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Multipartite entangled states are great resources for quantum networks. In this work, we study the distribution,
or routing, of entangled states over fixed, but arbitrary, physical networks. Our simplified model represents
each use of a quantum channel as the sharing of a Bell pair; local operations and classical communications
are considered to be free. We introduce two protocols to distribute, respectively, Greenberger-Horne-Zeilinger
(GHZ) states and arbitrary graph states over arbitrary quantum networks. The GHZ states’ distribution protocol
takes a single step and is optimal in terms of the number of Bell pairs used; the graph states’ distribution protocol
uses, at most, twice as many Bell pairs and steps as the optimal routing protocol for the worst-case scenario.
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I. INTRODUCTION AND SETTING

Classical networks are actively present in many areas of
day-to-day life. Whether on a global scale with worldwide
communication or on a much smaller scale with multiproces-
sor devices distributing computation over several processors
[1], these networks distribute, share, and use information. The
study of quantum networks is a recent active field of quan-
tum information with promising applications. These include
secure communication, clock synchronization, exponential
gains in communication complexity, distributed sensing to
delegated computation in the cloud, distributed computation,
and more. Distributing quantum states over all kinds of
quantum networks is a necessary step to implement most
of these applications and will consume quantum resources
which may be difficult to replenish. It is thus necessary to find
ways to distribute quantum states while minimizing the cost.
Until recently, most of the work published about quantum
networks and entanglement routing concerned point-to-point
communications and bipartite setting [2–5], with a few recent
exceptions [6–11].

As a simplified model, here we represent a quantum net-
work by a graph, an example of which is depicted in Fig. 1.
Nodes (dotted circles) represent physical locations in the
network. Within these nodes, local computations (restricted to
Clifford operations [12] in our protocols) are considered free.
Quantum channels between nodes are represented as shared
Bell pairs—pictured as solid vertices with edges between
them. We consider classical communications to be free, and
hence the Bell pairs can be considered as single uses of the
quantum channel. Note that each node may contain several
qubits, but each edge corresponds to a single Bell pair. These
Bell pairs can be replenished at each step in our protocols,
but only along the original edges of the network (representing
the physical quantum channels). Our goal is to distribute
entangled states across this network in a way that is most
efficient in terms of the number of Bell pairs consumed and
the number of steps taken.

The use of such a network to create a maximally entangled
bipartite state between two distant nodes for point-to-point
communications has been extensively studied in the literature

[2–5]. This network can also be used to share multipartite
entangled states, either by simultaneously sharing several
entangled pairs between different sets of clients [13,14] or
by sharing a genuinely multipartite state—a useful resource
for quantum communication [15,16], computing [17–19], or
metrology [20] protocols.

In this work, we will study the distribution of graph
states—a large class containing many useful multipartite en-
tangled states [15,21]—over networks of arbitrary topology.
To simplify the study, we ignore the cost of classical com-
munications and we also neglect the processing time of the
local quantum processors and the cost of memory. We will
also assume the distribution of Bell pairs to be perfect and
to occur at perfectly synchronized times, and the node local
computations to be similarly perfect. Note that operations
between several qubits of the same node are considered here to
be local; a wider range of graph-state transformations are thus
available compared to other works tackling the manipulation
of graph states [10,12].

The distribution of multipartite entangled states over quan-
tum networks has also been studied in [6–11]. In [6], the
authors investigate the creation of a graph state presenting the
shape of the network in the presence of noise. References [7,8]
present decomposition of graph states into various building
blocks that can be purified and merged to construct graph
states over a network. Reference [10] studies the possible
transformations of an already shared graph state, with a single
qubit per location. Reference [9] presents a modular architec-
ture to fulfill graph-state creation requests. As in Ref. [11],
here we outline the complete process of sharing entangled
states from scratch. Recently, we noticed the publication of
the independent work of Pirker and Dür [11], which includes
a protocol very similar to ours. The modeling of the network in
both works is different, as well as the optimized metrics. They
describe a hierarchical network stack and use it to provide
robustness against router or subnetwork failures, which we do
not study. However, they do not have a cost metric, be it in
entanglement use or time, and do not provide a statement of
optimality as we do here.
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FIG. 1. A quantum network, where each vertex represents a qubit
and each edge represents a Bell pair; each dotted circle represents a
node of the network. Note that a node can hold several qubits.

The article is organized as follows. We begin in Sec. II
by giving background on graph states and the graphical tools
we use. Then, in Sec. III, we propose several protocols
to distribute multipartite states over arbitrary quantum net-
works using only basic operations of graph states, starting in
Sec. III A with a minimal protocol distributing Greenberger-
Horne-Zeilinger (GHZ) states [22]. In Sec. III B, we then
show a method to distribute arbitrary graph states by distribut-
ing several GHZ states over the network. Then, in Sec. III C,
we analyze the optimality of these protocols. In Sec. IV, we
briefly discuss the different imperfections overlooked in our
idealized model and suggest ways to cope with them. We close
in Sec. V with discussions.

II. GRAPH STATES AND GRAPHICAL TOOLS

The graph state |G〉 associated to the simple graph G =
(V, E ), with vertices a ∈ V and edges a, b ∈ E , is

|G〉 :=
∏

(a,b)∈E

CZa,b |+〉V , where |+〉V :=
⊗

a∈V

|+〉a (1)

is the tensor product of all qubits of V in the state |+〉a :=
(|0〉a + |1〉a)/

√
2, and CZa,b is the controlled-Z operation

between qubits a and b. That is, for a graph G, each vertex
represents a qubit and each edge a CZ entangling operation.
Note that the quantum network represented in Fig. 1 can be
understood as a collection product of bipartite graph states,
where each of the pairs represented is a Bell pair.

The work presented in this article is based on the graphical
representation of operations and measurements. Indeed, sev-
eral physical operations on graph states |G〉 can be represented
as graph operations on G (up to local corrections, that we will
neglect here and in the following). In particular, we will use
three elementary graph operations as building blocks for our
protocols [12,23]:

(i) Vertex deletion. This operation removes one vertex
and all the associated edges from the graph. Physically, it is
implemented by the Pauli measurement of the relevant qubit
in the Z basis.

(ii) Local complementation on a vertex. This graph opera-
tion inverts the subgraph induced by the neighborhood Na of
the concerned vertex a—the set of vertices adjacent to a (see

FIG. 2. Example of the application of local complementation
applied on vertex 3. The associated physical operation is written as
U τ

3 = e−i π
4 X3 ⊗ ei π

4 Z1 ⊗ ei π
4 Z4 ⊗ ei π

4 Z5 . The edge between 1 and 5 is
removed and two edges are created between both the pairs (1,4) and
(4,5).

Fig. 2). It is implemented by applying the relevant operation
to the qubits of a ∪ Na, described by the quantum operator
U τ

a := e−i π
4 Xa

⊗
b∈Na

ei π
4 Zb acting on |G〉.

(iii) Edge addition (deletion). By applying a controlled-Z
operation between two qubits belonging to the same node, we
create (delete) an edge between two nonadjacent (adjacent)
vertices.

Another useful, if nonelementary operation is the measure-
ment of a qubit in the Y basis, which corresponds graphically
to a local complementation followed by the removal of the
measured vertex. To see this, we note that the local comple-
mentation operations implement a basis change from Z to a Y
on the concerned vertex.

As an example, Fig. 3 shows how entanglement swapping
along a line of repeaters [2–4] can be depicted graphically
with the above tools. The essential observation here is that
a Bell measurement is equivalent to performing a CZ gate
followed by two single-qubit Y measurements.

III. GRAPH-STATE DISTRIBUTION PROTOCOLS

We will now see protocols distributing graph states, start-
ing with a minimal protocol to distribute GHZ states over an
arbitrary quantum network.

A. GHZ-state distribution

GHZ states form a useful class of multipartite maxi-
mally entangled states. They are used in many multiparty

FIG. 3. Graphical representation of the quantum repeater proto-
col. Starting from a repeater line, we apply CZ and two measure-
ments in the Y basis at each repeater to obtain a Bell pair between
the end nodes.
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(a) (c) (d)

(f )(e)(b)

FIG. 4. The star expansion operation: (a) all qubits ai, i � 0
of A are linked using CZ between all possible pairs; (b) local
complementation is applied to the qubit a0 linked to b; (c) if A /∈ W ,
we remove this qubit and all edges within A by Z-measuring it; (e)
else, when A ∈ W , we keep a0 and apply CZ gates to remove all
edges within A; (d),(f) finally, a Y measurement of all other qubits
ai ∈ A, i > 0 creates the desired star graph.

applications of quantum information such as quantum
secret sharing [24] or quantum metrology [25]. Thus,
establishing a protocol to distribute them is an impor-
tant step toward the implementation of multipartite proto-
cols over a quantum network. A N-GHZ state is written
|N-GHZ〉 = (|0〉⊗N + |1〉⊗N )/

√
2. It is locally equivalent to

(|0〉 |+〉⊗N−1 + |1〉 |−〉⊗N−1)/
√

2, the star graph with an edge
linking the first qubit—the center—to each of the others. The
choice of which vertex is the center is arbitrary and can be
changed by local operations such as two successive local
complementations. We will distribute the star graph on the
network using our graphical rules. Given an arbitrary set W
of the network’s nodes, we will now see how to distribute a
star graph among all the nodes of W . The amount of Bell pairs
consumed is minimal and we can distribute it in one time step.

This protocol relies on an operation we call star expansion,
which acts on the qubit b of a graph state—b will be the center
of a star in our case—and a node A of the network which
contains a qubit a0 ∈ A ∩ Nb in the neighborhood of b. Each of
the other qubits ai ∈ A, i > 0 of A constitutes a Bell pair with
a qubit ci in another node of the network. The star expansion
operation, detailed in Fig. 4, uses the Bell pairs of the node A
to add the edges (b, ci ) to the graph state, as well as the edge
(b, a0) iff A ∈ W .

The star expansion subprotocol defined above will help us
to share the star graph state across the full set W . The first step
is to find a minimal tree covering all the nodes of W —i.e., a
subgraph connecting all the nodes in W with the minimum
number of edges. Such a problem is the Steiner tree problem,
well known in classical graph theory. Despite being NP-hard
[26], the Steiner tree can be approximated in a polynomial
time [27,28]. See Fig. 5 for an example Steiner tree defined
on the network of Fig. 1.

Starting from any leaf � of this tree, we can distribute the
star graph by exploring the tree and applying star expansion

FIG. 5. Steiner tree example for a set of nodes W . The network
vertices and edges are gray. The nodes of W are represented by
a black-dotted circle. (a) The original network (gray vertices and
edges); (b) the associated Steiner tree for the set W (black edges).

with the exploration’s current node (a nonleaf neighbor of �)
as A, and � as b. This process is depicted in Fig. 6.

The number of Bell pairs consumed in this process is equal
to the number of edges in the tree, which by definition is
(almost) the minimum possible number for the (approximate)
Steiner tree. Since star expansion requires local operations to
each node and the same Clifford operations at � each time
step, these commute and can all be done in one step, with a
single step of correction afterwards [29].

B. Arbitrary graph-state distribution

We now show how to generalize the previous approach
to distribute an arbitrary graph state over a set W of known
nodes of the network. The procedure will be to distribute
a specific resource graph state: the edge-decorated complete
graph. From this graph state, nodes can construct any graph
state by measuring each edge qubit in either the Z basis or the
Y basis, as represented in Fig. 7. This graph is already used
in [9] for a similar goal, with a protocol to distribute it in a
different context. We present here a different approach to its
distribution, adapted to our setting, as well as compute and
optimize its cost in terms of resources.

The protocol to distribute the edge-decorated complete
graph follows directly from multiple applications of the GHZ-
state distribution. We consider the set W of the k participating

(a) (b)

(c) (d)

FIG. 6. Distribution of a star graph state. We distribute the star
graph over the nodes of W , represented by black-dotted circles. To
explore the tree, we arbitrarily choose a nonleaf neighbor of � and
apply star expansion on that node A (taking � as Bob). We repeat this
until we arrive at the desired star over W .
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FIG. 7. The edge-decorated graph can be projected into any
graph state by measuring its edge qubits. We can distribute it as a
resource to generate an arbitrary graph state.

nodes. The first step is solving the Steiner’s tree problem on
the network for the k nodes. Then, we distribute a k-GHZ
state starting from one arbitrary leaf �1. We delete vertices
from the tree in order to have the covering tree for the set
W \ {�1} and we distribute from a leaf �2 of this tree a (k − 1)-
GHZ state. This procedure iterates until the distribution of a
final Bell pair between the two last nodes of W . As seen in
Fig. 8, the resulting graph state is locally equivalent to the
edge-decorated dotted graph.

Some optimizations are possible if the final graph state
is a known quantity before the distribution. We call G the
graph representing the graph state to distribute |G〉. We search
to extract from G a star subgraph S1 of maximum size. We
distribute the GHZ state associated to S1 using the GHZ-state
distribution protocol. Then we iterate with G \ S1 and so on,
until

⋃
Si = G.

C. Optimality

The presented protocol is strictly independent from the net-
work topology and the wanted graph state. The consumption
of this general protocol can be compared to the consumption
of pathological expensive cases. The most expensive is the
case of the line network where we pair each node with its
opposite and distribute a Bell pair between them (see Fig. 9).

(a) (b) (c)

(f )(e)(d)

FIG. 8. Distribution of the edge-decorated graph of size 5 from
a minimal tree (Steiner tree) starting with (a) at T = 0. At each step,
a star graph is shared centered at �i (subsequently indicated in gray),
then vertex i is ignored in the following steps. Finally, in (f), node
local operations generate the desired edge-decorated graph state.

FIG. 9. Depiction of an expensive case. We want to entangle each
qubit with the opposite one over a line network.

Our protocol gives a consumption of, at most, N (N−1)
2 Bell

pairs in N − 1 time steps. This upper bound is reached when
all the network’s nodes are part of the graph state. Both costs
are equal up to a factor 2 to the cost of the pathological case
(see Table I).

IV. IMPERFECTIONS

Up to this point, we have worked in a lossless and noiseless
setting. Of course, such idealized setting is far from realistic.
The full study of multipartite entanglement distribution in the
presence of imperfections would depend on the details of its
physical implementation, and is therefore beyond the scope
of this article. However, several strategies can be discussed to
cope with imperfections.

First, the dominant imperfection in a photonic network is
expected to be losses. In a first approximation, they could be
modeled by a dynamic network , i.e., a network with a graph
changing at each time step, with each lost qubit erasing the
corresponding edge. Since our GHZ-state distribution proto-
col is independent of the topology of the graph, as long as all
nodes are connected, it should be quite robust to losses. Of
course, if the relevant nodes are in subnetworks disconnected
by the losses, no GHZ state can be distributed among them,
but the use of quantum memories and the predistribution of
“partial” graph states will probably allow one to bridge the
gaps in the next round. The recent work of Khatri et al. [14]
on entanglement percolation lets us hope that such techniques
will have modest quantum memory requirements for large-
scale quantum networks.

Another important imperfection is the noise itself, which
can be introduced by the needed operations or is initially
present in the distributed Bell pairs. A first step to reduce the
operation-induced noise is to minimize the number of oper-
ations, a minimization we have not addressed here. However,

TABLE I. Creation cost on a network of size N , in terms of
number of Bell pairs (EPR), and the total number of rounds (T ).

Protocol Bound

N-GHZ EPR N − 1 N − 1
T 1 1

Arbitrary graph state EPR � N (N−1)
2 � N

2 	2

T � N − 1 � N
2 	
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since all operations here are Clifford, this kind of optimization
is well known [29]. The noise can also be treated generally
with direct purification of the final GHZ or graph states,
which has been studied already [30,31]. More generally,
many procedures to deal with noise in quantum information,
including error correction [17,32] and secret sharing [33,34],
are based on Clifford operations and often on graph states
[21], and quantum fault-tolerant operations are easier within
the Clifford group [35–37]. They are therefore likely to be
compatible with our protocol.

One other idealization in our approach is our neglect
of the cost of classical communications, which is already
known to be a non-negligible overhead in (classical) network
management. If the network is static and well known, the
Clifford nature of operations allows us to essentially limit the
communication to establishing the path and communicating
the results of the measurements for the purpose of correction
[29]. Classical communications in those cases should not be
too onerous in practice, considering a quantum network will
likely have much less traffic than the associated classical one.
However, when losses are taken into account, the network
graph itself becomes dynamic and updating every node about
the state of the network will be costly [13]. We hope, however,
that quantum secret-sharing techniques [33,34] can be used to
mitigate this cost. We also assume that all nodes cooperate
and know perfectly the actions of the others. In a more re-
alistic setting, imperfect knowledge could lead to congestion
issues on the network, and less altruistic nodes could exploit
this.

V. CONCLUSION AND PERSPECTIVES

We have presented protocols for distributing GHZ and ar-
bitrary graph states which work for networks of any topology.
These protocols are close to optimal in terms of the number

of steps T required and the number of Bell pairs consumed in
the worst case.

Our model is naturally quite simplified, and there are many
possibilities for trade-offs and improvements even within it.
First, we note that the number of steps, T , does not necessarily
represent time—for example, if nodes are allowed to share
N (N − 1) Bell pairs, then everything can be done in one
physical time step. One then has a potential trade-off between
how parallel uses of the quantum channel can be, and the use
of quantum memory. Indeed, in terms of memory, one may
tweak the steps in our protocol so as to parallelize as much
as possible—with a little thought, one can see that one only
needs two qubits of memory per Bell-pair vertex per node at
any one step. Furthermore, our optimality is for the worst-case
topology and state—for a fixed graph state and topology, one
may do much better (e.g., our protocol for the GHZ state).
The advantage for our scheme is that it gives a method, and a
bound, which works for all states and topology with the same
efficiency.

Beyond this, there is much potential for developing more
refined models for quantum networks, where one could, for
example, consider memory, local processing or classical com-
munication costs, as well as their mutual interactions. All
of these choices can potentially change the optimal strategy
and so must be made carefully. We leave this for future
work.
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