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Nonequilibrium effects on quantum correlations: Discord, mutual information, and entanglement
of a two-fermionic system in bosonic and fermionic environments
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We study the steady-state entanglement and correlations of an open system comprising two coupled
fermions in the equilibrium or nonequilibrium environments and distill the nonequilibrium contribution to
the quantum correlations. We show that in the equilibrium condition, the steady-state quantum correlations
exhibit nonmonotonic behavior, while in the nonequilibrium case, the monotonicity is determined by many
parameters. The entanglement vanishes abruptly upon the increase of the temperature (bias) and chemical
potential bias, and it witnesses a critical chemical potential above which the concurrence always remains
positive. In the fermionic reservoirs, quantum correlations reach the maximal values when one chemical potential
of the reservoirs matches the system frequency. We separate the quantum correlation generation due to the
averaged effect from the pure nonequilibrium effect. In contrast with previous results, when the averaged effect is
separated out, the nonequilibrium generation of quantum correlation shows a distinctive monotonic behavior. The
difference between the large-tunneling regime with decaying correlations and the small-tunneling with increasing
correlations is discussed. Near the boundary of the two regimes, the entanglement behavior is a mixture of two
extremes, and it resurrects with the increase of chemical potential bias after its previous drop to zero.
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I. INTRODUCTION

Entanglement is one of the most widely used measures of
nonclassicality in a quantum system. Nevertheless, in many
cases unentangled states can also exhibit nonclassical behav-
ior [1–3]. In particular, when dealing with mixed states, the
definition of entanglement can be generalized to the weighted
sum of the pure state entanglement in the decomposition of
the mixed states minimized over all decomposition. This min-
imization forces the entanglement to vanish when a certain
disorder of the system is attained [4–7]. Thus augmenting
measures of quantum correlations other than entanglement
provides a more complete picture to capture the difference
between the quantum and classical worlds [1,3,8,9].

Quantum discord (QD) is used as a characterization of
quantum correlation in information theory, quantum comput-
ing, and biophysics due to its robustness with respect to the
noises from the environments. Although its merit in charac-
terizing the speedup of deterministic quantum computation
of one qubit was disputed [10–12], it an important quantity
for quantifying correlations beyond the classical connections.
QD has fertile applications in studying biological systems
such as photosynthesis in the light-harvesting pigment-protein
complexes and tunneling through enzyme-catalyzed reactions
[13–17]. Despite its application, computing QD is a NP-
complete problem [18]. Even for a general two-qubit state,
getting a closed analytical form of discord is still challenging.
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On the other hand, the concurrence used for describing
a four-dimensional density matrix is relatively simple and
unambiguous. Many previous researches have explored the
properties of QD with certain designated density matrices
[19–21]. The discord in special cases such as a few-parameter
families [19,22–24] and in the “X” form of a density matrix in
higher dimensions [25] has been calculated. Limited studies
have devoted to open systems [26]. Distinct behaviors of
entanglement and discord were noticed for a simple two-qubit
system under environmental biases [26,27].

Dissipative quantum systems exhibit many nonsmooth be-
haviors such as long-lived quantum coherence [28,29], the
sudden death of entanglement [13,30,31], and transition from
the quantum to the classical world through decoherence mea-
sured by discord [32]. Similar abrupt behaviors such as in the
relaxation process were also witnessed in the steady states
and in the nonequilibrium conditions with the continuously
varying environmental parameters [20,26,27]. It was shown
that while entanglement manifests a similar “sudden death,”
the QD vanishes only in the asymptotic limit [26,27,33]. In
this paper, we show that in some particular parameter regimes,
entanglement can resurrect after its previous drop to zero as
we tune up the chemical potential. Additionally, the quantum
correlations do not necessarily decay to zero as the bias of the
environments increases but can have large asymptotic value in
some parameter regimes.

Nonequilibrium effects for the quantum correlations in an
open system was also discussed by previous studies [26,34–
37]. Some of the previous results showed that the bias of
the reservoirs can only deteriorate quantum correlations in
the strong-coupling model [27] or can minutely increase the
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correlations in a weak-coupling model [26,36,37]. However,
whether the effect is truly due to the nonequilibriumness or
is rather an averaged effect of different reservoirs was not
differentiated. In fact, we find that the nonequilibrium effects
discussed in the previous studies [26,27,36,37] are mainly due
to the system being in equilibrium with the sum or average
of different reservoirs, while the most intrinsic nature of
the nonequilibrium effect which should come from the
difference between two reservoirs was not captured. In
this work, we see that the environments do not act as a
peripheral role but can greatly change the trend and strength
of the quantum correlations. We separate the component
of the quantum correlation generation due to the essential
nonequilibriumness from that due to the averaged effect of the
environments. The “distilled” nonequilibrium contribution
after separation has a distinctive feature that monotonically
boosts the quantum correlations and entanglement. Our result
suggests that the nonequilibrium effect, which is left out
from the Lindblad formalism through ignoring the coherence
terms [36,38], is important in studying the quantumness and
correlations of quantum systems.

In general, the relationships among QD, entanglement, and
classical correlation are not yet clear [4]. Though discord
is sometimes interpreted as a type of entanglement with
nonclassical correlations, this interpretation is not accurate
[19,20]. In an open system, we also witnessed such a region
where the entanglement is larger than QD. For a maximally
entangled Bell state or in general any pure state, quantum
mutual information is evenly distributed among classical and
quantum correlations [19,20]. We found that for the case of
a system with two interacting fermions, the QD of a steady
state is always larger than the classical correlation, which is
not true in general [14,39]. In the high-temperature regime,
the QD and classical correlation coincide and exponentially
decrease as temperature increases.

In this paper, we study a fermionic system coupled with
two separate bosonic or fermionic reservoirs. We analyze the
influence of nonequilibriumness to quantum correlations and
separate the correlation generation due to essential nonequi-
libriumness from that arises from the averaged effect of the
two baths. We show that the distilled nonequilibrium effect
only enhances the quantum correlations, while averaged effect
can have varying influence on correlations. We notice that in
the large tunneling rate regime with fermionic environments,
quantum correlations do not necessarily vanish as we enlarge
the chemical potential of one of the reservoirs. Some threshold
value emerges above which the asymptotic entanglement re-
mains finite, and is otherwise zero. In some parameter regime,
quantum entanglement resurrects after previous dying out
with the increase of chemical potential bias.

The paper is organized as follows. In Sec. II we introduce
the model and the quantum master equation. In Sec. III
we briefly introduce different quantum correlations that are
relevant and the necessary analytical calculations. In Sec. IV
we analyze the quantum correlations in both bosonic and
fermionic reservoirs when the system is in equilibrium with
the environment. The main point of the paper is made in Secs.
V and VI, where we discuss the results for the nonequilibrium
effects on quantum correlations and other nonequilibrium
phenomena. We separate the equilibrium and nonequilibrium

FIG. 1. Schematic illustration of the model under consideration.
The two fermion sites are either occupied or empty with nonzero
tunneling rate between them. Each site is in contact with its own
reservoir.

components of correlation generation and remark on the ap-
plicability of Lindblad form in understanding nonequilibrium
physics and the different behaviors of correlations at various
tunneling rates. In the last section, we conclude our results.

II. MODEL

We consider a simplest model with two sites. Each site can
either adopt a fermon or be empty. The fermion can tunnel
through between the two sites with a finite tunneling rate.
Each site is immersed in its own reservoir, which can be
either bosonic with zero chemical potential or fermionic. The
diagrammatic illustration of our model is shown in Fig. 1. We
take the Hamiltonian of the following form:

HS = ω1η
†
1η1 + ω2η

†
2η2 + �(η†

1η2 + η
†
2η1),

HR =
∑
k,p

h̄ωk (a†
kpakp) +

∑
q,s

h̄ωq (b†
qsbqs), (2.1)

where HS and HR represent the Hamiltonian of the system
and the Hamiltonian for the reservoirs, respectively. � is the
interaction strength between the two sites. η

†
1,2 and η1,2 are

creation and annihilation operators on the site 1(2) following
the standard fermionic statistics:

{ηa, η
†
b} = δab,

{ηa, ηb} = {η†
a, η

†
b} = 0. (2.2)

The interaction Hamiltonian between the system and the
reservoirs is denoted as

Hint =
∑
k,p

λk
(
η

†
1akp + η1a†

kp

) +
∑
q,s

λq
(
η

†
2bqs + η2b†

qs

)
(2.3)

with λ being the interaction strength between the system and
the reservoir and a†

kp(b†
kp) the creation operator for a particle

of momentum k, polarization p from the reservoir. For bosonic
reservoirs, the calculation serves as a toy model for energy
and heat transport [40] since it is not possible from the first
principle. For fermionic reservoirs, this model can be used
to describe charge transport [41]. We can diagonalize the
Hamiltonian with the transformation

�ζ =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
�η, (2.4)
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where cosθ = ω2−ω1√
(ω1−ω2 )2+4�2

. After the diagonalization,

HS = ω′
1ζ

†
1 ζ1 + ω′

2ζ
†
2 ζ2 (2.5)

with ω′
1,2 = 1

2 [ω1 + ω2 ±
√

(ω1 − ω2)2 + 4�2] and ζ1,2. ζ
†
1,2

satisfies the same anticommutation relation as Eqs. (2.2).
After this Bogoliubov transformation, this model effectively
describes two uncoupled fermion sites with the energies to
generate one of the fermions ω′

1 and another fermion ω′
2,

respectively. Bogoliubov transformation does not change the
commutation relation. In the new basis, ζa and ζ

†
b still have

the same commutation relation as ηa and η
†
b. The interaction

Hamiltonian can be written as

Hint =
∑
k,p

λk[(sζ †
1 + cζ †

2 )akp + (cζ †
1 − sζ †

2 )bkp] + H.c.,

(2.6)
where c = cos(θ/2) and s = sin(θ/2).

A. Master equation

With the Born approximation, the density matrix ρSR for
the whole system can be factorized into the following form
when the interaction between the systems and environment
are assumed to be weak: ρ̃SR(t ) ≈ ρ̃S (t ) ⊗ ρ̃R, where ρ̃S (t )
is the density matrix for the isolated system and ρ̃R for the
isolated reservoirs. We ignore the variance in the reservoirs,
i.e., ρ̃R(t ) ≈ ρR(0) = ρR. When the Markovian approximation
is assumed, the quantum master equation (QME) can be
written as [42]

dρ̃S (t )

dt
= − 1

h̄2 TrR

∫ t

0
ds{H̃int (t ), [H̃int (s), ρ̃S (t ) ⊗ ρR(0)]},

(2.7)
where H̃int ≡ eiH0t/h̄Hinte−iH0t/h̄ is the interaction Hamiltonian
in the interaction picture, Hint is the interaction Hamiltonian
in the Schrödinger picture, and H0 = HS + HR.

The environment in our consideration is macroscopic and
has a much shorter relaxation time compared to the system’s
characteristic timescale. Thus we ignore the back reaction
from the reservoir to our system. We trace out the environ-
mental contributions to the full density matrix to obtain the
reduced density matrix of our system. For an ideal bosonic or
a fermionic environment, the following results hold:

TrR(ρR a†
kas) = δksnk,

TrR(ρR aka†
s ) = δks(1 ± nk ),

TrR(ρR akas) = TrR(ρR a†
ka†

s ) = 0, (2.8)

where the plus sign is for a bosonic bath with occupation
number nk = 1

eh̄βω−1 , and the minus sign is for a fermioic bath
with nk = 1

eh̄β(ωk−μ)+1
.

One of the most typical ways of dealing with quantum
open system is to apply the Lindblad operator and solve the
corresponding master equation. However, the master equa-
tions in the Lindblad form ignore certain population and
coherence couplings and assume an extra timescale hierarchy
that is not widely applicable. The coherence and population
couplings are important for the system in the nonequilibrium
environments [38,43]. In our study, we will apply a Marko-
vian approximation without secular approximation. This gives

arise to the Bloch-Redfield equation. The Redfield equation
may have the problem of positivity in principle [44], but it
does not appear within any reasonable range of parameters
in our calculation. In our study, we restrict ourselves to the
parameters within the reasonable range where the density
matrix is positive definite. The result of the quantum master
equation is displayed as

ρ̇S (t ) = i[ρS, HS] − D0[ρ] − Ds[ρ], (2.9)

where

D0[ρ] =
2∑

i=1

Ni[ρ], Ds[ρ] =
2∑

i=1

Si[ρ]. (2.10)

The dissipator D0 describes the particle exchanges with the
reservoirs, and Ds gives the coherence between energy levels
of the system, which is absent in the Lindblad formalism. For
bosonic reservoirs, D0 and Ds are defined as

N1[ρ] = �1s2
[(

1 ± nT1
1

)
(ζ †

1 ζ1ρ̃ + ρ̃ζ
†
1 ζ1 − 2ζ1ρ̃ζ

†
1 )

+ nT1
1 (ζ1ζ

†
1 ρ̃ + ρ̃ζ1ζ

†
1 − 2ζ

†
1 ρ̃ζ1)

]
+ �2c2 [(

1 ± nT1
2

)
(ζ †

2 ζ2ρ̃ + ρ̃ζ
†
2 ζ2 − 2ζ2ρ̃ζ

†
2 )

+ nT1
2 (ζ2ζ

†
2 ρ̃ + ρ̃ζ2ζ

†
2 − 2ζ

†
2 ρ̃ζ2)

]
(2.11)

and

S1[ρ]

= �1sc
[(

1 ± nT1
1

)
(ζ †

2 ζ1ρ̃ + ρ̃ζ
†
1 ζ2 − ζ2ρ̃ζ

†
1 − ζ1ρ̃ζ

†
2 )

+ nT1
1 (ζ2ζ

†
1 ρ̃ + ρ̃ζ1ζ

†
2 − ζ

†
2 ρ̃ζ1 − ζ

†
1 ρ̃ζ2)

]
+ �2sc

[(
1 ± nT1

2

)
(ζ †

1 ζ2ρ̃ + ρ̃ζ
†
2 ζ1 − ζ1ρ̃ζ

†
2 − ζ2ρ̃ζ

†
1 )

+ nT1
2 (ζ1ζ

†
2 ρ̃ + ρ̃ζ2ζ

†
1 − ζ

†
1 ρ̃ζ2 − ζ

†
2 ρ̃ζ1)

]
, (2.12)

where ω′
a is the energy eigenvalue of the system and s and

c are the short from for sin(θ/2) and cos(θ/2) defined in
Eq. (2.4). Plus signs are for bosonic reservoirs and minus
signs for fermionic reservoirs. Due to the rapid oscillation of
field modes, we apply the Weisskopf-Wigner approximation,
expand the time integral to infinity, and replace the summation
in the interaction Hamiltonian by integration. Then the decay
rates are defined as

�i ≡ 2V

(2π )3
π

∫
d3�k λ2

�k δ(ω′
i − ωk ). (2.13)

The number density is defined as follows. For the bosonic
bath, nTi

k = 1

eh̄βiω
′
k −1

, and for the fermionic bath nTi
k =

1

eβi (ω′
k −μi )+1

. Here N2[ρ] and S2[ρ] differ from N1[ρ] and S1[ρ]

by replacing the T1 in the above expressions with T2, and c
with −s and s with c.

The solution of the master equation has two uncoupled
parts, ρ11, ρ22, ρ33, ρ44, ρ23, ρ32, and the rest. The off-
diagonal components, except ρ23 and ρ32, are uncoupled with
the population components, and thus they vanish in the steady
state. Therefore, we consider only the “X” form of the density
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matrix:

ρ =

⎛
⎜⎝

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

⎞
⎟⎠. (2.14)

The solution of the master equation is in the energy repre-
sentation. We need to perform a unitary transformation to
transform the density matrix to the local site basis to calculate
the correlations between two sites. The explicit form is given
in Appendix C.

B. Eigenstates and connection with the spin operator

1. Relation to spin 1
2

A spin- 1
2 system and fermionic system can be mapped

into one another through a Jordan-Wigner transformation. For
a fermionic system, i.e., two holes which admit either zero
or one fermion, the original Hamiltonian can be presented
in the language of spin systems. We take the local basis
|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉. Correspondingly,
the creation and the annihilation operators take the form

η
†
1 = σ+ ⊗ 1, η

†
2 = σz ⊗ σ+,

η1 = σ− ⊗ 1, η2 = σz ⊗ σ−,
(2.15)

where σ+ and σ− are the raising and lowering operators for
the spin system, and σz is the Pauli spin matrix. The creation
and annihilation operators follow the fermionic anticommuta-
tion relation:

{ηa, η
†
b} = δab, {ηa, ηb} = {η†

a, η
†
b} = 0. (2.16)

The system Hamiltonian thus can be transformed into the form

HS = ω1 σ+σ− ⊗ 1 + ω2 1 ⊗ σ+σ−

+�(σ+σz ⊗ σ− + σzσ
− ⊗ σ+), (2.17)

and the interaction Hamiltonian can be written out accord-
ingly:

Hint =
∑
k,p

λk (σ+ ⊗ 1 ⊗ ak,p + σz ⊗ σ+ ⊗ bk,p) + H.c.

(2.18)

2. Eigenbasis

We set our notation for basis in the following way. The eigen-
state corresponding to zero energy, denoted by |00〉, is the
one which can be annihilated by both ζ1 and ζ2. The highest
energy eigenstate corresponding to w′

1 + w′
2, denoted by |11〉,

is the one that can be annihilated by both ζ
†
1 and ζ

†
2 . In the

local basis, they are identified under the above requirements
to the states as |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, respectively. Applying
Eqs. (2.15), we now have our four eigenstates defined as

|1〉 = ζ1|10〉 = ζ2|01〉 = |0〉 ⊗ |0〉,
|2〉 = ζ

†
1 |00〉 = ζ2|11〉 = c |1〉 ⊗ |0〉 − s |0〉 ⊗ |1〉,

|3〉 = ζ
†
2 |00〉 = −ζ1|11〉 = −s |0〉 ⊗ |1〉 − c |1〉 ⊗ |0〉,

|4〉 = −ζ
†
1 |01〉 = ζ

†
2 |10〉 = |1〉 ⊗ |1〉, (2.19)

and with eigenvalues 0, ω′
1, ω′

2, ω1 + ω2. Notice that the
ground state and the most excited eigenstate in our definition
are localized, while the other two are nonlocal.

For simplicity, we consider the symmetric case ω1 = ω2 =
ω, and with the transformation

�ζ =
(

1√
2

1√
2

− 1√
2

1√
2

)
�η, (2.20)

the Hamiltonian can be simplified to

HS = (ω + �)ζ †
1 ζ1 + (ω − �)ζ †

2 ζ2. (2.21)

Without consideration of the system-reservoir interaction, the
eigenstate annihilated by ζ2 has energy ω + �, and the state
annihilated by ζ1 has energy ω − �. Since the four local states
|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 form a complete
basis set, the energy eigenbasis can be expressed in terms of
the four state vectors. The energy eigenstate can be written as
a linear combination of the four states and solved by requiring
that HS |n′〉 = ω′

n |n′〉. The eigenbasis and the corresponding
energies are listed as follows:

|0〉 ⊗ |0〉, E1 = 0, (2.22)

1√
2

(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉), E2 = ω′
1 = ω − �, (2.23)

1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉), E3 = ω′
2 = ω + �, (2.24)

|1〉 ⊗ |1〉, E4 = 2ω. (2.25)

III. CORRELATION MEASURES OF TWO FERMIONS

The feature of correlation of a bipartite system can be
quantified by many physical quantities such as quantum mu-
tual information, QD, and entanglement, as well as classical
correlation. In this paper we study the system correlation by
these measures. We work in the local basis, and the subscript
“local” will be neglected in the discussion of correlations in
this section.

A. Concurrence

Concurrence was derived from the entanglement forma-
tion and is an entanglement measure that was introduced
for describing two-qubit systems by Wootters [45]. We will
borrow this concept for our study since the density matrix
has the same dimension. There are several related studies
on concurrence for, e.g., two-qubit systems and three-level
system, [36,46,47]. The concurrence for a four-dimensional
density matrix (for example, two-qubit systems) is given by

E (ρ) = Max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (3.1)

where λi are the eigenvalues of the Hermitian matrix R in the
descending order where

R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). (3.2)

For the “X”-type density matrix that is related to our study,
it can be easily calculated that the concurrence reduces to the
following simple expression:

E (ρ) = 2 Max(0, |ρ23| − √
ρ11ρ44, |ρ14| − √

ρ22ρ33). (3.3)
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B. Quantum mutual information and classical correlation

Quantum mutual information (QMI) is a direct generalization
of classical mutual information and is defined as follows. Let
ρAB denotes the density operator of a bipartite system AB,
and ρA(B) = TrB(A)(ρAB) is the reduced density operator of the
subsystem A(B), respectively. Then the QMI can be expressed
as

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (3.4)

where S(ρ) = −tr (ρ log2 ρ) is the von Neumann entropy. It
is shown that quantum mutual information is the maximum
amount of information that A can send securely to B if A and
B share a correlated composite quantum system, and AB is
used as the key for a one-time pad cryptography system [48].

Another generalization of classical mutual information is
classical correlation (CC) and is defined as below [49]. Let
Bk be a set of one-dimensional projection measurements per-
formed on subsystem B, and the conditional density operator
ρk associated with the measurement result k is

ρk = 1

pk
(I ⊗ Bk )ρ(I ⊗ Bk ), (3.5)

where pk = tr(I ⊗ Bk )ρ(I ⊗ Bk ), and I is the identity operator
on the subsystem A.

The von Neumann measurement for subsystem B can be
written as [19]

Bi = V �i V †, i = 0, 1, (3.6)

where
∏

i = |i〉〈i| is the projector associated with the subsys-
tem B along the computational basis |i〉, and V ∈ SU (2) is a
unitary operator.

With this conditional density operator, the quantum con-
ditional entropy with respect to this measurement is defined
by

S(ρ|{Bk}) :=
∑

k

pkS(ρk ), (3.7)

and the associated quantum mutual information is given by

I (ρ|{Bk}) := S(ρA) − S(ρ|{Bk}). (3.8)

Classical correlation is defined as the superior of I (ρ|{Bk})
over all possible von Neumann measurement Bk [50],

C(ρ) := sup
{Bk}

I (ρ|{Bk}). (3.9)

C. Quantum discord

Quantum discord Q, which reflects the quantum correla-
tions between the two subsystems, was introduced by Ollivier
and Zurek in 2001 [3]. They found that even for a separable
state, a measurement on the subsystem can still disturb the
whole system unless Q = 0.

The sum of QD Q(ρ) and classical correlation C(ρ) is the
quantum mutual information I (ρ):

Q(ρ) := I (ρ) − C(ρ). (3.10)

The QD in general is not symmetric regarding to which system
is the operator performed upon, i.e., I (ρ|{Bk}) �= I (ρ|{Ak}),
even in their limits. In this paper we will stick with the above

definition, and the conditional entropy is defined with respect
to the measurement on the subsystem Site 2 as is shown in
Fig 1.

The QD of Bell-diagonal states is well known [51,52].
The analytical expressions for classical correlation and QD
are available for a two-qubit Bell diagonal state and a seven-
parameter family of two-qubit “X” states [19,20]. Though
the analytical results for the seven-parameter family were
pointed out as being not always exact, they are very good
approximations in most cases [24,53,54]. For a general Her-
mitian operator acting on a C2 ⊗ C2, the density matrix can be
decomposed using the tensor products of su(2) generators,

ρ = 1

4

⎡
⎣I ⊗ I + r · σr · σr · σ ⊗ I + I ⊗ s · σs · σs · σ +

3∑
i, j=1

ci jσi ⊗ σ j

⎤
⎦,

(3.11)

where coefficient ci j ∈ R3. For the class of a “X” state, the
Bloch vector is along the z axis, and the above expression can
be simplified to

ρ = 1

4

[
I ⊗ I + r · σz ⊗ I + I ⊗ s · σz +

3∑
i=1

ci jσi ⊗ σ j

]

(3.12)

with c13 = c23 = c31 = c32 = 0. QD is invariant under the
local unitary transformations. It can be easily shown that every
general 2 × 2 state of the form (3.12) can be reduced to a
form of which the coefficients ci j ∈ R3are diagonal by a local
unitary transformation:

Theorem 1. ∀ ci j ∈ R, there exists unitary matrices
U and V such that U ⊗ V (

∑3
i, j=1 ci jσi ⊗ σ j )U † ⊗ V † =∑3

m=1 cmσm ⊗ σm for some cm.
The proof of the above statement can be found in many

papers (e.g., Ref. [19]), and we will not elaborate here.

D. Quantum correlations in our case of study

In the case of our study, the explicit calculation for quan-
tum mutual information, QD, and classical correlation is given
below. In order to diagonalize the coefficients ci j , we define
the following unitary transformations:

Lθ (σx ) ≡ eiθσzσxe−iθσz = cos 2θ σx − sin 2θ σy,

Lθ (σy) ≡ eiθσzσye−iθσz = sin 2θ σx + cos 2θ σy,

Lθ (σy) ≡ eiθσzσze
−iθσz = σz, (3.13)

where the parameters θ and ψ solve the following equation:

Lθ ⊗ Lψ

(
3∑

i=1

ci jσi ⊗ σ j

)
=

(
3∑

i=1

giσi ⊗ σi

)
. (3.14)

The solution is not unique, and we pick the simplest one for
the calculation,

cos(2θ ) = Im(ρ23)

|ρ23| , sin(2θ ) = Re(ρ23)

|ρ23| , (3.15)

where Im(ρi j ) denotes the imaginary part of the matrix
element ρi j and Re(ρi j ) denotes the real part. After the
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transformation, the density matrix in the local basis represen-
tation takes the following form:

ρ =

⎛
⎜⎝

ρ11 0 0 0
0 ρ22 |ρ23| 0
0 |ρ32| ρ33 0
0 0 0 ρ44

⎞
⎟⎠. (3.16)

The density matrix belongs to real-valued four-parameter
family, and it can be decomposed in the following form:

ρ = 1

4

[
I ⊗ I + rσz ⊗ I + sI ⊗ sσz +

3∑
i=1

ciσi ⊗ σi

]
,

(3.17)
where r, s, and c3 can be solved as follows:

s = (ρ11 − ρ22) + (ρ33 − ρ44),

r = (ρ11 + ρ22) − (ρ33 + ρ44),

c1 = c2 = 2|ρ23|,
c3 = (ρ11 − ρ22) − (ρ33 − ρ44). (3.18)

The eigenvalues of the density matrix ρ are

λ1,2 = 1
4 [1 − c3 ±

√
(r − s)2 + (c1 + c2)2],

λ3,4 = 1
4 [1 + c3 ±

√
(r + s)2 + (c1 − c2)2] ,

and the quantum mutual information is given as

I (ρ) = S(ρA) + S(ρB) +
4∑

i=1

λi log2 λi, (3.19)

where S(ρA) and S(ρB) are given by S(ρA) = 1 + f (r),
S(ρB) = 1 + f (s), and f (t ) = − 1−t

2 log2(1 − t ) −
1+t

2 log2(1 + t ).
The QD for the density matrix of the above form was first

studied analytically [19,20] and later was explicitly exempli-
fied [21]. In most cases, it turns out that the possible maximal
values in the optimization process of calculating classical
correlation take place only in several special places with little
error [24], and the result is as follows. For any state ρ of the
form (3.16), the classical correlation of ρ is given by

C(ρ) = S(ρA) − min{S1, S2}, (3.20)

where

S1 = S(ρ|{Bi}) = p0S(ρ0) + p1S(ρ1)

= −1 + r + s + c3

4
log2

1 + r + s + c3

2(1 + s)

− 1 − r + s − c3

4
log2

1 − r + s − c3

2(1 + s)

− 1 + r − s − c3

4
log2

1 + r − s − c3

2(1 − s)

− 1 − r − s + c3

4
log2

1 − r − s + c3

2(1 − s)
(3.21)

and

S2 = 1 + f
(√

r2 + c2
1

)
, (3.22)

where f (t ) = − 1−t
2 log2(1 − t ) − 1+t

2 log2(1 + t ). And the
QD is given by

Q(ρ) = I (ρ) − C(ρ). (3.23)

IV. QUANTUM CORRELATIONS FOR FERMIONIC
SYSTEM IN EQUILIBRIUM ENVIRONMENTS

The quantum correlations under equilibrium conditions is
important since the mechanism of correlation generation in
the latter case can be the same as or different from that in the
equilibrium scenario. This is what we want to differentiate.
Under the equilibrium condition the two reservoirs are set
to the same temperature and the same chemical potential.
At the long-time limit, the system will relax to the same
equilibrium regardless of the initial conditions. What we find
is that all the four quantum correlations we study (QMI, CC,
QD, concurrence) show the similar trends with respect to the
temperature. As the temperature increases from zero, quantum
correlations increase. As the temperature increases further,
they decay asymptotically to zero; see, e.g., Figs. 12(a) and
12(b) in Appendix A. While QMI, CC, and QD decay asymp-
totically to zero, concurrence vanishes in an abrupt manner at
T = �/ ln(1 + √

2) regardless of the chemical potential (in
the fermionic reservoir case). In the fermionic reservoir case,
quantum correlations show the same up-and-down trend with
the increase of the temperature unless the chemical potential
of the reservoirs μ is above μ∗ = ω − � where they decay
monotonically; see Figs. 13(b) and 13(c) in Appendix A. The
quantum correlations reach their maxima when the chemical
potential of the reservoirs and the eigenenergy of the system
coincide.

Since our focus is on the nonequilibrium effects on
the quantum correlations, we refer interested readers to
Appendix A for details and a full discussion on how equilib-
rium temperature and chemical potential influence the quan-
tum correlations.

V. QUANTUM CORRELATIONS OF FERMIONIC SYSTEM
IN NONEQUILIBRIUM ENVIRONMENTS (BOSONIC

RESERVOIRS)

If we set the two reservoirs at different temperatures and
chemical potentials, the system gradually evolves into the
nonequilibrium steady state. The nonequilibrium steady state
is featured by the constant flux of fermions between the
two sites, and between the system and the reservoir. See
Appendix E for a more detailed description. For a microscopic
system the relaxation to the steady state can happen extremely
rapidly, and we will focus only on the steady-state properties.
Some of the previous studies have shown that nonequilbrium-
ness can influence both the coherence and the entanglement of
two qubits or a nanosystem in thermal or chemical reservoirs
[27,36,37,47].

The section is arranged as follows. In subsection A, we
briefly discuss the leading order solution of the Redfield equa-
tion and the inadequacy of the Lindbladian. In subsection B,
we show that even in the nonequilibrium system, the effects on
quantum correlations can still be divided into the equilibrium
effect with the average of reservoirs, or “the averaged effect,”
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and the nonequilibrium effect. We discuss the meaning of the
averaged effect and how to separate this effect from the rest,
and we compare it with the “distilled” nonequilibrium effect.

A. Leading order solution of Redfield equation

The exact solution of the quantum master equation of the
density matrix in bosonic baths is given in Appendix D 1. Here
we present the solution up to the leading order in the ratio
of the system-reservoir interaction and tunneling rate. For the
system with bosonic reservoirs,

ρ11 = (2 + n1p)(2 + n2p)

4((1 + n1p)(1 + n2p)
+ O(g2),

ρ22 = n1p(2 + n2p)

4(1 + n1p)(1 + n2p)
+ O(g2),

ρ33 = (2 + n1p)n2p

4(1 + n1p)(1 + n2p)
+ O(g2),

ρ44 = n1pn2p

4(1 + n1p)(1 + n2p)
+ O(g2),

ρ23 = i
n1m(1 + n2p) + n2m(1 + n1p)

2(1 + n1p)(1 + n2p)
g + O(g2), (5.1)

where nip = n(ω′
i, T1)+n(ω′

i, T2), nim = n(ω′
i, T1)−n(ω′

i, T2),
and g = �

ω′
1−ω′

2
= �

2�
. It is valid that the tunneling rate of the

system � is much larger than the coupling between the system
and the environment �.

For the nonequilibrium steady state, one of the most appar-
ent changes is the appearance of the off-diagonal coherence
terms in the density matrix of the system in the energy basis.
This means that the steady state is no longer “classical” in
energy basis as is the case in equilibrium situation. This term
was ignored by most previous studies but is important in
studying the nonequilibrium effect.

One remark is that the coherence term ρ23 is a distinctive
feature of the Redfield equation against the Lindblad equation.
In the solution of the latter, the density matrix is a classical
ensemble in the energy basis. If we want to study the real
nonequilibrium effect, we have to abandon the rotating-wave
approximation or the secular approximation. The essential
idea of a secular approximation is that the system intrinsic
timescale is much shorter than the system’s relaxation time,
and thus we can ignore the unbalance of the system, or, in
other words, ignore the nonequilibrium effect of the system.
This point is elaborated in more detail in Sec. VI B 1.

B. Nonequilibrium quantum correlations

For both fermionic or bosonic environment, when setting
the reservoirs (R1, R2) at the same chemical potential and
different temperatures (say, T1 > T2), the expected particle
number on site S1 is larger than S2. In terms of matrix
elements, it means ρl,22 > ρl,33 (“l” represents “local basis”).
However, comparing with equilibrium solution, the particle
on site S1 is smaller than that in the equilibrium case with
R1 at T1, i.e., ρl,22 < ρ̃l,22, where ρ̃l,22 is the local density
matrix element in the equilibrium scenario at T1; see Fig. 2(b).
This means that comparing with the equilibrium case, the

FIG. 2. (a) Energy current vs �T at T1=0.2. From top to bottom
� = 0.3, 0.1, 0.05. (b) ρl,22 (lower, blue) and ρ̃l,22 (upper, orange)
vs T1 (the subscript “l” means local basis, and the tilde indicates
the equilibrium case) at �T = 0.4 and � = 0.3. For both, the
parameters are set to �1 = �2 = 0.05, ω1 = ω2 = 1 unless otherwise
specified.

particles on site S1 have a constant net flow from S1 to S2
as is shown in Fig. 2(a). Similarly, ρl,33 > ρ̃l,33, where ρ̃l,33 is
in the equilibrium case calculated at T2. S1 accepts fermions
from the high-temperature reservoir R1 and transports the
fermions to S2 and then to R2. In steady state, the energy
flowing into S1 has to be equal to that out from S2 to R2
in order to maintain the steady state. An introduction to the
energy current is given in Appendix E.

1. Correlations due to the averaged effect

When the tunneling rate is much larger than the system-
environment coupling, the two subsystems which are in con-
tact with their respective reservoirs act as one system in
equilibrium with the average of the two reservoirs. When
setting the � = 0.3 and � = 0.05, we can ignore altogether
the coherence and the higher orders in g. The quantum
correlations should resemble the equilibrium case with the
identification (5.4). In Fig. 3(a), the “rainbow” diagram, we
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FIG. 3. Nonequilibrium bosonic reservoirs. (a) The “rainbow”
diagram. QD vs δT with the average temperature Tavg fixed at 0.2
(purple), 0.23 (blue), 0.27 (green), 0.3 (orange), and 0.35 (red) from
bottom to top. Here T1 = Tavg − δT and T2 = Tavg + δT . (b) QD vs
δT at �=0.05 with different Tavg. The parameters are set to � = 0.3,
�1 = �2 = 0.05, ω1 = ω2 = 1 unless otherwise specified.

keep the average temperature of the two reservoirs fixed and
plot the QD against the change of the temperature bias of the
two reservoirs, at temperatures Tavg ± δT , respectively. We
can define an effective temperature Teff such that

ni(Teff ) = ni(Tavg + δT ) + ni(Tavg − δT )

2
. (5.2)

We can check that the effective temperature

Ti,eff = ω′
i/ log

[
2

ni(Tavg + δT ) + ni(Tavg − δT )
+ 1

]
(5.3)

increases monotonically with the temperature bias δT . We
notice at zero temperature bias, the system already has a
sizable amount of discord. The increase or decrease of discord
in the plot is mainly due to the average thermal temperature
change of the two reservoirs. Through analysis of Fig. 12
(see Appendix A), we concluded that the QD increases with
equilibrium temperature roughly when T < 0.3 and decreases
when T > 0.3. Since Teff is δT monotone, we expect the
similar change of monotonicity at roughly Tavg = 0.3 with δT .
This is shown in Fig. 3(a); the monotonicity of the discord
with δT changes when the average temperature is close to 0.3.

In Fig. 4 the temperature of one reservoir is kept fixed at
0.2 and the other at 0.2 + �T . Comparison can be drawn
with the equilibrium situation (Fig. 13 in Appendix A). In
the nonequilibrium case, the QD and classical correlation no
longer approach zero as we increase the average temperature.
This is noticed from the the solution [Appendix D 1] that the
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FIG. 4. CC, discord, and concurrence vs �T with T1 = 0.2 and
T2 = T1 + �T . � = 0.3, �1 = �2 = 0.05, ω1 = ω2 = 1.

nonvanishing coherence term in the energy basis
limT →∞ ρ23 = ig to the leading order will give the
nonvanishing coherence term in the local basis. In the
equilibrium situation, the coherence term vanishes completely
in the high-temperature limit. This suggests that the quantum
nature of the system will remain as the temperature of one of
the bath becomes high. The entanglement will still disappear
at a finite temperature bias. The rise and decay of the
quantum correlations can be understood through the effective
temperature defined in Eq. (5.3). As �T increases, the
effective temperature to the leading order Teff = T1 + �T/2
increases, and we can refer the increase and decrease of the
quantum correlations to the equilibrium case discussed in the
last section.

2. The “averaged effect” of the nonequilibrium system

We stated in the introduction that the nonequilibrium ef-
fects discussed in the previous studies are mainly due to
the system being in equilibrium with the average of two
reservoirs. What do we mean by this statement?

Physically, it means that the bipartite system is so strongly
coupled within itself that the subsystems are always in equi-
librium, and that the system reacts to the average of the
two reservoirs as a whole. In comparison, when the inner-
system coupling between the two subsystems is weak, the
two subsystems cannot be treated as in identical states; in-
stead each subsystem is approximately in equilibrium with its
own reservoir. The nonequilibrium effect arises from the two
subsystems not being in an identical state.

This can be noticed by the leading order solution given in
Eq. (5.1). All the population terms up to the leading order
are functions of nip, which represents the sum of the two
reservoirs. When the tunneling rate is large, i.e., g � 1, the
higher order terms and the coherence terms in Eq. (5.1) can
be ignored. Then the zeroth-order population terms return to
the equilibrium solution if we make the substitution

ni(T )equilibrium → 1

2
nip = ni(T1) + ni(T2)

2
, (5.4)

where ni(Tj ) is particle number of the jth reservoir at the
energy level, which equals the ith eigenenergy of the system.
This returns the equilibrium solution with two equivalent
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baths replaced by the average of two baths at different temper-
atures. Therefore, if we increase the temperature bias between
the two reservoirs, the behavior of the quantum correlations
shows instead of the nonequilibrium effect the equilibrium
effect with the average of the two reservoirs because it is
essentially due to the same physics as in the equilibrium
situation, which we give a full discussion in Appendix A.

The true nonequilibrium effect should result from the
difference between the two reservoirs instead of the sum
or average. The only term that depicts the bias of the two
reservoirs is nim, which appears in the coherence terms that are
ignored by the Lindblad solution and the higher order terms
that become effective only when � �� �, i.e., the coupling
or the tunneling rate of the system is not too large for us
to treat: it acts as one whole system weakly coupled with
two reservoirs simultaneously. When the subsystems are not
strongly coupled, then each subsystem is then approximately
in equilibrium with its environment, and the system will not
behave the same way in the equilibrium scenario. As we will
discuss later, to capture the essence of the nonequilibrium
effect, we need to consider the case when g �� 1 and set
the environment at a finite temperature to smooth out the
resonance due to the chemical potential.

3. The “distilled” correlation generation
due to nonequilibriumness

When we relax the condition g = �
ω′

1−ω′
2

� 1 and instead
set the tunneling rate very small, e.g., � = � = 0.05, the
coherence term ρ23 ∝ g = �

2�
in the leading order is no longer

negligible. On the other hand, the energy gap between the
two nonlocalized eigenstates (2�) is small, and the two states
are almost equally populated. The consequence is that in this
extreme the entanglement due to the energy eigenstate popu-
lations (of which the leading term is n1 + n2) can be ignored,
and all the entanglement generation are from the nonequilib-
rium effect. [In local basis, the coherence is − 1

2 (ρ22 − ρ33) +
Im(ρ23) as given in Appendix (B4), where ρ22 − ρ33 is the dif-
ference in population of the two nonlocal states. For their sep-
arate contributions to the local site coherence, see Fig. 8.] We
point out that the generation of quantum correlation no longer
comes from the averaged thermal effect of the reservoirs as
but from the energy flow due to the nonequilibriumness of the
system. This is a distinctive mark of the nonequilibrium effect
that the quantum correlations tend to increase monotonically
with nonequilibriumness; e.g., see Fig. 3(b).

In Fig. 3(b) as an example we plot the discord against δT at
small tunneling rate (QMI and CC have a similar monotonic
trend). The thermal generation of quantum correlations, which
is indicated by the left-end value, is negligible compared with
the right-end value of the graph. The averaged thermal effect
can be indicated from Fig. 3(b). The change of QD due to the
average temperature is less than a factor of two and is negative
when Tavg > 0.3; however, the large δT value in Fig. 3(c) is
orders of magnitudes larger than the equilibrium value. Thus,
we can say with confident that correlation generation is not
larger due to the thermal excitation due to the average of the
two reservoirs but the quantumness of the system enhanced by
the equilibriumness.

FIG. 5. Separating nonequilibrium effect from the thermal effect.
� = 0.05. (a) Discord and QMI vs T in equilibrium. (b) Discord and
QMI vs �T in nonequilibrium case. T2 = 0.5 and T1 = T2 + �T .
Notice from (a) that the correlations decay after the average tempera-
ture exceeds 0.4, therefore turning up the average temperature at T >

0.4 suppresses quantum correlations from the thermal excitation, but
correlations increase nevertheless.

In Fig. 5 we separate the quantum correlations due to
thermal effect [Fig. 5(a)] and correlations due to nonequilib-
riumness [Fig. 5(b)]. As we notice, when the temperature is
larger than 0.4, QMI and QD decrease with the increase of T .
If we pick T = 0.5, from Fig. 5(a) the quantum correlations
due to thermal effect decrease with temperature. Now we
pick T2 = 0.5 and T2 = T1 + �T , and according to Eq. (5.3)
the effective temperature increases, and the effect from the
thermal excitation will result in the weakening of quantum
correlation as �T increases. However, they become enhanced
as shown in Fig. 5(b). Therefore, the increase of the generation
of quantum correlations cannot be from the same sources as
in the equilibrium case. This is the intrinsic nonequilibrium
phenomenon. The temperature bias enables a nonzero quan-
tum flux inside the system from site attached to the high-
temperature reservoir to site attached to the low-temperature
reservoir. The nonzero flux between the sites, instead of
the thermal excitation, contributes to the coherence of the
system.
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FIG. 6. Nonequilibrium fermionic reservoirs. (a) QMI vs �T . From bottom to top, μ1 = μ2 = 0, 0.2, 0.35, 0.5. The temperature T1 is
fixed at 0.2. (b) The “rainbow” diagram of QMI vs �T with T1 set to 0.1, 0.12, 0.15, 0.17, 0.2, 0.3 from bottom to top. Here μ1 = μ2 = 0.35.

(c) Concurrence(red), CC (green), discord (blue), and QMI (orange) from bottom to top are plotted as a function of �T at T1 = 0.2 and
μ1 = μ2 = 0. For all, the parameters are set to � = 0.3, �1 = �2 = 0.05, ω1 = ω2 = 1.

VI. QUANTUM CORRELATIONS OF FERMIONIC
SYSTEM IN NONEQUILIBRIUM ENVIRONMENTS

(FERMIONIC RESERVOIRS)

For fermionic reservoirs, all the arguments given in the
previous bosonic case still hold. The solution of the steady-
state density matrix for the system in fermionic baths up to
the leading order in g is given as follows:

ρ11 = (1 − n1p/2)(1 − n2p/2) + O(g2),

ρ22 = (n1p/2 − (n1pn2p)/4) + O(g2),

ρ33 = (n2p/2 − (n1pn2p)/4) + O(g2),

ρ44 = (n1pn2p)/4 + O(g2),

ρ23 = −i(n1m + n2m)g/2 + O(g2), (6.1)
where ni,p/m = n(ω′

i, T1, μ1) ± n(ω′
i, T2, μ2) and n(ω′

i, Tj, μ j )
follows Fermi-Dirac distribution. The bosonic bath solution
has limited range of applicability due to the noncompactness
of occupation number ni(T ). The higher order terms involve
cubit terms of ni(T ), and thus their values can easily surpass
the leading order. The fermionic occupation has a compact
range, and the solution in general gives a better approximation
(later we will see that it gives the qualitatively correct behavior
if g < 1

4 ).
The fermionic reservoirs solution, like the bosonic case,

can also return to the equilibrium solution with ni replaced
by ni,p; i.e., we can identify n(ω′

i, T, μ)equilibrium → ni,p/2 =
[n(ω′

i, T1, μ1) + n(ω′
i, T2, μ2)]/2. Physically it means that the

effect of the two equivalent reservoirs is now replaced by the
average of the two different reservoirs.

This section is arranged as follows. In part A, we dis-
cuss the quantum correlations at a large tunneling rate and
comment on the transition of quantum entanglement at large
chemical potential biases. In part B, we discuss the breakdown
of the Lindbladian assumption in the small tunneling rate case
and show the distinguishable traits of quantum correlations
with the large and small tunneling. In part C, we discuss the
transition from the large to the small tunneling behaviors and
the boundary between the two cases. Additionally, we show
that near the boundary the entanglement may resurrect due
to the nonequilibrium effect after its decay to zero from the

averaged effect, and we briefly comment on the energy current
perspective and extremely low-temperature scenarios.

A. Large tunneling rate (average effect)

1. The averaged effect on quantum correlations

If we assume the tunneling rate is much larger than the
decay rate, then the large tunneling rate will create a large
splitting between the two nonlocal eigenstates. As a result, the
coherence ρ23 in the energy representation is small [see solu-
tion (6.1)]. In this case, we can approximate the two reservoirs
effect at a given temperature and chemical potential with one
reservoir with temperature Teff and chemical potential μeff . At
zero or very low chemical potential, the quantum correlations
behave similarly to that of the bosonic environment as ex-
plained in the equilibrium section; see Fig. 6. As the chemical
potential increases, the system deviates from the bosonic bath
case. Chemical potential describes the tendency of the reser-
voirs to give or admit an electron. Since the reservoirs can give
electrons to the system and accept electrons from it, tuning
chemical potential can give rise to the more efficient particle
inputs or outputs to or from the system. This can be seen by
comparing the magnitude of the correlations in Figs. 3(a) and
6. As the chemical potential increases, the correlations reach
their maxima at lower and lower temperatures until zero. We
witness such change of monotonicity with the increasing of
chemical potential; see Figs. 6(a) and 6(b).

When raising the temperature of one of the reservoirs,
we effectively increase the average effective temperature of
the system. The fermion occupation number at the site in
contact with the hotter bath increases, and through the intersite
tunneling, the system gets more correlated. As the chemical
potential becomes higher, the temperature tends to erase the
already optimized quantum correlations. The maximal point
shifts to lower and lower temperatures until it reaches zero
[see Fig. 6(a)]. When the effective temperature becomes
higher, the energy gap that distinguishes a local state from the
nonlocal state is washed out. The state becomes more local-
ized, and quantum correlations decay; see Fig. 6. Figure 6(c)
shows the nonmonotonic behavior of the four correlation
measures. Quantum entanglement vanishes at finite temper-
ature bias, and the other three correlations asymptotically

052331-10



NONEQUILIBRIUM EFFECTS ON QUANTUM CORRELATIONS: … PHYSICAL REVIEW A 100, 052331 (2019)

−0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) Entanglement s Δµ

Unentangled Entangled states

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1

(b) Transition to entanglement at asymptotic value
Δµ = ∞ µ1

FIG. 7. Transition of quantum entanglement. (a) Concurrence vs
�μ at μ1 = 0.3, 0.5, 0.7, 1 from bottom to top; T1 = T2 = 0.2. The
concurrence will not stay finite when μ1 is lower than a critical
value. (b) The concurrence at �μ = ∞ with μ1. From left to right,
the temperature is set to T1 = T2 = 0.1, 0.15. For both graphs, the
parameters are set to � = 0.3, �1 = �2 = 0.05, ω1 = ω2 = 1.

reach a nonzero value due to the finite coherence caused
by the current of particles. The nonzero asymptotic value of
correlations was explained in the bosonic reservoir case; for
chemical potential bias [see Fig. 9(a) below], it creates an
imbalance in the occupation numbers on the two ends and also
contributes to the coherence (6.1).

When �/� � 1, we can refer to the approximate solution
(6.1). When the temperatures of the reservoirs are fixed,
a redefinition n(ω′

i, Ti,e f f , μi,e f f ) ≡ ni,p/2 = [n(ω′
i, T1, μ1) +

n(ω′
i, T2, μ2)]/2 will return the solution back to the equilib-

rium case, except for the coherence term, which is of higher
order in the expansion of g = �

ω′
1−ω′

2
. With the chemical poten-

tial of one of the reservoirs fixed, increasing the chemical po-
tential bias equivalently raises the effective average chemical
potential of the two reservoirs. This explains why increasing
chemical potential bias has the similar effect to the system
as increasing the chemical potential in the equilibrium case;
compare Figs. 7(a) and 9(a). When the reservoirs have very
high chemical potential the sites are almost fully occupied,

the tunneling of fermions stops, and quantum correlations are
degraded.

2. Entanglement not always dies

On the other hand, the entanglement can still vanish to zero
in an abrupt manner if we tune the chemical potential of one
of the reservoirs, though in equilibrium case it decays in a
smooth exponential way. As shown in Fig. 7(a), when μ1 is
small, concurrence dies at finite bias. However, a transition
is noticed that when the chemical potential μ1 reaches some
critical value, the entanglement will no longer witness the
sudden disappearance if μ1 is larger than the value. In fact,
it will remain finite no matter how we tune the chemical
potential of the second reservoir. This discontinuity in the
asymptotic behavior of concurrence can be seen in the leading
order in the expansion of �/�. The critical chemical potential
above which concurrence will remain finite can be calculated
by requiring

lim
μ2→∞ E (β1, β2, μ1, μ2) > 0, (6.2)

where βi = 1/Ti. For the case ω1 = ω2 = ω, this gives us

μ∗ = ω + � − T1 ln [
√

2e4β1� − 4e2β1� + 2 − e2β1� − 1],
(6.3)

where ω is the energy of the free excitation of one fermion and
T1 is the temperature of the reservoirs with a finite chemical
potential.

We can check that μ∗ monotonically increases with tem-
perature T1. The minimal transition potential is when the
temperature T1 = 0; this gives us

μ∗
min = ω − �, (6.4)

which corresponds to the lowest energy of the nonlocal state.
Notice that μ∗ has a real-valued solution only when T1 is lower
than the critical temperature defined as

Tcritical = �

ln(
√

2 + 1)
. (6.5)

This critical temperature is also where the concurrence van-
ishes in equilibrium situation (see Appendix A). The critical
chemical potential is dependent only on the temperature of
the first bath and not on the second bath, which has the
higher chemical potential. In Fig. 7(b) we plot the asymptotic
behavior of the concurrence with the increase of chemical
potential of one reservoir at different temperatures, where the
line dividing the entangled and unentangled state is for the
T = 0.1. When μ1 is larger than the ω′

2, though the system
is still entangled, the entanglement rapidly decreases, and for
μ1 � ω′

2, the entanglement is essentially zero.
We should notice that the above result is valid only when

� � �. For the parameters under consideration, it gives a
very accurate approximation. But we will see in the following
subsection that when � � �, all the conclusions drawn in this
subsection are no longer valid. In fact, we will see in the next
subsection that all the quantum correlations take a different
trend when the tunneling is sufficiently small.
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(a) Local-site coherence vs       at Large tunneling rate (b) Local-site coherence vs       at small tunneling rate

FIG. 8. Contributions to the local site coherence from the population term ρ22 − ρ33 (orange) and coherence between two energy
eigenstates. ρ23 (blue) at (a) large tunneling rate � = 0.3 and (b) small tunneling rate � = 0.05. For both graphs, μ1 = 0.5, μ2 = �μ + μ1,
and T1 = T2 = 0.1.

B. Separating the averaged and nonequilibrium
generation of correlations

The nonzero quantum correlations at a small tunneling rate
and at a large tunneling rate are due to completely different
mechanisms. At large tunneling rates, correlations mainly
come from the population terms on the nonlocal states, while
at low tunneling rates they come from the coherence between
the two energy eigenstates, see Fig. 8. The physical picture
is the following: when the tunneling rate (or coupling) of the
system is large, the typical timescale for the system interaction
is much shorter than that of the system-environment coupling.
Thus, the two subsystems are approximately in equilibrium,
and the system as a whole acts to the average of the two
reservoirs. When the tunneling rate of system is smaller than
the system-environment coupling, then each subsystem is
approximately in equilibrium with its reservoir. The two sub-
systems cannot be treated as in an identical state interacting
as a whole. In this scenario we see not only the average of
the two environments but also the difference between them
coming into play.

1. Insufficiency of Lindbladian

In the previous sections, we gave an explanation of “dis-
tilled” quantum correlations at small � based on the re-
duced density matrix and the basis transformation given in
Appendix (B4). Here we give a detailed explanation based
on the arguments given at the beginning of this section.
Let τS ≈ 1

ω1′−ω2′ be the typical timescale that characterizes
one fermion traveling between sites S1 and S2. When the
tunneling rate is small, i.e., � < �i, τS is longer than the
time of the system-reservoir interaction, τSR ≈ 1

�
. Intuitively,

it means that the communication within the system is slower
than that between the reservoirs and system. This means
that the secular approximation which requires the system
interaction time to be much shorter than the relaxation time
is no longer valid. Though the Lindablad equation guarantees
the dynamical semigroup structure, the positivity is not an
issue in many situations. On the other hand, it sacrifices the
important effects of the nonequilibrium physics and becomes

very inaccurate in this situation. The breakdown of the as-
sumption for secular approximation is equivalent to the exis-
tence of a strong nonequilibrium condition inside the system.
In this case, each site is approximately in equilibrium with
its reservoir, but the two sites cannot be treated as one tightly
bounded system. Consider the case when the average thermal
generation of the correlation is very low: when the chemical
potential bias increases, the two sites start to witness nonzero
flux (see Fig. 14 in Appendix D) and correlation increases.
This generation is the result of nonequilibriumness, as the
magnitude of correlation depends on the difference of the
two reservoirs instead of the sum. This flux easily saturates
as �μ increases further due to the small tunneling rate, and
the correlation remains at a constant value [Fig. 9(b)]. The
discussion of the energy current is provided in Appendix E.

With the above argument, we would naively expect a
stronger correlation within the system with the increase of
chemical potential bias, but this is not always true from the
previous discussions. When the tunneling rate of the system
is very large, i.e., � � �i, the tunneling time of the system
is negligible, i.e., τS ≈ 1

ω1′−ω2′ � τSR. This is identical to
the secular approximation, where we ignore the nonsecular
coherence terms and the influence brought by the system’s
not being in equilibrium. In this case, the two fermion sites
can effectively be treated as one system coupled with the
two reservoirs simultaneously, and the population on each
site is determined by the average of the two baths. In this
case, the sites can no longer be viewed as in approximate
equilibrium with their respective reservoirs but in equilibrium
within the two sites. Therefore, when one of the bath reaches
the resonant energy of the system, the quantum correlations
are boosted. With the parameter used in Figs. 9(a) and 9(d),
this corresponds to the range from 0.2 to 0.8. If we get rid
of the smoothing-out effect of finite temperature, it is more
obvious [blue line in Fig. 9(d)]. The large tunneling rate kills
the nonsecular terms and the nonequilibrium effect, and the
correlations die after the resonance.

Finally, we remark that by setting the tunneling rate low,
we separate out the usually ignored nonequilibrium terms
because they become the dominant contribution in the large
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FIG. 9. Separating the nonequilibrium effect and averaged effect: (a) QMI (blue, upper) and QD (orange, lower) vs �μ at � = 0.3.

(b) QMI (blue, upper) and QD (orange, lower) vs �μ at � = 0.05. For (a) and (b), T1 = T2 = 0.2, μ1 = 0.5. (c) Entanglement vs �μ at
� = 0.05. (d) Entanglement vs �μ at � = 0.3. For (c) and (d), T1 = T2 = 0.03 is the blue line (with sharp turnings), T1 = T2 = 0.1 is the
orange (smooth line), and μ1 = 0.5. Lowering the tunneling rate can in fact increase the correlations at large �μ.

bias situation. Furthermore, we notice that the remaining aver-
aged resonance effect can be erased by tuning up temperature
[noted in Figs. 13(e) and 13(f) in Appendix A], we distill the
correlation (entanglement) generation and obtain the contri-
bution purely from the nonequilibrium effect [orange line in
Fig. 9(c)]. This procedure avoids the averaged thermal effect
of the two baths and exhibits the correlation generation from
only the nonequilibriumness-related terms.

2. Numericals and plots

The small tunneling rate picture gives a zoomed-out view
of the large tunneling scenario; see Figs. 9(c) and 9(d).
The resonance peak at a larger tunneling rate [Fig. 9(d)]
corresponds to the peak near the resonance of Fig. 9(c). It
is not a simple zooming in of the spiky peak (blue line)
but overshadows the nonequilibrium effect of the monotonic
increase trend with bias. The resonance effect (blue lines) can
be washed out by adding temperature to the reservoirs (orange
lines). At a finite temperature, the resonance peak is erased,

and the leftover correlation generation comes only from the
nonequilibrium effect for the small tunneling scenario and
is monotonic with bias, while a large tunneling mimics the
equilibrium case with a bell-like curve with effective chemical
potential μeff increased. The peak, whose range is more obvi-
ous at low temperatures, corresponds to the resonance energy
range at Site 2, i.e., μ2 ∈ [1 − �, 1 + �]. In this case, it is
�μ ∈ [0.2, 0.8], which can be compared with the numerical
results in Figs. 9(a) and 9(d).

Another feature to notice is that, for large coupling [see
Fig. 9(a)], the initial value which corresponds to equilib-
rium case is nonzero. For the small tunneling case [see
Fig. 9(b)], the initial value is zero, i.e., no correlation from
the was generated from the equilibrium effect. This corre-
lation at later times is the result of the nonequilibriumness
in contrast with Figs. 9(a) and 9(b). As we increase the
temperature, all the sharp turnings are smoothed out, and
we have a smooth monotonically increasing curve at small
tunneling and a bell-like curve at a larger tunneling, which
appeared in the last subsection. We plot the entanglement at
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low temperature, and for QD and QMI, the behavior is the
same. In contrast to the previous results [36], we find from
comparing the values of Figs. 9(a) and 9(b) that lowering
the tunneling rate between the two sites can in fact increase
their correlations at large �μ. Intuitively, we would expect
that a large tunneling rate gives a stronger quantum correla-
tion. It is a most dramatic exhibition of the nonequilirbium
effect.

C. From large to small tunneling rates transition

1. Transition from small to large tunneling rates

We discussed the distinctive behaviors for large and small
tunneling rates in the last few subsections. For the small
tunneling, quantum correlations monotonically increase with
the chemical potential bias, except for a local peak boosted by
the resonance that is annihilated by temperature. For the large
tunneling rate, QMI, QD, and CC decay monotonically after
the peak, and the entanglement dies at finite potential bias.
Where is the boundary between the two limits?

We can estimate it by the following argument. At a small
tunneling rate, the quantum correlations increase monotoni-
cally with nonequilibriumness instead of following the transi-
tion rule given in Eq. (6.4). We require that the entanglement
at infinite chemical potential bias is nonzero even for arbitrar-
ily small μ1,

E (T1 → 0, T2, μ1 = ε, μ2 = ∞) > 0, (6.6)

for arbitrarily small ε and finite T2. We use the exact solutions
given in Appendix D 2, and we arrive at the critical tunneling
rate

�∗ = 2� (6.7)

for � = 0.05, �∗ = 0.1. Roughly speaking, when � is larger
than 2�, the quantum correlations are dominated by the
resonance behavior. When � < 2�, the quantum correlations
are more dominated by the coherence caused by the nonequi-
libriumness and increase as the nonequilibriumness enhances.
What about when � ≈ 2�?

When � � 2�, the entanglement is strictly zero after a
finite nonequilibriumness is achieved (for example, when
chemical or temperature bias reaches some certain value).
When � � 2�, however, the entanglement dies at finite chem-
ical potential bias, but it resurrects later for a small period as
the bias keeps increasing. After that, it is dominated by the
nonequilibrium coherence and monotonically increases to an
asymptotic value; see Fig. 10(a). The two peaks are, however,
the results of two completely different sources. The first peak
is the peak that appears in all large tunneling and equilibrium
scenarios, which arises due to the resonant chemical potential
reached by the second reservoir. The second peak is due to
the nonequilibrium enhancement of the correlation. This plot
exhibits the mixture of both effects.

As we have shown, raising the temperature of (one of) the
reservoir(s) kills the resonance peak; see Figs. 13(e) and 13(f).
A similar effect appears again in Fig. 10(b), and the entangle-
ment is seen only as the chemical potential bias reaches some
certain threshold value. As to the QD and mutual information,
they do not decay to exactly zero with the increase of chemical
potential bias after the first peak as the quantum entanglement
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(a) Resurrection of entanglement near the critical
tunneling rate.
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(b) Non-smooth generation of entanglement at finite
Δµ

FIG. 10. Resurrection and appearance of entanglement at a finite
�μ: (a) T1 = T2 = 0.1; (b) T1 = 0.1, T2 = 0.2. For both, � = 0.08,
�i = 0.05, μ1 = 0.5, and μ2 = μ1 + �μ.

does; thus, it does not have the dramatic qualitative changes
in the intermediate tunneling regime. For discord and mutual
information, this intermediate tunneling rate region roughly
corresponds to the boundary whether the correlations at an
arbitrarily low temperature will rise to some noticeable value
after the postresonance dip or decay monotonically. Such a
change of behaviors can be seen in Fig. 11.

2. Energy current perspective and extremely low-temperature
situation

Temperature smooths out the energy spectrum of the par-
ticles, adds disorder to the system, and kills entanglement
at finite temperature. At very low temperature, the energy
current provides another perspective to understand the change
of quantum correlations. At low temperature, the system can
accept a particle only when the chemical potential of the sys-
tem reaches the energy of an eigenstate, and the current is no
longer smooth; see Fig. 11. At large tunneling �, e.g., when
� = 0.3, the two corresponding energy eigenvalues are 0.7
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FIG. 11. Discord (orange) and energy current (blue, upper at
the right end) at large and small tunneling rates. (a) � = 0.05,
(b) � = 0.3. For both plots, T1 = T2 = 0.03 and μ1 = 0.5.

and 1.3. The energy current jumps to higher values when μ2

reaches the corresponding energies and stays constant at other
places. The plateau of the discord corresponds to when the
chemical potential of the second reservoir reaches the energy
of the first nonlocal state. The step-down of QD corresponds
to where the chemical potential is greater than the energies
of both nonlocal eigenstates. The system is approximately
in a fully occupied state. Due to the large energy gap, there
is little coherence between the two energy levels, and QD
decays dramatically after the resonance range. As shown in
Fig 11(b), the QD at large �μ is nonzero but negligibly
small. In comparison, when � is small, the QD still increases
after the resonance range, and its asymptotic value is no
longer negligible. In fact, when we increase the temperature,
the resonant peak will be washed out (see Fig. 9), and the
coherence caused by the nonequilibriumness is the dominant
source of quantum correlations of the system.

VII. REMARKS AND CONCLUSION

In this paper, rich phenomena of quantum correlations at
various tunneling rates and the temperatures and chemical po-
tentials of a two-fermion system are discussed. The nonequi-
librium effect of the generation of quantum correlations

is most apparent at small tunneling rates, and it comes from
the coherence of two eigenstates, while that at a large tun-
neling rate is mainly due to the averaged effect of the two
reservoirs. The transition between the two happens at �/� =
2, where quantum correlations may show a resurrection with
the breaking of equilibriumness.

To recapitulate, we explicitly showed that entanglement
can be larger than QD in an open system, which suggests
that the interpretation of QD as entanglement plus other quan-
tum correlations is not reliable. In the equilibrium case, the
quantum correlations of the system peak when the chemical
potential approaches the frequency of the single-particle exci-
tation of the system, otherwise they decay exponentially with
the chemical potential. The quantum entanglement vanishes
in a “sudden death” manner with the increase of temperature.
In the nonequilibrium situation, we separate the correlation
generation due to the nonequilibrium effect and the averaged
effect. The nonequilibrium generation of quantum correla-
tions can be significantly enhanced by large chemical poten-
tial (temperature) biases. This effect is neglected using the
Lindblad equation. The “distilled” nonequilibrium effect, in
contrast to the effect due to the average of the two baths, shows
up when the intrinsic timescale of the system is not much
greater than the relaxation time, which is exactly when the
secular approximation breaks down. When the tunneling rate
is small, quantum correlations increase monotonically with
the biases of the two reservoirs. A larger tunneling rate may
reduce the entanglement of the system at large biases. When
the tunneling rate between two sites is large, the Redfield
equation returns approximately the same result as the Lindbla-
dian. Quantum correlations manifests that of an equilibrium
behaviors with the average of two baths. Furthermore, at
a large tunneling regime the quantum entanglement dies at
finite temperature bias but does not necessarily vanish with
the increase of chemical potential bias. It either suffers a
“sudden death” at a finite chemical potential bias or instead
asymptotically approaches a nonzero value depending on the
value of μ1. Near the boundary of the extremes, i.e., when
the tunneling strength and the site-environment coupling are
comparable, we notice the resurrection of the entanglement
after its previous drop to zero.

The analysis in this paper can be generalized to study heat
transport or quantum correlations in other systems such as n-
level system and spin chains. For a more complicated systems
such as spin chains or N-fermionic systems which are more
relevant for the development of quantum information proces-
sors, the bipartite correlations analyzed in this paper are still
applicable by dividing these systems into two nonoverlapping
subsystems or studying the correlation between two particular
sites. In those cases, the transition from a small tunneling
model to a large tunneling model discussed in this study
can be calculated numerically, and we still expect similar
distinguishable features to appear in the entanglement or other
quantum correlations due to the different physics explained
in the study. The nonequilibrium enhancement of coherence
and entanglement has also been shown to appear in quantum
systems such as the qubit system [26,36,55] and three-level
systems [46], though we argue that they are manifestations of
the averaged equilibrium effect, and possible experiments can
be done to test the nonequilibrium enhancement [46,56,57].
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The results in this study may be useful for designing quantum
information devices operating in a noisy environment.
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APPENDIX A: QUANTUM CORRELATIONS FOR A
FERMIONIC SYSTEM IN EQUILIBRIUM ENVIRONMENTS

For the system in equilibrium environments, the master
equation can be solved exactly. The quantum correlations
in equilibrium condition are useful in studying the nonequi-
librium case, because part of the correlation generation in
the latter case are from the same source as the equilibrium
scenario which we want to differentiate. We set the two
reservoirs at the same temperature and the same chemical
potential. At the long-time limit, the system will relax to reach
the same equilibrium with the reservoirs without regard to the
initial condition.

1. Bosonic reservoirs

For bosonic reservoirs, we focus on when the chemical
potentials of the reservoirs are zero and the two fermion sites
are identical, i.e., ω1 = ω2. We set the temperatures of the two
reservoirs to be equal, T1 = T2, and solve for the equilibrium
solution of the Redfield equation. The coherence terms of
the reduced density matrix for the system vanish, and the
population in energy basis is given as follows:

ρ11 = (1 + n1)(1 + n2)

(1 + 2n1)(1 + 2n2)
,

ρ22 = (n1)(1 + n2)

(1 + 2n1)(1 + 2n2)
,

ρ33 = (1 + n1)(n2)

(1 + 2n1)(1 + 2n2)
,

ρ44 = (n1)(n2)

(1 + 2n1)(1 + 2n2)
,

(A1)

where ni = n(ω′
i, T ) is the population density and (1 +

2n1)(1 + 2n2) on the denominator serves as the normalization
factor. The population density above can be simplified to a
more recognizable form,

ρ11 = eh̄β(ω′
1+ω′

2 )

Z
, ρ22 = eh̄βω′

2

Z
,

ρ33 = eh̄βω′
1

Z
, ρ44 = 1

Z
, (A2)

where Z is a normalization factor. The density matrix returns
to the result of classical statistics where ρi ∝ e−βEi in the
energy basis, which is expected. There is no coherence term as
the result of the decoherence, and the nonvanishing entangle-
ment of the system (see Fig. 12) comes from the nonlocality
of the eigenbasis.

Analysis of the solution shows that with the increase of
temperature, all of the quantum correlations we considered,
concurrence, discord, classical correlation, and mutual
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FIG. 12. Equilibrium bosonic reservoirs. (a) QMI (green, upper),
QD (blue, middle), and CC (orange, lower) vs temperature (logarith-
mic scale in the subgraph). (b) Concurrence (red, lower) and QD
(blue, upper) and blue vs T . The parameters are set to � = 0.3,
�1 = �2 = 0.05, ω1 = ω2 = 1.

information, exhibit nonmonotonic behavior (see Fig. 12).
This is easy to understand. At very low temperature, the
system which is in equilibrium with the environment is in
its ground state. From previous results (2.19), the ground
state of the system |0〉 ⊗ |0〉 is localized, which represents
no fermion in either site. We expect no quantum correlation
in the system of any sort. As the temperature increases, the
nonlocalized excited state becomes more and more dominant.
The correlations increase accordingly. In a mixed state,
the division between quantum and classical correlation is
obscure, and QD and CC have a qualitatively similar trend
of increasing or decreasing, as shown in Fig. 12(a). In the
high-temperature limit, however, all quantum correlations are
washed out by the environment, and both mutual information
and discord decay exponentially.

On the other hand, the entanglement witnessed a sud-
den disappearance of it at finite temperature as shown in
Fig. 12(b). Many abrupt changes of entanglement in the
open systems have been reported by many previous studies
[13,30–32]. The disappearance of entanglement is due to the
increase of the disorder of the system when temperature is
high. Though the entanglement vanishes, the system is still
correlated nonclassically. This means any local measurement
on the subsystem will still perturb the density matrix of the
whole system [3].
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FIG. 13. Equilibrium fermionic reservoirs. (a) The QD (blue) and concurrence (orange) and vs T with μ1 = μ2 = 0.5 (solid) and
μ1 = μ2 = 0 (dashed). (b) Loss of nonmonotonicity of QD. (c) Loss of nonmonotonicity of concurrence. The turning point is μ = 0.7.
(d) Concurrence with chemical potential at T = 0.05 (blue), 0.1 (orange), and 0.3 (dashed). (e) CC (orange) and QD (blue) vs μ at T = 0.1
(dashed) and T = 0.3 (solid). (f) QD (blue) and concurrence (orange) vs μ at T = 0.3 (solid) and T = 0.1 (dotted).

The concurrence for this given setup E (ρ) =
2 Max(0, |ρ23| − √

ρ11ρ44) can be solved easily. The
off-diagonal term ρ23 in the local basis representation
is directly related to the population terms in the energy
basis as ρ23 = (ρ ′

33 − ρ ′
22)/2 where ρ ′

22 and ρ ′
33 are in the

energy representation given in (A2). The concurrence can be
simplified to the following form:

E (ρ) = eβω

Z
Max(0, eβ� − e−β� − 2), (A3)

which increases monotonically with the site coupling strength
�, and it vanishes when the coupling term between the two
fermions is weak, � < T ln(1 + √

2), or equivalently, when
the temperature exceeds the interaction strength

T > �/ ln(1 +
√

2), (A4)

then the system is disentangled. Quantum discord is more
robust with respect to the noise from the environment, which
suggests that though the system is disentangled when the
environment has temperatures slightly above the threshold
temperature, the system is still not classical with nonzero
quantum correlation. The measurements still disturb the
behavior of the system as the quantum.

2. Fermionic reservoirs

For a fermionic environment, we set the two reservoirs at
the same temperature and the same chemical potential. We
can solve for the equilibrium state of the system, and the
population density is given as follows:

ρ11 = (1 − n1)(1 − n2),

ρ22 = n1(1 − n2),

ρ33 = (1 − n1)n2,

ρ44 = n1n2, (A5)

where ni = n(ω′
i, T ) is the fermionic occupation number. It is

easy to check that these diagonal density matrix elements also
satisfy the classical grand canonical ensemble distribution
ρi ∝ e−βEi−μi .

When the chemical potential is small, the system is
almost identical to the system in the bosonic reservoir
in the low-temperature region as nboson(T, ω) = 1

eβω−1 ≈
nfermion(T, ω, μ = 0) when ω/T � 1 [see Fig. 13(a)]. As we
increase the chemical potential of the two baths, the peak
of the quantum correlations gradually moves to the left until
the nonmonotonicity completely disappears, as is shown in
Figs. 13(b) and 13(c). Intuitively, this can be understood as
follows. When the chemical potential increases, the system
can capture a fermion more easily from the reservoirs. Due to
the tunneling between the two fermion sites, the system gets
entangled and correlated. When the chemical potential is close
to the energy cost of creating a fermion on the sites, it reaches
resonance and quantum correlations are maximized. At the
resonant point, thermal fluctuations play a negative role only
for the quantum correlation since they wash out the resonance.

The turning point in chemical potential can be calculated
by requiring

lim
T →0

d E[ρ(T, μ)]

d T
< 0 (A6)

and solve for μ. The above inequality gives the turning point,

μ∗ = ω − �, (A7)
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beyond which entanglement only decreases with the tempera-
ture. This chemical potential can be calculated exactly for the
entanglement, and we can check numerically that the same
turning point applies to QD, QMI, and CC as well. At this
value, the system is in resonance with the lowest nonlocal
eigenstate of the system. If there is no thermal effect, i.e.,
T = 0, the system will in the maximal entangled state where
E (ρ) = Q(ρ) = 1 [see Fig. 13(d)]. As the reservoir gets hot,
the degrees of freedom from the environment washes out the
coherence between the two fermions.

Quantum correlations decay exponentially as μ moves
away from the resonant range [ω′

1, ω
′
2]. As an example we

plot the concurrence in Fig. 13(c). The exponential behavior
of correlations in the low temperature can be understood
intuitively as follows. In equilibrium, the system and the
reservoirs as a whole share the same chemical potential and
temperature. When T � 1, the expectation value of the parti-
cle number on the two nonlocal energy levels is

ni(μ, β ) = 1

eβ(ω′
i−μ) + 1

≈ eβ(μ−ω′
i )θ (ω′

i−μ), (A8)

where θ is a step function. When μ < ω′
1, the occupa-

tion number n2(μ, β ) � n1(μ, β ) is of higher order of 1/β,
and thus is negligible. The occupation number n1(μ, β ) ≈
eβ(ω′

i−μ) exponentially increases. When ω′
1 < μ < ω′

2, the
chemical potential is enough to offer one fermion of energy ω′

1
but not enough for ω′

2 fermion. Thus, at T � 1, n1(μ, β ) = 1,
and n2(μ, β ) = 0, the system is essentially in the Bell state,
which is maximally entangled. When μ > ω′

2, the system
will move to the nearly fully occupied state |1〉 ⊗ |1〉, which
is localized, and 1 − n1(μ, β ) � 1 − n2(μ, β ) = 1, and the
number of vacancy on the state of energy ω′

2 is 1 − ω′
2 =

eβ(ω′
2−μ)

eβ(ω′
2−μ)+1

≈ eβ(ω′
2−μ). When the temperature is low, the two

sharp turning points correspond to μ1 = μ2 = ω′
1 and μ1 =

μ2 = ω′
2. As temperature increases, the sharp turnings are

smoothed out, and the decay behavior is no longer exponen-
tial.

Quantum discord, mutual information, and classical corre-
lation all decay exponentially with the increase of tempera-
ture. In contrast, concurrence disappears at a finite tempera-
ture. It can be shown that the concurrence is

E (ρ) = Max

(
0,

eβ(ω′
1−μ) − eβ(ω′

2−μ) − 2e
1
2 β(ω′

1+ω′
2 )−βμ

[eβ(ω′
1−μ) + 1][eβ(ω′

2−μ) + 1]

)
,

(A9)
and it vanishes at the same threshold temperature,

T = �/ ln(1 +
√

2), (A10)

as in the bosonic reservoir case, which is independent of the
chemical potentials.

In the majority of the parameter regimes, the discord is
larger than concurrence; however, it is not always true, as is
shown in Fig. 13(f). In the low-temperature region, when μ ≈
1, entanglement can be larger than QD. This directly suggests
that the discord cannot be simply understood as entanglement
plus some other nonclassical correlations as has been pointed
out in many studies, e.g. [2,19,20]. Instead, the discord should
be treated as an independent measure for the correlations due
to the noncommutative nature of quantum mechanics.

Comparing with tuning the temperature of the reservoirs
to generate quantum correlation in the system, tuning the
chemical potential can more directly influence the particle
occupation on the two nonlocal states, generating the cor-
relations with higher and narrower peaks; see Figs. 13(e)
and 13(f). Thermal excitation generates the correlation by
perturbing the ground state and distributes the particle more
equally on all four states. Chemical potential generates the
correlations through matching the energy of the system with
the reservoirs. The maxima of the discord and concurrence all
appear at the resonant point when μ = (ω′

1 + ω′
2)/2 at finite

temperature.

APPENDIX B: DENSITY MATRIX IN LOCAL BASIS

The results we show in this paper are all in a Schrödinger
picture. In the Schrödinger representation the master equation
reads

ρ̇S (t ) = i

h̄
[ρS, HS] − 1

h̄2 e−iHSt TrR

∫ t

0
ds[H̃int (t ),

× [H̃int (s), ρ̃S (t ) ⊗ ρR(0)]]eiHSt . (B1)

In the energy eigenbasis, QME takes the form

ρ̇mn = i

h̄
(En − Em)ρmn − 1

h̄2 ei(En−Em )t 〈m|TrR

×
∫ t

0
ds{H̃int (t ), [H̃int (s), ρ̃S (t ) ⊗ ρR(0)]}|n〉 . (B2)

The quantum master equation was solved in the energy
eigenbasis, which is a nonlocal basis. The correlations we
studied in the paper are between two localized sites, and we
perform a basis transformation (2.19) on the local sites. With
the above definition of transformation, the density matrix in
the energy eigenbasis ρ can be transformed to the local basis,
denoted by ρlocal by a unitary transformation given as

ρlocal = UρU † =

⎛
⎜⎝

ρ11 0 0 0
0 c2ρ22 − cs(ρ23 + ρ32) + s2ρ33 −csρ22 + s2ρ23 − c2ρ32 + csρ33 0
0 −csρ22 − c2ρ23 + s2ρ32 + csρ33 s2ρ22 + cs(ρ23 + ρ32) + c2ρ33 0
0 0 0 ρ44

⎞
⎟⎠ (B3)

where c = cos(θ/2) and s = sin(θ/2) are transformation angles defined in Eq. (2.4). When the two sites are identical, i.e.,
ω1 = ω2, the above transformation takes a simpler form,

ρlocal = UρU † =

⎛
⎜⎜⎜⎝

ρ11 0 0 0
0 1

2 (ρ22 + ρ33) − Re(ρ23) − 1
2 (ρ22 − ρ33) + Im(ρ23) 0

0 − 1
2 (ρ22 − ρ33) − Im(ρ23) 1

2 (ρ22 + ρ33) + Re(ρ23) 0

0 0 0 ρ44

⎞
⎟⎟⎟⎠. (B4)
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APPENDIX C: MATRIX ELEMENTS OF THE
MASTER EQUATION

The operator form of master equation (2.9) can be written
in terms of its energy eigenbasis, and this gives a matrix
equation. Here we give the matrix elements of the differential
equations. With the basis defined in Eq. (2.19), the master
equation (2.9) is equivalent to the form

d

dt
ρi j =

∑
lk

Mlk
i j ρlk . (C1)

In the above energy eigenbasis, the nonzero matrix elements
Mlk

i j for bosonic reservoirs are given as follows:

M11
11 = −2

[
�1

(
s2nT1

1 + c2nT2
1

) + �2
(
c2nT1

2 + s2nT2
2

)]
, (C2)

M22
11 = 2�1

(
s2nT1

1 + c2nT2
1

) + 2�1, (C3)

M33
11 = 2�2

(
c2nT1

2 + s2nT2
2

) + 2�2, (C4)

M23
11 = M32

11 = sc
[
�1

(
nT1

1 − nT2
1

) + �2
(
nT1

2 − nT2
2

)]
, (C5)

M11
22 = M22

11 − 2�1, (C6)

M22
22 = M11

11 − 2�1, (C7)

M44
22 = M33

11 , (C8)

M23
22 = M32

22 = −M23
11 + 2�1

(
nT1

1 − nT2
1

)
, (C9)

M11
33 = 2�2

(
c2nT1

2 + s2nT2
2

)
, (C10)

M33
33 = M11

11 − 2�2, (C11)

M44
33 = M22

11 , (C12)

M23
33 = M32

33 = −M23
22 , (C13)

M22
44 = M11

33 , (C14)

M33
44 = M11

22 , (C15)

M44
44 = −M22

11 − M33
11 , (C16)

M23
44 = M32

44 = −M23
11 , (C17)

M11
23 = M23

11 , (C18)

M22
23 = −M23

22 , (C19)

M33
23 = M23

22 , (C20)

M44
23 = −M23

11 , (C21)

M32
23 = M11

11 − �1 − �2 + i(ω′
2 − ω′

1). (C22)

For all l, k, Mlk
32 = (Mlk

23)∗. The rest of the matrix elements
are zero. The other off-diagonal terms are uncoupled to the
population density matrix elements, and thus disappear in the
steady state due to the decoherence.

For fermionic reservoirs, the nonzero matrix elements Mlk
i j

are the following:

M11
11 = −2

[
�1

(
s2nT1

1 + c2nT2
1

) + �2
(
c2nT1

2 + s2nT2
2

)]
, (C23)

M22
11 = −2�1

(
s2nT1

1 + c2nT2
1

) + 2�1, (C24)

M33
11 = −2�2

(
c2nT1

2 + s2nT2
2

) + 2�2, (C25)

M23
11 = M32

11 = −sc
[
�1

(
nT1

1 − nT2
1

) + �2
(
nT1

2 − nT2
2

)]
, (C26)

M11
22 = −M22

11 + 2�1, (C27)

M22
22 = −M22

11 + M33
11 − 2�2, (C28)

M44
22 = M33

11 , (C29)

M23
22 = M32

22 = −M23
11 , (C30)

M11
33 = 2�2

(
c2nT1

2 + s2nT2
2

)
, (C31)

M33
33 = M22

11 − 2�1 − M33
11 , (C32)

M44
33 = M22

11 , (C33)

M23
33 = M32

33 = −M23
11 , (C34)

M22
44 = M11

33 , (C35)

M33
44 = M11

22 , (C36)

M44
44 = −M22

11 − M33
11 , (C37)

M23
44 = M32

44 = M23
11 , (C38)

M11
23 = M22

23 = M33
23 = M44

23 = −M23
11 , (C39)

M32
23 = −�1 − �2 + i(ω′

2 − ω′
1). (C40)

Mlk
32 = (Mlk

23)∗ for all l, k, and the rest of the matrix elements
are zero.

APPENDIX D: SOLUTION OF NONEQUILIBRIUM
MASTER EQUATIONS

In Sec. IV we gave the solution for the master equations
up to the leading order for the convenience of analysis. Here
we present the exact solutions, which are useful for checking
our numerical results and when the order expansion is not
applicable.

1. Solution of bosonic reservoirs

In the energy eigenbasis, the density matrix of the nonequi-
librium steady state for a bosonic environment is given as
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follows:

ρ11 = 1

N

(
�2

{
16 + 3n2

2m + 24n2p + n3
1p(2 + n2p) + 2n2

1p(2 + n2p)(3 + n2p) + n2
1m(3 + n1p + n2p)

− n1mn2m
[
10 + n2

1p + 2n1p(3 + n2p) + n2p(6 + n2p)
] + n2p

[
n2

2m + 2n2p(6 + n2p)
]

+ n1p
[
n2

2m + (2 + n2p)2(6 + n2p)
]} + (2 + n1p)(2 + n2p)ω′2

12

)
,

ρ22 = 1

N

(
g2{n3

1p(2 + n2p) + 2n2
1p(2 + n2p)2 − n2

2m(3 + n2p) + n2
1m(1 + n1p + n2p) + n1p

[ − n2
2m + (2 + n2p)3]

− n1mn2m
[
2 + n2

1p + 2n1p(2 + n2p) + n2p(4 + n2p)
]} + n1p(2 + n2p)ω′2

12

)
,

ρ33 = 1

N

(
�2

{
n2

2m(1 + n1p + n2p) − (2 + n1p)n2p(2 + n1p + n2p)2 + n2
1m(3 + n1p + n2p)

+ n1mn2m
[
2 + n2

1p + 2n1p(2 + n2p) + n2p(4 + n2p)
]} + (2 + n1p)n2pω

′2
12

)
,

ρ44 = 1

N

(
�2

{
n1pn2p(2 + n1p + n2p)2 − n2

1m(1 + n1p + n2p) − n2
2m(1 + n1p + n2p)

− n1mn2m
[
2 + n2

1p + 2n1p(1 + n2p) + n2p(2 + n2p)
]} + n1pn2pω

′2
12

)
,

ρ23 = 1

N
{2�2(2 + n1p + n2p)(n1m + n2m + n1pn2m + n1mn2p) − 2i�(n1m + n2m + n1pn2m + n1mn2p)ω′

12},

where the normalization factor is N = 4�2(2 + n1p +
n2p)2(1 + n1p − n1mn2m + n2p + n1pn2p) − 4(1 + n1p)(1 +
n2p)ω′2

12, nip = n(ω′
i, T1) + n(ω′

i, T2), nim = n(ω′
i, T1) −

n(ω′
i, T2) with i = 1, 2 and ω′

12 = ω′
1 − ω′

2.

2. Solution of fermionic reservoirs

In the fermionic reservoirs, the density matrix of the
nonequilibrium steady state in the energy eigenbasis is laid
down as follows:

ρ11 = 1

M

{
�2[4(2 − n1p)(2 − n2p) − (n1m + n2m)2]

+ (2 − n1p)(2 − n2p)ω′2
12

}
,

ρ22 = 1

M

{
�2[(n1m + n2m)2 + 4n1p(2 − n2p)]

+ n1p(2 − n2p)ω′2
12

}
,

ρ33 = 1

M

{
�2[(n1m + n2m)2 + 4(2 − n1p)n2p]

+ (2 − n1p)n2pω
′2
12

}
,

ρ44 = 1

M

{
�2[4n1pn2p − (n1m + n2m)2] + n1pn2pω

′2
12

}
,

ρ23 = 1

M

{
4�2(n1m + n2m) − 2i�(n1m + n2m)ω′

12

}
,

where normalization factor M = 4(4�2 + ω′
12

2), nip =
n(ω′

i, T1, μ1) + n(ω′
i, T2, μ2), nim = n(ω′

i, T1, μ1) −
n(ω′

i, T2, μ2) with i = 1, 2 and ω′
12 = ω′

1 − ω′
2.

APPENDIX E: ENERGY CURRENT

The appearance of a constant energy current is one of the
features of the nonequilibrium system. The energy flow in our
case is from one reservoir of higher potential or temperature

to the system and then to the reservoir with lower potential
or temperature. The definition of a energy current is the
following. The master equation (2.9) can be decomposed in
the form

ρ̇S (t ) = i[ρS, HS] − D0[ρ] − Ds[ρ]

= i[ρS, HS] +
∑
i=1,2

Di[ρ], (E1)

where Di[ρ] is the dissipator in contact with the ith reservoir.
The steady-state energy current is defined as [36,37,46]

Ji = Tr{Di[ρss]HS}, (E2)

=0.3

=0.05

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

J

FIG. 14. Energy current at � = 0.05 (lower, blue) and 0.3 (up-
per, orange). The parameters are T1 = T2 = 0.2, μ1 = 0.5, μ2 =
μ1 + �T , �1,2 = 0.05, and ω′

1,2 = 1 ± �.
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where the index i means that the current flows from the ith
reservoir to the system. In the steady state, the incoming en-
ergy current and the outgoing energy current have to balance
out, i.e., J1 = −J2. Therefore, without loss of generality, we
will calculate only J1.

The explicit expression for J1 is given as below. For a
bosonic reservoir,

J1 = − 2ω′
1�1s2

[(
1 + nT1

1

)
(ρ22 + ρ44) − nT1

1 (ρ11 + ρ33)
]

− 2ω′
2�2c2[(1 + nT1

2

)
(ρ33 + ρ44) − nT1

2 (ρ11 + ρ22)
]

− ω′
2�1sc

[(
1 + nT1

1

)
(ρ22 + ρ33) − nT1

1 (ρ22 + ρ33)
]

− ω′
1�2sc

[(
1 + nT1

2

)
(ρ22 + ρ33) − nT1

2 (ρ22 + ρ33)
]
.

(E3)

For a fermionic reservoir,

J1 = − 2ω′
1�1s2

[(
1 − nT1

1

)
(ρ22 + ρ44) − nT1

1 (ρ11 + ρ33)
]

− 2ω′
2�2c2

[(
1 − nT1

2

)
(ρ33 + ρ44) − nT1

2 (ρ11 + ρ22)
]

− ω′
2�1sc (ρ22 + ρ33) − ω′

1�2sc (ρ22 + ρ33), (E4)

where all ρi j above are elements of a density matrix in an
energy basis.

As an example, we plot the current with the change of
chemical potential bias in the fermionic reservoir case. The
current saturates at a lower value when the tunneling between
sites is smaller; see Fig. 14. As the chemical potential bias
increases, the energy current increases as expected. The line
with a smaller tunneling rate saturates at a smaller bias and
reaches a smaller asymptotic value.
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