× GNe
T T (x1, . . . ; x′

1, . . . ; z)γ 0
(Ne )γ

0
(Ne−1) . . . γ

0
(1)

× �J (x′
1, . . . , x′

N ). (70)

We then consider its integration along the complex contour
�, which is supposed to enclose all the (true) eigenvalues of
H of the target states but not other poles of GNe

T T , whereas
in reality, poles of finite-order expansion of GNe

T T arises from
the eigenvalues of H0 [94]. We then define the following two
matrices,

SIJ ≡
∮
�

dz

2π i
GIJ (z), (71a)

KIJ ≡
∮
�

dz

2π i
zGIJ (z), (71b)

together with their operator forms, S ≡ ∑d
I,J=1 |�I〉SIJ〈�J |

and K ≡ ∑d
I,J=1 |�I〉KIJ〈�J |. The effective Hamiltonian is

then constructed as

Heff = KS−1, (72)
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(a) (b) (c) (d) (e) (f)

FIG. 1. The lowest order single-electron radiation corrections.
Panel (a) represents the one-loop electronic self-energy correction
to the Hartree-Fock propagator, which is decomposed into the free-
electron self-energy (b) and one- (c) and two-potential (d) terms,
whereas panel (e) represents the vacuum polarization effect, which
can be approximated by the Uehling potential (f). Single and double
arrows represent the free-particle and Hartree-Fock electronic prop-
agators, respectively, the wavy lines represent photon propagators
and the dashed lines emitted from crosses represent the mean-field
potential field W loc

HF .

which expands as

H (1)
eff = K(1) − K(0)S (1), (73a)

H (2)
eff = K(2) − K(0)S (2) − (K(1) − K(0)S (1) )S (0)

· · · . (73b)

Below, we show the outline of our scheme, which follows
the Green’s function approach described in Refs. [41,42,94].
Details are summarized in Appendix D.

We first evaluate diagrams arising from a single-electron
interaction with the radiation field. The contribution of the
one-loop self-energy [Fig. 1(a)] to the effective Hamiltonian
is

H (1,SE )
eff ri = (K(1) − K(0)S (1) )ri = 〈r|�(εi)|i〉, (74)

and hence we only need the MO matrix elements of the self-
energy operator � at energy εi.

Following Ref. [93], the self-energy of the Hartree-Fock propagator, Fig. 1(a) is decomposed into Figs. 1(b) to 1(d). Using the
free-electron one-loop self-energy �1L and the vertex correction [16,40] �μ

1L, the summation of Figs. 1(b) and 1(c) is evaluated
as

〈r|�(εi)|i〉(b,c) =
∫∫

d3xd3x′ϕr (x)

(∫
d3p

(2π )3
eip·(x−x′ ){�1L(p, εi ) − δmec2 − (Z2 − 1)[(εiγ

0 − cp · γ ) − mec2]}

+
∫∫

d3p
(2π )3

d3p′

(2π )3
eip′ ·x−ip·y′[

�0
1L(p′, εi; p, εi ) − (Z1 − 1)γ 0

]
W loc

HF (p′ − p)

)
ϕi(x′), (75)

with δmec2 = �1L(p)|p=(mec,0), Z2 − 1 and Z1 − 1 being the mass, wave function, and vertex renormalization, respectively, where
Z2 = Z1 follows from the Ward identity [95,96]. Since the MOs satisfy the mean-field Dirac equation, divergent contributions
proportional to Z2 − 1 and Z1 − 1 cancel and the remaining divergence is only δmec2. Both �1L and �

μ
1L have analytical

expressions [40]. The remaining one, Fig. 1(d), is finite but requires numerical evaluation of the following integral:

〈r|�(εi)|i〉(d ) =
∫∫

d3xd3x′
∫∫

d3y1d3y2ϕr (x)
∫

c
dk0

2π
γ μSF

0 (x, y1; εi − ck0)γ 0W loc
HF (y1)

× SF (y1, y2; εi − ck0)γ 0W loc
HF (y2)SF

0 (y2, x′; εi − ck0)γ νϕi(x′)DF
μν (x, x′; ck0), (76)

with SF
0 and SF being the free-particle and Hartree-Fock

electronic Feynman propagators, respectively. Since the ex-
pression in Eq. (76) is finite, coordinate integrations can
be performed numerically using the real-space expansion of
those propagators, and the remaining k0 integral is to be
performed along the imaginary axis, as is established in
Refs. [43].

We also consider the vacuum polarization effects, rep-
resented by Fig. 1(e). Within the first-order correction to
the free-electron result, it is approximated as Fig. 1(f) and
evaluated as

〈r|�(εi)|i〉( f ) =
∫∫

d3xd3x′ϕr (x)�vp,1(x, x′;ω)ϕi(x′),

(77)

where �vp,1 is defined as

�vp,1(x, x′;ω) ≡
∫

d3q
(2π )3

eiq·(x−x′ )γ μDF
μν (q, 0)

× �ν0
1L(q, 0)W loc

HF (q), (78)

with �
μν
1L being the one-loop vacuum polarization function

[16] calculated using the free-electron propagators. This in-
tegral is then evaluated by using the integral representation of

(a) (b) (c) (d)

FIG. 2. Electron-electron interaction diagrams. Notations are the
same as those in Fig. 1. Each panel is referred to as (a) single-photon
exchange, (b) ladder, (c) crossed ladder, and (d) three-electron ladder,
respectively. As stated in the main text, each photon line in these di-
agrams is evaluated with the mean-field subtraction term as Eq. (67).
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(a) (b) (c)

FIG. 3. Diagrams arising from combination of single-electron
and electron-electron interaction terms, referred to as the screened
self-energies. Notations are the same as those in Fig. 1. In these
figures, the photon lines connecting the two distinct electron lines
accompany the mean-field subtraction term.

the Uehling potential [20], which results in

�vp,1(x, y;ω) = δ(x − y)
∫

d3q
(2π )3

eiq·x −e2

π

∫ ∞

1
ds

√
s2 − 1

×
(

2

3s2
+ 1

3s4

)
q2

q2 + 4s2κ2
C

W loc
HF (q), (79)

where κC ≡ mec/h̄ represents the inverse of the (reduced)
electronic Compton wavelength. The total self-energy, in our
present scheme, is thus given by

� = �
(b)
f in. + �

(c)
f in. + �(d ) + �vp,1, (80)

where the subscript f in. stands for the finite part.
We next consider the lowest two orders of the electron-

electron interaction terms, which are represented by the four
diagrams in Fig. 2. The corresponding explicit expressions are
shown in Appendix D.

We also consider the second-order diagrams arising from
a combination of single-electron and two-electron terms. In
the present level of calculation, such combination takes the
same form as the screened self-energy, which is discussed
extensively in Refs. [46,97–99]. We therefore follow the dis-
cussions in Refs. [46,98] and consider the three diagrams in
Fig. 3, whose explicit expressions are also given in Appendix
D. We have thus shown a perturbative calculation scheme of
H el,rad

eff .

(a) (b) (c) (d) (e)

FIG. 4. Diagrams representing the second-order expansion of
Oeff . Hexacrosses represent the operation of O, whereas other no-
tations are the same as those of Fig. 1.

C. Radiation corrections to general observables

We next discuss evaluation of general matrix of the form
Eq. (57), which represents a radiation-corrected operator for
a given observable O [hereafter, we drop subscript A in
Eq. (57)]. We use the perturbative expression of � given in
Eq. (41), to derive an order-by-order expansion of Oeff

Oeff (0) = POP, (81a)

Oeff (1) = POU (1)
η P, (81b)

Oeff (2) = POU (2)
η P − POU (1)

η PS (1)P − POPS (2)P,

· · · (81c)

with S (r) ≡ PU (r)
η P . All η appearing in Eq. (81) are to be

understood as a sufficiently small positive number, which is
to be taken the limit η → +0 in the end.

We take an example in the single-particle potential-type
operator O = ∫

d3xψ (x)γ 0o(x)ψ (x), where o(x) is an arbi-
trary given potential function. Again, we construct perturba-
tion series by H el

int
tr . Since H el

int
tr is odd in the photon number

while potential type operator O is not, the lowest order
nontrivial contribution therefore arises from the second order,

O(2)
eff = POU (2)

η P − POPS (2)P . (82)

The diagrammatic expression of the corresponding
perturbation series are shown in Fig. 4. Among those
diagrams, we first evaluate the one-particle irreducible ones,
shown as Figs. 4(a) and 4(b), the sum of which reads

O(a,b)
eff ri = ih̄e2

∫
d3x

∫∫
d3y1d3y2

∫∫ 0

−∞
dτ1dτ2ϕr (y1)γ μSF (ξ1, τ1; x, 0)γ 0o(x)SF (x, 0; y2, τ2)γ ν

× ϕi(y2)ei(ξrτ1−ξiτ2 )Dμν (y1, τ1; y2, τ2) + ih̄e2
∫

d3x
∫∫

d3y1d3y2

∫∫ 0

−∞
dτ1dτ2Tr[γ 0SF (x, 0; y1, τ1)γ μ

× SF (y1, τ1; x, 0)] ϕr (y2)γ νϕi(y2)ei(ξr−ξi )τ2 Dμν (y1, τ1; y2, τ2), (83)

with ξ� being the reduced molecular orbital energy ξ� ≡ ε�/h̄. In Eq. (83), the photon propagator Dμν is the transversal photon
propagator Dtr

μν , but it is to be replaced to DF
μν when we reintroduce the Coulombic interactions. Equation (83) can then be

further rewritten as

O(a,b)
eff ri =

∫∫ ∫
d3xd3y1d3y2

∫∫ 0

−∞
dτ1dτ2ϕr (y1)�0

1L(y1, τ1; y2, τ2; x, 0)ϕi(y2)o(x)ei(ξrτ1−ξiτ2 )

+
∫∫ ∫

d3xd3y1d3y2

∫∫ 0

−∞
dτ1dτ2o(x)�0μ

1L (x, 0; y1, τ1)Dμν (y1, τ1; y2, τ2)ϕr (y2, τ2)γ νϕi(y2)ei(ξr−ξi )τ2 (84)
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with �1L and �1L representing the one-photon vertex function and the vacuum polarization function, respectively. With use of
the established techniques for removing divergences from these functions [16,40], we can set Eq. (84) free of divergences.

We next consider the one-particle reducible diagrams, Figs. 4(c) and 4(d). We first consider the part POU (2)P whereas the
“subtraction term,” POPS (2)P , will be taken into account later. The diagram Fig. 4(c) reads

O(c)
eff ri =

∫∫ 0

−∞
dτ1dτ2

∫∫ ∫
d3xd3y1d3y2ϕr (x)γ 0o(x)SF (x, 0; y1, τ1)γ μϕi(y1)e−iξiτ1

× e2Dμν (y1, τ1; y2, τ2)Tr
[−ih̄γ μSF (y2, τ2 − 0; y2, τ2)

] − subtraction term

= ih̄
∫

dω

2π

∫
d3k

(2π )3

∑
λ

1

h̄(ω − ξi − iη)

1

h̄[ω − ξλ(1 − iε)]

4πe2ημν

k2
�ν

k〈ϕλ|γ μ

k |ϕi〉〈ϕr |γ 0o|ϕλ〉 − subtraction term. (85)

Matrices newly introduced in Eq. (85) are defined as 〈ϕa|γ μ

k |ϕb〉 ≡ ∫
d3xϕa(x)γ μe−ik·xϕb(x) and �ν

k ≡∫
d3re−ik·rTr[−ih̄SF (r,−ε; r, 0)γ ν]. The subtraction term has the same form of expression as described above with λ

limited to H0. We thus obtain

O(c)
eff ri = ih̄

∫
dω

2π

∫
d3k

(2π )3

∑
λ/∈H0

1

h̄(ω − ξi − iη)

1

h̄[ω − ξλ(1 − iε)]

4πe2ημν

k2
�ν

k〈ϕλ|γ μ

k |ϕi〉〈ϕr |γ 0o|ϕλ〉 (86)

We can also evaluate Fig. 4(d) as

O(d )
eff ri = ih̄

∫
dω

2π

∫
d3k

(2π )3

∑
λ/∈H0

1

h̄(ξr − ω − iη)

1

h̄[ω − ξλ(1 − iε)]

4πe2ημν

k2
�ν

k〈ϕr |γ μ

k |ϕλ〉〈ϕλ|γ 0o|ϕi〉 (87)

For the diagonal element, where O(d )
eff ii should take a real value, Eqs. (86) and (87) sums up as

O(c,d )
eff ii =

∫
d3k

(2π )3

∑
λ/∈H0

1

h̄[ξi − ξλ(1 − iε)]

4πe2ημν

k2
�ν

k〈ϕi|γ μ

k |ϕλ〉〈ϕλ|γ 0o|ϕi〉. (88)

Much less convenient expressions in the general cases, as
Eqs. (86) and (87), result from the upper limit in the time
integration. We will discuss this problem in Appendix D.
Nevertheless, we have shown a formal expression of radiation
corrections to a typical potential-type operator.

V. SUMMARY AND DISCUSSIONS

In this paper, we have discussed a general framework for
relativistic electron-nucleus coupled dynamics of molecules,
which has been recently realized by progress in experimen-
tal techniques. Starting from the exact QED formulation of
the system, we derived a formal expression of our target
dynamical observable as Eqs. (16) and (17), with the latter
represented, using a formal perturbation expansion given as
Eq. (30). Although being unfeasible for numerical implemen-
tation, we consider these expressions potentially useful to
get an overview of the correlated dynamics of the electron,
nucleus, and radiation field.

We then have rearranged the perturbation expansion as
represented by Eqs. (41) and (45) in order to obtain a more
tractable expression. Under several restrictions, we derived
Eq. (59), as a practical expression, potentially feasible for
numerical implementation. Indeed, calculation of the effective
Hamiltonian Eq. (45) and effective observable, Eq. (57), for
a given nuclear configuration should be within the reach
of existing techniques as we examined in Sec. IV. More-
over, inclusion of the radiation corrections into the form of
an effective Hamiltonian realizes smooth connection to the
Schrödinger dynamics of nuclei. We have shown that the
dynamics represented by the path-integral expression with
effective Hamiltonian, Eq. (59), is essentially equivalent to

the Schrödinger dynamics represented by Eq. (63), whose nu-
merical integration should be achievable by many of existing
techniques.

We have also carefully examined the limitations of Eq. (59)
and/or restrictions intrinsic to this formulation, which include
limited size of the basis set and absence of radiative excita-
tions. The formulation given here should also be insufficient
for dynamics with rapidly decaying states. Although we pre-
sented possible extension in Appendix C, details are left to
future study.

In this paper, electron-radiation couplings are treated in a
perturbation-theoretic manner. Yet it should be applicable to
experimental dynamics induced by high-energy photons such
as x rays, in which smallness of the vector field amplitude
allows perturbation theory analysis [28]. On the other hand,
it should be hardly applicable to systems of nonperturbative
strength of electron-radiation coupling, such as dynamics
induced by ultrastrong infrared laser fields. Nonperturbative
formulation has been discussed separately in our recent publi-
cation, which proposes a wave-packet approach to relativistic
dynamics [33].

Another advantage of our approach is its close tie to the
established static QED calculation schemes, which should
work favorably in extending and combining the present the-
ory with the other developing sophisticated theories such as
MBPT [48] and Coulomb gauge formalism [44–46]. Although
we have shown, in Sec. IV, explicit expressions of radiation
correction, we further need to find a way to obtain high-
quality correlated wave functions in order to obtain accu-
rate numerical values in calculations, as was suggested in
Ref. [41]. For this purpose, we conceive that we can make use
of tools developed in relativistic quantum chemistry since our
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effective Hamiltonian at each step is built on a fixed-nuclei
model. Assets in the quantum chemistry, including efficient
basis sets [100], variational techniques [58], and computation
techniques [101,102], should be exploited in future numerical
calculations.
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APPENDIX A: THE GENERALIZED
GELL-MANN-LOW THEOREM

We here discuss a multidimensional extension of the Gell-
Mann-Low theorem, represented by Eqs. (40a) and (40b),
which was formulated in Refs. [80,81]. In order to clarify the
details including underlying assumptions, we briefly show the
derivation, closely following Ref. [81]. A similar theorem was
also discussed in Ref. [41] but with different assumptions.

We assume that the total Hamiltonian H is decomposed
into the zeroth-order Hamiltonian H0 and the interaction
part Hint . We introduce a projection operator P which
projects state vectors in the total Hilbert space H onto a
d-dimensional subspace H0. We require that the subspace
H0 should be invariant with respect to the operation of H0

[Eq. (39)].
We then switch to the interaction representation and intro-

duce a perturbative time-evolution operator with a damping
factor η > 0

Uη(0,∓∞) ≡
∑

r

1

r!

(
1

ih̄

)r ∫ 0

∓∞

∏
dt j (T /T̃ )gr

× Hint (t1) . . .Hint (tr )e−η
∑

j |t j |, (A1)

with g being a dimensionless constant that scales Hint , which
takes a fixed value g = 1 and is to be neglected in the
final results. As was shown in the original derivation [39],
Uη(0,∓∞) satisfies the following equation:

[H0,Uη(0,∓∞)]

= −Hint (0)Uη(0,∓∞) ± ih̄ηg
∂

∂g
Uη(0,∓∞), (A2)

or, equivalently,

HUη(0,∓∞) = Uη(0,∓∞)H0 ± ih̄ηg
∂

∂g
Uη(0,∓∞).

(A3)

We then introduce a mapping operator Uη(0,∓∞) 1
PUη (0,∓∞)P ,

where 1
PUη (0,∓∞)P is to be understood as P 1

PUη (0,∓∞)P P .
Using Eq. (A3), we obtain[

H ∓ ih̄ηg
∂

∂g

]
U (∓)

η

1

PU (∓)
η P

= U (∓)
η H0

1

PU (∓)
η P

± U (∓)
η

1

PU (∓)
η P

ih̄ηg
∂U (∓)

η

∂g

1

PU (∓)
η P

,

(A4)

with a shorthand notation U (∓)
η ≡ Uη(0,∓∞). Recalling the

assumption that H0 is closed with respect to the operation of
H0, we have

U (∓)
η H0

1

PU (∓)
η P

=U (∓)
η PH0P

1

PU (∓)
η P

P

=U (∓)
η P 1

PU (∓)
η P

PU (∓)
η H0P

1

PU (∓)
η P

P .

(A5)

Substituting Eq. (A5) into Eq. (A4), and also making use of
Eq. (A3), we obtain

[
H ∓ ih̄ηg

∂

∂g

]
U (∓)

η

1

PU (∓)
η P

= U (∓)
η

1

PU (∓)
η P

(
PU (∓)

η H0P
1

PU (∓)
η P

P ± ih̄ηg
∂U (∓)

η

∂g

1

PU (∓)
η P

)

= U (∓)
η

1

PU (∓)
η P

(
PHU (∓)

η

1

PU (∓)
η P

)
. (A6)

Assuming the existence of the limit η → +0 and also assum-
ing finiteness of g ∂

∂gU (∓)
η

1
PU (∓)

η P [so that the second term in the

LHS of Eq. (A6), ih̄ηg ∂
∂gU (∓)

η
1

PU (∓)
η P vanishes as η → +0], we

finally obtain

H�(∓)P = �
{
PH�(∓)P

}
(A7)

with

�(∓) ≡ lim
η→+0

Uη(0,∓∞)
1

PUη(0,∓∞)P , (A8)

which is a linear operator acting on H0. This proves the main
part of the generalized Gell-Mann-Low theorem, Eq. (40a) in

the main text. Using Eq. (A8), we can also show

P�(∓) = lim
η→+0

PU (∓)
η P 1

PU (∓)
η P

= P, (A9)

which proves the supplemental relation Eq. (40b). As we
have shown that either expression of � [Eq. (A8)] satisfies
Eqs. (40a) and (40b), we can drop superscript (∓) in the
subsequent discussion, which does not depend on the choice
of sign.

As we discussed in the main text, H eff ≡ PH�P works
as an effective Hamiltonian in H0. Expanding H0 with a d-
dimensional orthonormal basis set {|I〉; I = 1, 2, . . . , d}, we
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obtain

H�|I〉 =
d∑

J=1

�|J〉H eff
JI (A10)

and the right eigenvector of H eff works as a preimage of the
true eigenvector

d∑
K=1

H eff
JK F K

α = EαF J
α , (A11a)

�

d∑
K=1

|K〉F K
α = |�α〉. (A11b)

These preimage vectors are in general not necessarily eigen-
vectors of H0, which is in contrast to the remark related to an
another variant of the generalized Gell-Mann-Low theorem
(or the generalized Gell-Mann-Low relation) in p. 183 of Ref.
[41]. The starting assumption here is invariance of H0 with
respect to the operation of H0. It is a natural multidimensional
extension of its one-dimensional counterpart [39], which re-
quires the preimage vector to be an eigenvector of H0.

In the above discussion, there appears no explicit restric-
tion on the choice of H0 except that it should be invariant
with respect to the operation of H0. In the application to
bound-state QED models, however, we have to take account
of radiative decays of excited states when we construct a
perturbation expansion of Uη. One of the most sophisticated
formulations of quasidegenerate models of bound-state QED,
given in Refs. [42,94], suggests that one should introduce
photon mass μ, which is much larger than any of energy
differences among states in H0 but much smaller than any en-
ergy differences between an energy eigenstate in H0 and one
that does not belong to H0. Such treatment should certainly
remove possible radiative decay among H0, whereas it also
means that the largest energy separation among H0 should
be much smaller than the smallest energy separation between
states in and outside of H0.

APPENDIX B: PROOFS OF SEVERAL EQUATIONS
RELATED TO THE DERIVATIVE COUPLINGS

We here prove several equations related to the derivative
couplings we encountered in Subsec. III A. We first derive
Eq. (54). We start from evaluation of derivative coupling
between two distinct preimage vectors

〈F̃α| ∂

∂R
|Fβ〉 = 1

Eβ − Eα

〈F̃α|∂H el,rad
eff

∂R
|Fβ〉, (B1)

and by differentiation of Eq. (45), ∂H el,rad
eff /∂R expands as

∂

∂R
H el,rad

eff =
(

∂

∂R
P
)

H el,rad�P + P
(

∂

∂R
H el,rad

)
�P

+PH el,rad

(
∂

∂R
�

)
P + PH el,rad�

(
∂

∂R
P
)
.

(B2)

We then consider the derivative of P . Using an arbitrary
orthonormal basis set {|I〉 : I = 1, 2, ..., d}, which expands
H0 and also extends outside of H0, as {|I〉 : I = d + 1, d +
2, ...}, ∂

∂RP expands as

∂

∂R
P =

∑
A/∈H0,I∈H0

|A〉〈A| ∂

∂R
|I〉〈I|

−
∑

A/∈H0,I∈H0

|I〉〈I| ∂

∂R
|A〉〈A|, (B3)

which does not include block-diagonal projection to H0, i.e.,
P ( ∂

∂RP )P = 0. Turning to a specific representation, P =∑d
a=1 |Fα〉〈F̃α|, we can derive

∂

∂R
P = (1 − P )

d∑
α=1

∣∣∣∣ ∂

∂R
Fα

〉
〈F̃α| +

d∑
α=1

|Fα〉
〈

∂

∂R
F̃α

∣∣∣∣(1 − P ).

(B4)

The remaining parts can also be expanded using Eq. (43).
Since we are only interested in the matrix element in
Eq. (B1), we only need a part of Eq. (B3), projected as
P (∂H el,rad

eff /∂R)P , which is expanded as

P
(

∂

∂R
H el,rad

eff

)
P =

d∑
α,β=1

|Fα〉〈�α|∂H el,rad

∂R
|�β〉〈F̃β | +

d∑
α,β=1

|Fα〉Eα〈�α| ∂

∂R
|�β〉〈F̃β |

+
d∑

α,β=1

|Fα〉Eα

〈
∂

∂R
F̃α

∣∣∣∣ + P
(

∂

∂R
P
)

H el,rad�P + PH el,rad�

(
∂

∂R
P
)
P

=
d∑

α,β=1

|Fα〉
(
Eβ − Eα

)〈�α| ∂

∂R
|�β〉〈F̃β | +

d∑
α,β=1

|Fα〉Eα

(
〈�α| ∂

∂R
|�β〉 − 〈F̃α| ∂

∂R
|Fβ〉

)
〈F̃β |

+
d∑

α,β=1

|Fα〉
(

〈F̃α| ∂

∂R
P|�β〉Eβ + Eα〈F̃α| ∂

∂R
P|Fβ〉

)
〈F̃β |, (B5)

where in the last side, 〈F̃α| ∂
∂RP|Fβ〉 vanishes because of P ( ∂

∂RP )P = 0. We therefore obtain

〈F̃α| ∂

∂R
|Fβ〉 = 〈�α| ∂

∂R
|�β〉 + Eα

Eβ − Eα

(
〈�α| ∂

∂R
|�β〉 − 〈F̃α| ∂

∂R
|Fβ〉

)
+ 1

Eβ − Eα

(
〈F̃α| ∂

∂R
P|�β〉Eβ

)
. (B6)

052501-16



RELATIVISTIC FORMALISM OF NONADIABATIC … PHYSICAL REVIEW A 100, 052501 (2019)

Moving 〈F̃α| ∂
∂R |Fβ〉 in the RHS to LHS and applying Eq. (B4),

we finally obtain

〈F̃α| ∂

∂R
|Fβ〉 = 〈�α| ∂

∂R
|�β〉 + 〈 ∂

∂R
F̃α|(1 − P )|�β〉, (B7)

which proves Eq. (54).
We next show equivalence of Eqs. (52) and (56). It is

enough to show the equivalence of a single-step time evolu-
tion, which reads, for each representation,

e−iεHeff/h̄
∑
β

|Fβ : R0〉cβ

0

=
∑
γ βα

|Fγ : R1〉(e−εṘ·Xeff
)γ β (e−iεHeff/h̄)βαcα

0

=
∑
Jγ βα

|J : R1〉F J
γ (R1)(e−εṘ·Xeff

)γ β (e−iεHeff/h̄)βαcα
0 (B8)

and

e−iεHB
eff /h̄

∑
I,β

|I : R0〉F I
β (R0)cβ

0

= |J : R1〉
(
e−εṘ·XB

eff
)

JK

(
e−iεHB

eff /h̄
)

KL
F L

a (R0)cα
0

= |J : R1〉(e−εṘ·XB
eff )JK F K

β (R0)
(
e−iεHB

eff /h̄
)
βα

cα
0 , (B9)

respectively. Our task thus reduces to prove∑
γ

F J
γ (R1)(e−εṘ·Xeff

)γ β =
∑

K

(
e−εṘ·XB

eff
)

JK F K
β (R0). (B10)

To prove Eq. (B10), we consider an overlap 〈J : R1|Fβ : R0〉,
which can be evaluated either by forward propagating the ket
vector or backward propagating the bra vector as

〈J : R1|Fβ : R0〉

= 〈J : R1|
[∑

γ

|Fγ : R1〉(e−εṘ·Xeff
)γ β

]

=
[∑

K

(
e−εṘ·XB

eff
)

JK〈K : R0|
]
|Fβ : R0〉, (B11)

which proves Eq. (B10). Extending the above observation to
multiple steps, we can show equivalence of Eqs. (52) and (56).

APPENDIX C: DECAYING STATES

Short-time and/or high-energy dynamics naturally includes
excited states, which are, in general, subject to radiative decay
processes. Such decay processes may restrict the validity of
the standard wave operator formulation which is based on a
formal long-time limit of perturbative time propagation.

Here we consider a possible alternative formulation that
takes account of radiative decays in an explicit manner. We
assume unstable states with relatively large radiative decay
widths whose corresponding life time being comparable in
order to the typical timescale of the target dynamics. We
then consider the Laplace-Fourier transformation method in-
troduced in the classic textbook by Heitler [103] with a slight
extension.

1. Basic formulation

We assume that the total Hamiltonian H is decomposed
into the zeroth-order Hamiltonian H0 and the interaction
part V . We expand the states with a set of states {|�X 〉}
which are eigenstates of H0, H0|�X 〉 = EX |�X 〉. We consider
a d-dimensional subspace H0 and its associated projection
operator P and its complement Q = 1 − P . States in H0

and its complement space, denoted by H �, are labeled by
indices I, J,K, ... and A,B,C, ..., respectively, whereas states
of general type are labeled by indices X,Y,Z, .... States with
distinct labels are, for simplicity of discussion, assumed to be
orthonormal. We also use a symbol I0 to indicate the set of
state labels in H0.

Time-dependent state of the system is represented as
|�t 〉 = ∑

X |�X 〉cX (t ), which starts as |�0〉 = ∑
I∈I0

|�I〉cini
I

at t = 0. With such an initial condition, we solve the time
evolution equation

ih̄∂t |�t 〉 = (H0 + V )|�t 〉. (C1)

We then apply the Laplace-Fourier transformation to the
coefficients

CX (ω) = 1

ih̄

∫ ∞

0
dteiωt cX (t ). (C2)

It then follows that

[h̄ω − EX + ih̄η]CX (ω) =
∑

Y

VXY CY + cini
X , (C3)

where η is an infinitesimal positive number. We then introduce
a matrix TAI

CA(ω) =
∑
I∈I0

TAI (ω)CI (ω) (C4)

and rewrite

[h̄ω − EI ]CI (ω) =
∑

J

V PP
IJ CJ (ω) +

∑
A,J

V PQ
IA

× TAJ (ω)CJ (ω) + cini
I , (C5a)

[h̄ω − EA]TAI (ω) = V QP
AI +

∑
B

V QQ
AB TBI (ω), (C5b)

which can formally be solved as

TAI (ω) = ([h̄ω − H0 − V QQ]−1V QP )AI , (C6a)

CI (ω) =
∑

J

([h̄ω − H0 − V PP − �(ω)]−1)IJcini
J , (C6b)

with the self-energy operator �(ω) defined as

�(ω) = V PQ[h̄ω − H0 − V QQ]−1V QP . (C7)

For later convenience, we also write down the first few orders
of expansion

[h̄ω − EI ]C
(0)
I (ω) = cini

I , (C8a)

[h̄ω − EI ]C
(1)
I (ω) =

∑
J

V PP
IJ C(0)

J (ω), (C8b)
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[h̄ω − EI ]C
(2)
I (ω) =

∑
J

V PP
IJ C(1)

J (ω) +
∑
A,J

V PQ
IA

× T (1)
AJ (ω)C(0)

J (ω), (C8c)

and

[h̄ω − EA]T (1)
AI (ω) = V QP

AI , (C9a)

[h̄ω − EA]T (2)
AI (ω) =

∑
B

V QQ
AB T (1)

BI (ω). (C9b)

2. Fixed nuclei QED model

We now apply the formulation we developed in the pre-
vious subsection to the electron-radiation coupled dynamics.
For simplicity, we assume that the decay lifetime is so much
shorter than the timescale of the nuclear dynamics that we
can apply a fixed nuclei model. Following the discussion
in the main text, we decompose the total electron-radiation
Hamiltonian H el,rad into the zeroth-order Hamiltonian H0 =
H el

mf + Hrad [Eq. (20)] and the interaction part V = H el
int. The

d-dimensional space H0 is constructed from Ne electron
bound states without photons or antiparticles requiring that
it contains the initial state vector |�0〉 ∈ H0, which we as-
sume to be a stable excited bound state under H0. It then
follows that V PP describes the Coulombic mean-field correc-
tion term, whereas V QP describe electron-radiation coupling
terms, through which the initial excited states decay.

Concentrating on the lowest order expansion, we consider
a single-photon emission-absorption. We then need two types
of states in H �, ∣∣Ir

j ; kλ
〉 ≡ â†

kλĉ†
r ĉI j |I〉, (C10a)

|I; a, r; kλ〉 ≡ â†
kλĉ†

r b̂†
a|I〉, (C10b)

where â, ĉ, and b̂ represent the annihilators of photon,
electron, and positron, respectively. Symbols k and λ rep-
resent the photon wave vector and polarization, respec-
tively, where modes are formally discretized in system a
volume V , which is later taken the limit V → ∞. Low-
ercase indices r and a represents positive- and negative-
energy MO indices. The uppercase index I

.= {I1, I2, . . . , INe}
represents a set of MO indices that characterizes an Ne

electron Slater determinant, whereas Ir
j is defined as Ir

j
.=

{I1, I2, . . . , I j−1,

j
∨
r, I j+1, . . . , INe}. All Ne electron states that

derives from the initial state via a “real” photon emission
is represented as a linear combination of states of the form
Eq. (C10a), which is orthogonal to H0. Our treatment here
is thus closely related to the Tamm-Dancoff (TD) expansion
[104,105], with which we have recently formulated a wave-
packet representation of relativistic electron-nucleus coupled
dynamics [33].

In what follows, the orbital energy of the rth MO is denoted
by εr , and the total zeroth-order energy of N-electron state
|I〉 is denoted by E (N )

I ≡ ∑
k εIk . We also introduce notation

E (N−1)
I\ j ≡ E (N )

I − εI j . We then obtain the lowest order of T (ω)
as

〈I; kλ|T (1)(ω)|J〉 = 1

h̄ω − (
E (N )

I + h̄ωk
) + ih̄η

∑
j

(�ε ∗
kλ)I j ,r〈Ir

j |J〉, (C11a)

〈I; a, r; kλ|T (1)(ω)|J〉 = 1

h̄ω − (
E (N )

I + |εa| + εr + h̄ωk
) + ih̄η

(�ε∗
kλ)s,a〈I|ĉr ĉ†

s |J〉, (C11b)

with (�ε∗
kλ)�m ≡ qe

∫
d3rχ�(r)γμeμkλ

∗e−ik·rχm(r)
√

4πc2 h̄/(2ωkV ) representing an effective electron-radiation coupling to the
transversal photon mode kλ with polarization vector ekλ. By expanding the transversal part of Hint , the zeroth- and second-order
terms of CI reads

C(0)
I (ω) = 1

h̄ω − E (N )
I + ih̄η

cini
I , (C12a)

C(2)
I (ω) = 1

h̄ω − E (N )
I + ih̄η

∑
kλ

∑
j

(�εkλ)I j ,r
1

h̄ω − (
E (N−1)

I\ j + εr + h̄ωk
) + ih̄η

⎛⎝(�ε∗
kλ)r,sc

ini
Is

j
+

∑
� �= j

(�ε∗
kλ)I�,sc

ini
Irs

j�

⎞⎠
− 1

h̄ω − E (N )
I + ih̄η

∑
kλ

∑
j

(�εkλ)a,r
1

h̄ω − (
E (N )

I + |εa| + εr + h̄ωk
) + ih̄η

(�ε∗
kλ)I j ,acini

Ir
j
. (C12b)

Taking account of the Coulombic term, we obtain the final result,

C(0,2)
I (ω) = 1

h̄ω − E (N )
I + ih̄η

{
cini

I −
∑
j �=�

ih̄c
∫

dk0

2π

1

h̄ω − (
E (N−1)

I\ j + εr + ch̄k0
) + ih̄η

〈I j, I�|I (ck0)|rs〉cini
Irs

j�

+
∑

j

∑
s/∈I

[〈I j |�fin.
>

(
h̄ω − E (N−1)

I\ j

)|s〉 + 〈I j |�fin.
<

(
E (N )

I + εs − h̄ω
)|s〉]cini

Is
j

⎫⎬⎭ (C13)
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with the four-electron matrix defined as

〈rs|I (ck0)|i j〉 ≡ −e2
∫∫

d3r1d3r2

∫
d3k

(2π )3
eik·(r1−r2 )χ r (r1)γ μχi(r1)χ s(r2)γ νχ j (r2)eik(r1−r2 )Dμν (k)

− 1

2

∫
d3r

(
δs jχ r (r)γ 0W loc

HF (r)χi(r) + δriχ s(r)γ 0W loc
HF (r)χ j (r)

)
(C14)

with

Dμν (k) ≡ 4πe2

k2 + iε
�μν (k), (C15)

where ε is an infinitesimal positive constant, whereas
the factor �μν (k) in the Coulomb gauge reads �C

μν =
−(1 − δ0

μ)(1 − δ0
ν ){δμν − kμkν/k2} − δ0

μδ
0
νk2/k2. For sim-

plicity of the discussion, however, by assuming the gauge
invariance of the final results, we replace �μν (k) in Eq. (C15)
by its Feynman gauge expression �F

μν (k) = ημν . The self-
energy operators �fin..

≷ appearing in Eq. (C13) are the finite
part of the one-loop electronic self-energies, defined as

�ζ (r1, r2;ω) ≡ ih̄e2
∫ ∞

−∞
dteiωtχ r (r1)γ μSζ (r1, t ; r2, 0)

× γ νχi(r2)Dμν (r1, t ; r2, 0), (C16)

where ζ represents >, <, or F , depending on the type of the
electronic propagator appearing in the RHS, which can be one
of the following;

SF (x, t ; x′, t ′) = 〈0| 1

ih̄
T ψ (x, t )ψ (x′, t ′)|0〉, (C17a)

S≷(x, t ; x′, t ′) = θ (±(t − t ′))SF (x, t ; x′, t ′). (C17b)

The finite part of the standard one-loop self-energy,
�F (r1, r2;ω) is well-defined based on the renormalization
theory and is also numerically available using established cal-
culation techniques [20]. Using such a finite part expression
�fin.

F , the finite parts of other types are obtained as

�fin.
≷ (x, x′;ω) = ∓

∫
dω′

2π i

1

ω − ω′ ± iη
�fin.

F (x, x′;ω′).

(C18)

3. Resummation of VPP

We go back to Eq. (C5) and, assuming that we can solve
the eigenvalue problem of the projected Hamiltonian HPP =
H0 + V PP as ∑

J

(
EIδIJ + V PP

IJ

)
RJλ = RIλEλ, (C19)

we consider a linear transformation of expansion basis as

CI =
∑
λ

RIλCλ. (C20)

We then obtain

[h̄ω − Eλ]Cλ(ω) =
∑
A,J

(R†V PQ)λA(TR)Aκ (ω)Cκ (ω)

+ c̃ini
λ , (C21a)

[h̄ω − EA](TR)Aλ(ω) = (V QPR)Aλ +
∑

B

V QQ
AB (TR)Bλ(ω).

(C21b)

We then find that we can apply new expansion basis for H0

but keep those for H �.
In the molecular application, we may apply such tech-

niques to diagonalize the Coulombic interaction in the sense
of the configuration-interaction (CI) theory. In such reformu-
lation, the electron-electron interaction term 〈rs|I (ck0)|i j〉 in
Eq. (C13) should be replaced by the transversal interaction,
whereas one does not have to change the self-energy expres-
sion, since the Coulombic terms included in the resummation
here are the interelectron Coulombic interactions and do not
include the Coulombic self-interaction appearing in the self-
energy expression.

4. Inclusion of nuclear dynamics

In the previous subsection, we assumed that the lifetime
of the initial electronic state is short enough to apply a fixed-
nuclei approximation. Such an assumption is, however, not
always applicable in models with rapid nuclear motion such as
molecular decay models including Coulomb explosions [28].
In such cases, we may be able to switch to the Tamm-Dancoff
theory of electron-nucleus-radiation coupled dynamics, devel-
oped in Ref. [33], which includes nuclear dynamics, though
we can no longer use the Fourier transformed expressions like
Eq. (C13), which gives better insight to decaying dynamics
than real-time expression does.

APPENDIX D: DETAILS OF PERTURBATION EXPANSION

1. Energy corrections

Here, we derive explicit analytic expressions correspond-
ing to the diagrams shown in Figs. 1, 2, and 3, which were
discussed in Sec. IV. We follow the approach given in Refs.
[41,42] to derive those expressions. In the following discus-
sions, orbitals in the initial and final states, labeled by i, j,
r, and s are all positive-energy MOs, since our model space
consists of Ne-electron (no positron) states. We use the symbol
ξ� to describe the �th reduced orbital energy, ξ� ≡ ε�/h̄, and
ξ�m to describe the difference, ξ�m ≡ ξ� − ξm. The symbol ε

represents an infinitesimal positive number. Following Ref.
[42], we also introduce “photon mass” h̄μ/c, which is to be
taken the limit μ → +0 after all calculations. The frequency
of a photon with wave vector k therefore becomes ω|k| =
c
√

|k|2 + μ2.
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a. Single-electron terms

We start with the self-energy contribution to the effective
Hamiltonian Heff , shown in Figs. 1(a) and 1(f), and given as
Eq. (80). We first evaluate K [Eq. (71b)] as

K(1)
ri =

[∮
εi

+
∮
εr

]
dz

2π i
〈ϕr |zGSE

T T (z)|ϕi〉

= ξi

ξir
�(ξi ) + ξr

ξri
�(ξr ), (D1)

where
∮
ε

dz/2π i represents complex contour integral that
encircles the (discrete) zeroth-order energy pole z = ε. Taking
account of a similar expression for S , we obtain

Heff
(1,SE )

ri = (K(1) − K(0)S (1) )ri = 〈r|�(ξi)|i〉, (D2)

where evaluation of �(ω), the self-energy operator of the
Hartree-Fock propagator, is discussed in the main text.

b. Electron-electron interaction terms

Following Ref. [41], we introduce a two-body integral

〈rs|Iλ(ω)|i j〉 ≡ −e2
∫∫

d3r1d3r2χ r (r1)γ μϕi(r1)χ s(r2)γ νϕ j (r2)Dλ
μν (r1, r2;ω)

=
∫

d3k
(2π )3

∫∫
d3r1d3r2χ r (r1)γ μϕi(r1)χ s(r2)γ νϕ j (r2)

4πe2

k2 + μ2 − (ω/c)2 − iε
eik(r1−r2 )�λ

μν (k)

=
∫ ∞

0
dk〈rs| f λ(k)|i j〉

[
c

ω − ωk + iε
− c

ω + ωk − iε

]
, (D3)

where λ represents the gauge choice, either C or F , whose corresponding coupling �μν given as Eq. (66), whereas f λ(k) in the
last side is defined as

〈rs| f λ(k)|i j〉 ≡
∫∫

d3r1d3r2χ r (r1)γ μϕi(r1)χ s(r2)γ νϕ j (r2)
−e2

πr12
sin (kr12)

ck

ωk
�λ

μν (k). (D4)

It then follows that∫
dω

2π
〈rs|Iλ(ω)|i j〉

[
1

ω − ξa(1 − iε)
− 1

ω + ξb(1 − iε)

]
= i

∫ ∞

0
cdk〈rs| f λ(k)|i j〉

[
1

θa(ωk − i0) + ξa
+ 1

θb(ωk − i0) + ξb

]
,

(D5)

where θa = ±1 for ξa ≷ 0. In our model, we further need to include the mean-field subtraction terms in the effective interelectron
interactions

〈rs|I λ(ω)|i j〉 ≡ 〈rs|Iλ(ω)|i j〉 − 1

2

∫
d3r

(
δs jχ r (r)γ 0W loc

HF (r)χi(r) + δriχ s(r)γ 0W loc
HF (r)χ j (r)

)
, (D6)

which is a slight extension of Eq. (C14). We also introduce an expression 〈rs|V λ(ξa, ξb)|i j〉 by [41]

〈rs|V λ(ξa, ξb)|i j〉 ≡
∫

dω

2π i
〈rs|I λ(ω)|i j〉

[
1

ω − ξa(1 − iε)
− 1

ω + ξb(1 − iε)

]
. (D7)

Hereafter, we use the Feynman gauge and drop λ in the superscript.
The single-photon electron-electron interaction (ee1) diagram shown in Fig. 2(a) is evaluated as

H (ee1)
eff

rs

i j = K(1) − K(0)S (1)

=
∫

dω1

2π i

[
1

ω1 − ξr (1 − iε)
+ 1

EI/h̄ − ω1 − ξs(1 − iε)

]
〈rs|I (ω − ξi)|i j〉 = 〈rs|V (ξri, ξs j )|i j〉, (D8)

with EI being the incident energy, EI ≡ εi + ε j . The two photon electron-electron ladder (ee2L) diagram shown in Fig. 2(b) is
evaluated as

H (ee2L)
eff

rs

i j = −
∑
t,u

∫∫
dω1

2π

dω2

2π

(
1

ω1 + ω2 − ξri + iεr
− 1

ω1 + ω2 + ξs j − iεs

)(
1

ω2 − ξt i + iεt
− 1

ω2 + ξu j − iεu

)

× 1

EIM
〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉 −

∑
t,u∈H0

〈rs|V (ξrt , ξsu)|tu〉 1

EIM
〈tu|V (ξt i, ξu j )|i j〉, (D9)
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where εr is a shorthand notation for εξr , either an infinitesimal positive or negative number depending on the sign of the
associated orbital energy ξr . The denominator in the first term can be further decomposed as

−!−1
1 !−1

1+3!
−1
2 !−1

2+4!1234 = −{
!−1

1 !−1
2

(
!−1

1+2+3 + !−1
1+2+4

)} − {
!−1

1 !−1
13 !−1

123 + !−1
2 !−1

24 !−1
124

}
, (D10)

where !−1
i represents an energy denominator associated to the ith transition whereas combined ones are denoted as !−1

i jk··· ≡
(!i + ! j + !k + · · · )−1. In the ladder diagram in our current discussion, !1 = ξt i − ω2, !2 = ξu j + ω2, !3 = ξrt − ω1, and
!4 = ξsu + ω1. Two curly brackets in the RHS of Eq. (D10) represent the separable and nonseparable components, respectively.
We now rewrite Eq. (D9) as

H (ee2L)
eff

rs

i j =
∫∫

dω1

2π

dω2

2π

⎡⎣ ∑
t,u/∈H0

(
!−1

1 !−1
1+3!

−1
2 !−1

2+4!1234
)〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉

+
∑

t,u∈H0

{
!−1

1 !−1
13 !−1

123 + !−1
2 !−1

24 !−1
124

}〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉

+
∑

t,u∈H0

{
!−1

1 !−1
2

(
!−1

1+2+3 + !−1
1+2+4

)}〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉
⎤⎦

−
∑

t,u∈H0

〈rs|V (ξrt , ξsu)|tu〉 1

EIM
〈tu|V (ξt i, ξi j )|i j〉

=
∫∫

dω1

2π

dω2

2π

⎡⎣ ∑
t,u/∈H0

(
!−1

1 !−1
1+3!

−1
2 !−1

2+4!1234
)〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉

+
∑

t,u∈H0

{
!−1

1 !−1
13 !−1

123 + !−1
2 !−1

24 !−1
124

}〈rs|I (ω1)|tu〉〈tu|I (ω2)|i j〉
⎤⎦

+
∑

t,u∈H0

{
〈rs|V (

ξrt + EMI
h̄ , ξsu + EMI

h̄

)|tu〉 − 〈rs|V (ξrt , ξsu)|tu〉
EIM

}
〈tu|V (ξt i, ξu j + !)|i j〉. (D11)

Performing ω integration, we obtain

H (ee2L)
eff

rs

i j =
∑

(t,u)/∈H0

1

EIM

∫∫ ∞

0
c2dk1dk2〈rs| f (k1)|tu〉〈tu| f (k2)|i j〉

×
[
θt

{
1

ωk1 + ωk2 + ξri
× 1

ωk2 + ξt i
+ 1

ωk1 + ξt i + ξs j

(
1

ωk2 + ξt i
+ 1

ωk1 + ωk2 + ξs j

)}
+ (1 − θt )

{
− 1

ωk1 + ωk2 + ξs j
× 1

ωk2 − ξt i
− 1

ωk1 + ξrt

(
1

ωk2 − ξt i
+ 1

ωk1 + ωk2 + ξri

)}
× θu

{
1

ωk1 + ωk2 + ξs j
× 1

ωk2 + ξu j
+ 1

ωk1 + ξu j + ξri

(
1

ωk2 + ξu j
+ 1

ωk1 + ωk2 + ξri

)}
+ (1 − θu)

{
− 1

ωk1 + ωk2 + ξri
× 1

ωk2 − ξu j
− 1

ωk1 + ξsu

(
1

ωk2 − ξu j
+ 1

ωk1 + ωk2 + ξs j

)}]

+
∑

(t,u)∈H0

c2
∫∫ ∞

0
dk1dk2〈rs| f (k1)|tu〉〈tu| f (k2)|i j〉

(
1(

ωk1 + ξri + ξu j
)(
ωk1 + ωk2 + ξri

)(
ωk2 + ξt i

)
+ 1(

ωk1 + ξt i + ξs j
)(
ωk1 + ωk2 + ξs j

)(
ωk2 + ξu j

))

+
∑

(t,u)∈H0

〈rs|V (ξtr + EIM/h̄, ξus + EIM/h̄)|tu〉 − 〈rs|V (ξtr, ξus)|tu〉
EIM/h̄

〈tu|V (ξit , ξ ju)|i j〉, (D12)

where the symbol θt takes 1 if ξt > 0 or 0 otherwise, and the energy difference between the initial and intermediate state, EIM ,
here indicates EIM = εi + ε j − εr − εs.
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We next evaluate the two-photon crossed electron-electron ladder (ee2xL) diagram shown in Fig. 2(c), which has no reducible
contribution and is evaluated as

H (ee2xL)
eff

rs

i j =K(1) − K(0)S (1)

=
∑
t,u

−1

EIM

∫∫
dω1

2π

dω2

2π

[
1

ω1 − ξr (1 − iε)
+ 1

EI/h̄ − ω1 − ξs(1 − iε)

]

×
[

1

ω2 − ξt (1 − iε)
+ 1

EI/h̄ − ω2 − ξu(1 − iε)

]
〈ru|I (ω12)|t j〉〈ts|I (ω2 − ξi )|iu〉

=
∑
(t,u)

1

EIM
c2

∫∫ ∞

0
dk1dk2〈ru| f (k1)|t j〉〈ts| f (k2)|iu〉

×
[
θt

{
1

ωk1 + ωk2 + ξri
× 1

ωk2 + ξt i
+ 1

ωk1 + ξt i + ξs j

(
1

ωk2 + ξt i
+ 1

ωk1 + ωk2 + ξs j

)}
+ (1 − θt )

{
− 1

ωk1 + ωk2 + ξs j
× 1

ωk2 − ξt i
− 1

ωk1 + ξrt

(
1

ωk2 − ξt i
+ 1

ωk1 + ωk2 + ξri

)}
+ θu

{
1

ωk1 + ωk2 + ξs j
× 1

ωk2 + ξu j
+ 1

ωk1 + ξu j + ξri

(
1

ωk2 + ξu j
+ 1

ωk1 + ωk2 + ξri

)}
+ (1 − θu)

{
− 1

ωk1 + ωk2 + ξri
× 1

ωk2 − ξu j
− 1

ωk1 + ξsu

(
1

ωk2 − ξu j
+ 1

ωk1 + ωk2 + ξs j

)}]
. (D13)

The lowest order three-electron term (ee3), shown in Fig. 2(d), is

H (ee3)
eff

rst

i jk =K(2) − K(0)S (2) − (
K(1) − K(0)S (1)

)
S (1)

= −1

h̄

∑
u

∫∫
dω1

2π

dω2

2π

[
1

ω1 − ξu j + iεu

(
1

ω2 − ξri + iεr
+ 1

ω1 − ω2 − ξs j + iεs

)

×
(

1

ω1 − ξri − ξs j + iεr
− 1

ω1 + ξtk − iεt

)
〈rs|I (ω2)|iu〉〈ut |I (ω1)| jk〉

]
− 〈rs|V (ξri, ξsu)|iu〉〈rs|V (ξri, ξsu)|iu〉 1

ε ju + εkt
. (D14)

The denominator can be decomposed as

!−1
1

(
!−1

4 + !−1
12

)(
!−1

124 + !−1
3

) = !−1
1 !−1

12 !−1
3 !−1

4 !1234 = !−1
1 !−1

12 !−1
3 !−1

34 !1234 + !−1
1 !−1

12 !−1
4 !−1

34 !1234

= {
!−1

1 !−1
3

(
!−1

123 + !−1
134

)} + {(
!−1

1 !−1
12 !−1

123 + !−1
3 !−1

34 !−1
134

)} + {
!−1

1 !−1
12 !−1

4 !−1
34 !1234

}
(D15)

with !1 = ξu j − ω1 − iεu!2 = ξsu + ω2 − iεs!3 = ξtk + ω1 − iεt!4 = ξri − ω2 − iεr . The three round brackets in the last side
of Eq. (D15) indicate perturbation processes, where two photon lines (i) do not overlap, (ii) overlap, and (iii) cross in time,
respectively, and hence only the first one, (i), is separable. We therefore rewrite Eq. (D14) as

H (ee3)
eff

rst

i jk = −1

h̄

∑
u/∈H0

∫∫
dω1

2π

dω2

2π

1

ω1 − ξu j + iεu

(
1

ω2 − ξri + iεr
+ 1

ω1 − ω2 − ξs j + iεs

)

×
(

1

ω1 − ξri − ξs j + iεr
− 1

ω1 + ξtk − iεt

)
〈rs|I (ω2)|iu〉〈ut |I (ω1)| jk〉

− 1

h̄

∑
u∈H0

∫∫
dω1

2π

dω2

2π

{(
!−1

1 !−1
12 !−1

123 + !−1
3 !−1

34 !−1
134

) + !−1
1 !−1

12 !−1
4 !−1

34 !1234
}〈rs|I (ω2)|iu〉〈ut |I (ω1)| jk〉

− 〈rs|V (ξri, ξsu)|iu〉 〈rs|V (ξri + !′, ξsu + !′)|iu〉 − 〈rs|V (ξri, ξsu)|iu〉
h̄!′ (D16)

with !′ ≡ ξu j + ξtk .
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c. Mixed terms

Here, we evaluate screened the self-energy (sSE) diagrams shown in Fig. 3. Figure 3(a) gives

H (sSE−a)
eff

rs

i j =
∑

t /∈H0

〈rs|V (ξri, ξt j )|t j〉 〈t |�(ξi )|i〉
εit

+
∑

t∈H0

〈rs|V (ξri, ξt j ) − V (ξri + ξit , ξt j )

h̄ξit
|t j〉〈t |�(ξi)|i〉, (D17)

whereas Fig. 3(b) reads

H (sSE−a)
eff

rs

i j = −1

h̄

∑
t

∫∫
dω1

2π

dω2

2π

[
1

ω1 − ω2 − ξui + iεu
× 1

ω1 − ξt i + iεt
× 1

ω1 − ξri + iεr

× 1

ω1 + ξs j + iεs

(
ξs j + ξri

)〈ru|I (ω2)|ut〉〈ts|I (ω1)|i j〉
]

−
∑

t∈H0

〈r|�(ξt )|t〉〈ts|V (ξt i, ξs j )|s j〉 1

εit + ε js
, (D18)

where the denominator in the RHS decomposes as

!−1
123!

−1
4 !−1

1 !−1
12 = {

!−1
1 !−1

4 !−1
124!

−1
1234

} + {
!−1

1 !−1
12

(
!−1

123 + !−1
124

)
!−1

1234

}
(D19)

with !1 = ξt i − ω1 − iεt , !2 = ξut + ω2 − iεu, !3 = ξru − ω2 + iεu, and !4 = ξs j + ω1 − iεs. Two curly brackets in the RHS
of Eq. (D19) are identified as the separable and nonseparable parts, respectively. The separable contribution sums up as

H (sSE−b)
eff

rs

i j

(sep) =
∑
t,u

∫∫
dω1

2π

dω2

2π

(
1

ω1 − ξt i + iεt
− 1

ω1 + ξs j − iεs

)
1

h̄(ξs j + ξt i )

1

ξi + ξ js − ω2 − ξu
〈ru|I (ω2)|ut〉〈ts|I (ω1)|i j〉

= −
∑

t

〈r|�(ξi + ξ js)|t〉
h̄(ξs j + ξt i )

〈ts|V (ξt i, ξs j )|i j〉, (D20)

and the first part of nonseparable sums up as

H (sSE−b)
eff

rs

i j

(non−sep),1 = −1

h̄

∑
t

∫∫
dω1

2π

dω2

2π

∑
u

1

ω1 − ξt i + iεt
× 1

ξi + ω1 − ω2 − ξu + iεu

× 1

ω1 − ξri + iεr
〈ru|I (ω2)|ut〉〈ts|I (ω1)|i j〉

= − i

h̄

∑
t

∫
dω1

2π
〈r|�(ξi + ω1)|t〉 1

ω1 − ξt i + iεt
× 1

ω1 − ξri + iεr
〈ts|I (ω1)|i j〉. (D21)

We therefore have

H (sSE−b)
eff

rs

i j =−
∑

t∈H0

〈r|�(ξi + ξ js) − �(ξt )|t〉
h̄(ξs j + ξt i )

〈ts|V (ξt i, ξs j )|i j〉 −
∑

t /∈H0

〈r|�(ξi + ξ js)|t〉
h̄(ξs j + ξt i)

〈ts|V (ξt i, ξs j )|i j〉

− i

h̄

∑
t

∫
dω1

2π
〈r|�(ξi + ω1)|t〉 1

ω1 − ξt i + iεt
× 1

ω1 − ξri + iεr
〈ts|I (ω1)|i j〉

+ 1

h̄

∑
t

∫∫
dω1

2π

dω2

2π

1

ω1 − ξt i + iεt
× 1

ω1 − ω2 − ξui + iεu

1

ω2 + ξui + ξs j + iεs
〈ru|I (ω2)|ut〉〈ts|I (ω1)|i j〉.

(D22)

The third diagram, Fig. 3(c), which accompanies no counterterm, is evaluated as

H (sSE−c)
eff

rs

i j = −1

h̄

∑
t,u

∫∫
dω1

2π

dω2

2π

(
1

ω1 − ξri + iεr
− 1

ω1 + ξs j − iεs

)
1

ω1 − ω2 − ξt i + iεt

× 1

ξi − ω2 − ξu + iεu
〈ru|I (ω2)|t i〉〈ts|I (ω1)|u j〉. (D23)

Integration over ω1, ω2 gives

H (sSE−c)
eff

rs

i j = 1

h̄

∑
t,u

c2
∫∫

dk1dk2〈ru| f (k2)|t i〉〈ts| f (k1)|u j〉

×
[(

1

stωk1 − ξs j
− 1

stωk1 + ξri

)
1

stωk1 + stωk2 + ξt i
× 1

stωk2 + ξui
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+ θt

{
1

ξs j + ωk2 + ξt i
× 1

ωk2 + ξui
× 2ωk1

ξ 2
s j − ω2

k1

}
+ (1 − θt )

{
1

−ξri − ωk2 + ξt i
× 1

−ωk2 + ξui
× 2ωk1

ξ 2
ri − ω2

k1

}

− θt (1 − θu)

{(
1

ωk1 − ξs j
− 1

ωk1 + ξri

)
1

ωk1 + ξtu
× 2ωk2

ξ 2
ui − ω2

k2

+ 1

ξs j + ξtu

2ωk2

ξ 2
ui − ω2

k2

× 2ωk1

ξ 2
s j − ω2

k1

}

+ (1 − θt )θu

{(
1

−ωk1 − ξs j
− 1

−ωk1 + ξri

)
1

ωk1 + ξtu
× 2ωk2

ξ 2
ui − ω2

k2

+ 1

ξtr − ξui

2ωk2

ξ 2
ui − ω2

k2

× 2ωk1

ξ 2
s j − ω2

k1

}]

− 1

h̄
δs j

∫
cdk

1

stωk + ξt i − iεt

(
W loc

HF

)
tu

1

stωk + ξui − iεu
〈ru| f (k)|t i〉

− 1 − st su

2
st

1

h̄

∫
cdk

1

ξtu

(
W loc

HF

)
tu

2ωk

ξ 2
ui − ω2

k

〈ru| f (k)|t i〉 +
(

1

ξir + iεr
+ 1

ξ js + iεs

)
�(ξi)

(
W loc

HF

)
s j, (D24)

where si takes 1 or −1 for ξi > 0 or ξi < 0, whereas θi = (1 + si )/2 takes 1 or 0 for ξi > 0 or ξi < 0, respectively.

2. General matrices

Here, we discuss possible simplification of the perturbative
evaluation of general matrix elements. We consider a slight
generalization of Eq. (41) as (see also Appendix A)

�(∓) = lim
η→+0

Uη(0,∓∞)
1

PUη(0,∓∞)P . (D25)

The corresponding effective Hamiltonian can also be written
as

H (∓)
eff = PH�(∓). (D26)

Here, we note that the effective Hamiltonian in principle
should not depend on the choice of sign in Eq. (D26). As-
suming the absence of degeneracy, the αth energy Eα and the
eigenvector |�α〉, together with its projection |Fα〉 = P|�α〉
and its conjugate |F̃α〉, are all uniquely defined. It follows
that, in the limit of infinite order perturbation, the effective
Hamiltonian, Heff = ∑d

α=1 |Fα〉Eα〈F̃α|, is uniquely defined.
Nevertheless, we here keep distinction + or − in Eqs. (D25)
and (D26) since the discussion above does not apply to a
finite-order perturbation results.

We then redefine the effective operator Oeff as

Oeff = �(+)†O�(−), (D27)

which is expanded as

Oeff =
d∑

α=1

|F̃ (+)
α 〉〈�α|O|�β〉〈F̃ (−)

β |, (D28)

where |F∓
α 〉 and |F̃∓

α 〉 represents the αth right eigenvector
of H (∓)

eff and its conjugate. The quantity Oeff is different
from the matrix of our interest, Oeff , defined as Eq. (57),
but it is easy to transform into the desired form as Oeff =∑d

α=1 |F (−)
α 〉〈F (+)

α |Oeff .
By virtue of definition, Eq. (D27), Oeff is expanded as

Oeff =
(

lim
η1→0

1

PUη1 (∞, 0)PUη1 (∞, 0)

)
× O

(
lim
η2→0

Uη2 (0,−∞)
1

PUη2 (0,−∞)P

)
. (D29)

We can safely assume that the two limiting operations
(η1, η2) → (0, 0) can be deformed into (η, η) → (0, 0) [92],
and therefore we obtain

Oeff = lim
η→0

1

PUη(∞, 0)P T (Uη(∞,−∞)

× O(0))
1

PUη(0,−∞)P , (D30)

where the calculation of T (Uη(∞,−∞)O(0)) should be eas-
ier than OUη(0,−∞) because of the absence of the upper
limit in the time integration.
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