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Phase reference calibration is a necessary procedure in practical continuous-variable measurement-device-
independent quantum key distribution (CV-MDI-QKD) for the need of Bell-state measurement. However, the
phase reference calibration may become imperfect in practical applications. We explored the practical security of
CV-MDI-QKD with imperfect phase reference calibration under realistic conditions of lossy and noisy quantum
channels. Specifically, a comprehensive framework is developed to model and characterize the imperfection of
the practical phase reference calibration operation, which is mainly caused by the nonsynchronization of two
remote lasers in senders. Security analysis shows that the imperfect phase reference calibration has significant
side effects on the performance and security of the CV-MDI-QKD protocol. A tight security bound to thermal
excess noise introduced by imperfect phase reference calibration is derived for reverse reconciliation against one-
mode collective Gaussian attack in the asymptotic limit, and the upper threshold of this imperfection tolerated by
the system is obtained. This security analysis framework can eliminate the security hazards caused by imperfect
phase reference calibration without changing the existing CV-MDI-QKD system structure. In addition, this work
will improve the practical security framework of CV-MDI-QKD protocol and provide theoretic instruction for
the experimental implementation of CV-MDI-QKD protocol.
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I. INTRODUCTION

Quantum key distribution (QKD) [1] allows two distant
authenticated users, Alice and Bob, to establish a secure key
through an untrusted environment, which is based on the
principles of quantum mechanics. There are mainly two cate-
gories of QKD: discrete-variable (DV) QKD protocols [2–4]
and continuous-variable (CV) QKD protocols [5–9]. CVQKD
utilizes the quadrature components of quantum states to dis-
tribute the secure key, which has unique potentials of being
compatible with standard telecommunication systems and no
request on single-photon detectors. Furthermore, CVQKD
protocols allow one to approach the ultimate limit of repeater-
less communication, known as the PLOB bound [10].

Theoretically, the Gaussian-modulated CVQKD protocol
using coherent states [6] has been proved to be secure against
arbitrary collective attacks [11] and coherent attacks [12],
even with finite-size regime [13,14] and composable security
[15] taken into account. Experimentally, this protocol has
been proved to be feasible both in laboratory [7,16] and field
tests [17]. The Gaussian-modulated CVQKD protocol has
extended the secure transmission over 100 km optical fiber
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in the laboratory [18], which shows its potential of applying
in metropolitan quantum networks.

The security analysis of CVQKD relies on some ideal
assumptions, which are hard to satisfy in practice [19–21].
These deviations will bring specific security vulnerabilities to
the CVQKD system, and the eavesdroppers can utilize this im-
perfection to implement attack strategies, such as local oscilla-
tor fluctuation attack [22], calibration attack [23], wavelength
attack [24], and detector saturation attack [25]. Obviously,
most of these attack strategies mainly focus on the imperfect
detectors. In order to remove these attacks, one solution is
to find and describe these security vulnerabilities, and then
propose corresponding countermeasures. But characterizing
all vulnerabilities is quite difficult, and the countermeasures
will increase the complexity of the system.

Inspired by the idea of entanglement swapping,
measurement-device-independent (MDI) QKD has been
proposed by two groups [26,27] independently, where
Ref. [26] solves the problem of side-channel attack against
detectors in full generality and Ref. [27] is limited to qubit
systems. Continuous-variable MDI-QKD (CV-MDI-QKD)
has been proposed and verified both theoretically and
experimentally [28]. Some theoretical schemes of CV-MDI-
QKD have been put forward one after another in the same
period [29–32]. In the theoretic research of CV-MDI-QKD,
some tremendous results have been achieved in recent years
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[33–41]. In CV-MDI-QKD protocols, Alice and Bob are both
senders, and measurement operations are performed by an
untrustworthy third party, Charlie. Charlie performs Bell-state
measurement (BSM) based on signals sent by Alice and Bob,
where the measurement result is communicated publicly
and used for generating the secure keys. Since measurement
operations are performed by an untrusted terminal, the
security of CV-MDI-QKD does not depend on the detectors.
In other words, CV-MDI-QKD can eliminate all side-channel
attacks against detectors, whether known or unknown.

In a practical system of CV-MDI-QKD, the light sources
of Alice and Bob are mutually independent. Therefore, the
initial optical pulses they emit are also independent of each
other and may not stay in the same phase reference frame. For
the need of BSM, we need to calibrate the phase reference
frames between Alice, Bob, and Charlie [28]. The basic idea
of phase reference calibration in CV-MDI-QKD is described
as follows. First, we measure the phase difference between
the local oscillator pulses emitted by Alice and Bob. Then,
we take relative phase estimation and correction, adding the
phase difference to one side’s quantum signal pulse. After
these operations, Alice and Bob’s quantum signal pulses stay
in the same phase reference frame, and Charlie carries out
BSM based on this unified phase reference frame.

Obviously, phase reference calibration is of vital impor-
tance for the construction of experimental framework for CV-
MDI-QKD. Unfortunately, in practical implementation, the
phase reference calibration operation is not as perfect as the-
ory. Due to the nonsynchronization of two independent lasers
in Alice’s and Bob’s sides, which are mainly caused by the
separate spectral linewidths of two lasers, and the uncertainty
of the channel and detection environment, the practical phase
reference calibration operation will become imperfect. If the
imperfection is not taken into account in security analysis,
the security key rate obtained will be higher than the actual
value, which may lead to security hazards. For the accuracy of
security analysis, in other words, in order to get a tight bound
of security key rate, we need to precisely characterize the
impact of imperfect phase reference calibration in the security
analysis process.

Some latest breakthroughs [42,43] overcome the nonideal-
ity brought about by the practical phase reference calibration
to a certain extent through the new optical path design, which
simplifies the phase reference calibration process. However,
these schemes may increase the complexity of other aspects
of the system, such as detection, optical path, and so on. In
addition, these schemes may also introduce additional thermal
excess noise, such as the phase noise between signal pulse
and reference pulse. In this paper, we choose to deal with this
problem from another point of view, that is, to quantitatively
characterize the imperfection of practical phase reference
calibration operation through reasonable modeling, which
develops a comprehensive security framework of CV-MDI-
QKD protocol with imperfect phase reference calibration. In
other words, we provide an appropriate theoretical solution
to the problem. The exact formula for calculating excess
noise caused by the imperfect phase reference calibration
is obtained, and then a more compact and accurate secu-
rity key rate is derived under one-mode collective Gaussian
attack.

FIG. 1. PM version of the CV-MDI-QKD protocol. Hom is
homodyne detection.

In addition, the upper threshold of this imperfection toler-
ated by the system is obtained in the form of the variance of
the relative phase drift between two free-running lasers. Based
on this, we can qualitatively and quantitatively analyze the
impact of imperfect phase reference calibration on the perfor-
mance and security of CV-MDI-QKD protocol. This security
analysis framework can eliminate the security hazards caused
by imperfect phase reference calibration without changing the
existing CV-MDI-QKD system structure.

The remainder of this paper is structured as follows.
In Sec. II, we first review the structure of CV-MDI-QKD
protocol, then introduce phase reference calibration in CV-
MDI-QKD protocol and develop a comprehensive framework
to obtain the thermal excess noise introduced by imperfect
phase reference calibration. In Sec. III, we derive the secret
key rate of the CV-MDI-QKD protocol with imperfect phase
reference calibration, which is more precise and compact than
the original one. In Sec. IV,we give the numerical simulation
and performance analysis. Conclusion and discussions are
drawn in Sec. V.

II. CV-MDI-QKD PROTOCOL WITH IMPERFECT PHASE
REFERENCE CALIBRATION

In this section, we first review the CV-MDI-QKD protocol,
especially the prepare-and-measure (PM) version. Then, we
introduce the phase reference calibration operation in CV-
MDI-QKD protocol and its imperfection in practical imple-
mentation. On the basis of these reviews, we describe and
calculate the thermal excess noise caused by imperfect phase
reference calibration by precise modeling.

A. CV-MDI-QKD protocol

The construction of CV-MDI-QKD protocol is illustrated
in Fig. 1, which is based on the PM version. The main steps
of the PM version can be depicted as follows.

Step 1. Alice and Bob each prepare coherent states and send
them to third-party Charlie through two different quantum
channels with length LAC and LBC , respectively. The coher-
ent state prepared by Alice is |xA + ipA〉, where xA and pA

are Gaussian distributed with modulation variance VAM . The
coherent state prepared by Bob is |xB + ipB〉, where xB and pB

are Gaussian distributed with modulation variance VBM .
Step 2. Charlie performs BSM by interfering the two

incoming coherent states on a beam splitter and obtaining two
output modes C and D. Then, Charlie uses two homodyne
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FIG. 2. EB version of the CV-MDI-QKD protocol. Het is hetero-
dyne detection, Dis is displacement operation, and TMSA and TMSB

are two-mode squeezed states.

detections to measure the x quadrature of mode C and p
quadrature of mode D and announces the measurement results
{XC, PD} publicly.

Step 3. After receiving Charlie’s measurement results,
Alice keeps her data unchanged, where XA = xA, PA = pA,
while Bob modifies his data to XB = xB + κXC , PB = pB −
κPD. κ is an optimization parameter associated with quantum
channel loss.

Step 4. Alice and Bob extract a string of secret key after
carrying out parameter estimation, information reconciliation,
and privacy amplification steps through an authenticated pub-
lic channel.

In the equivalent entanglement-based (EB) version, which
is shown in Fig. 2, Alice and Bob prepare two-mode squeezed
states independently and each send one mode to Charlie for
BSM. After Charlie announces the measurement results, Bob
displaces his retained mode according to the measurement
results, where the gain of the displacement operation is g,
while Alice keeps her mode unchanged. Then, Alice and Bob
measure their modes to obtain the raw data. After the date
postprocessing, Alice and Bob obtain the final secret keys.

Before these steps, Alice and Bob implement the phase ref-
erence calibration by measuring the phase difference between
the local oscillator pulses emitted by Alice and Bob, which
makes sure that the prepared coherent states (or two-mode
squeezed states) of Alice and Bob stay in the same phase
reference frame.

B. Phase reference calibration in CV-MDI-QKD

This subsection mainly discusses the definition and oper-
ation of phase reference calibration between Alice, Bob, and
Charlie in CV-MDI-QKD protocol.

Practically, local oscillator pulses, as the phase reference
light of signal pulse, can be a strong classical light. Therefore,
by interfering two classical local oscillator lights on a beam
splitter, the phase difference of the two local oscillator pulses
can be obtained by measuring the intensity of one output beam
with a photodetector.

We assume that the measurements of phase difference and
phase reference calibration are performed by Bob. Alice sends
her local oscillator pulse to the untrusted third party Charlie.
The schematic diagram of apparatus for measuring the phase
difference of the local oscillator pulses is given in Fig. 3.
Alice divides its local oscillator pulse LOA into two beams,
one sent to Charlie and the other one sent to Bob. Charlie

FIG. 3. Schematic structure of measuring the phase difference
between the local oscillators sending by Alice and Bob in CV-MDI-
QKD protocol. PM is phase modulator. LA is the laser in Alice’s
side; LB is the laser in Bob’s side. LOA and LOB are local oscillator
pulses. PD1 and PD2 are photo detectors. C1 and C2 are the reference
lights of two balanced homodyne detectors for BSM. BS1 and BS2

are beam splitters. The ratio of all the beam splitters is 50:50.

divides the received beam into two beams as the reference
lights of two balanced homodyne detectors for BSM. After
receiving the local oscillator pulse sent by Alice, Bob divides
the received local oscillator pulse and his own local oscillator
pulse LOB into two beams, respectively, and interferences
these beams through BS1 and BS2. In order to measure the
phase difference accurately, π/2 phase has been added to one
of the local oscillator beams. Then, the phase difference of
the two local oscillator pulses can be obtained by measuring
the output interference intensity of one port of BS1 and BS2

respectively with PD1 and PD2.
The local oscillator pulses LOA and LOB can be denoted

as αA
LOeiθA and αB

LOeiθB , respectively. |αA
LO| and |αB

LO| are the
amplitudes of each local oscillator pulse. θA and θB are the
phases of LOA and LOB, respectively. We suppose αA

LO =
αB

LO = αLO. After local oscillator pulses interfere on these
beam splitters, the amplitude of the light measured by PD1
can be expressed as

β1 = 1√
2

(αLOeiθA + αLOeiθB )

=
√

2αLOe
i(θA+θB )

2 cos

(
θA − θB

2

)
, (1)

and then the intensity of the light measured by PD1 can be
calculated as

|β1|2 = 2|αLO|2cos2

(
θA − θB

2

)

= |αLO|2[1 + cos(θA − θB)]. (2)
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Similarly, the intensity of the light measured by PD2 is
obtained as

|β2|2 = |αLO|2[1 + cos(θA − θB − π/2)]

= |αLO|2[1 + sin(θA − θB)].
(3)

According to Eqs. (2) and (3), we can obtain the phase
difference between Alice’s and Bob’s local oscillator, ϕcal,
which is calculated as

ϕcal = θA − θB. (4)

After the phase reference calibration operation, the corre-
lation between (X A

LO, PA
LO) and (X B

LO, PB
LO) can be obtained by

X B
LO = X A

LO cos ϕcal − PA
LO sin ϕcal,

PB
LO = X A

LO sin ϕcal + PA
LO cos ϕcal. (5)

Assuming Alice’s local oscillator has a zero-phase angle,
which means PA

LO = 0, the expression of ϕcal can be obtained
as

ϕcal = tan−1
(
PB

LO/X B
LO

)
. (6)

Relative to local oscillator pulses, the initial quantum
signal pulses modulated by Alice and Bob can be expressed
as αA

S ei(θA+θAM ) and αB
S ei(θB+θBM ), respectively. αA

S and αB
S are

the intensities of their respective signal pulses; θAM and θBM

are their initial modulated phases, respectively. Based on the
phase difference ϕcal between Alice’s and Bob’s local oscilla-
tor pulses, when Bob modulates his quantum signal pulses,
the phase difference ϕcal and the initial modulated phase
θBM should be added as the modulated phase of his ultimate
modulated quantum signal pulse, which can be expressed as

αB
S ei(θB+θBM+ϕcal ) = αB

S ei(θA+θBM ). (7)

Obviously, Bob’s ultimate modulated quantum signal pulse
is defined in Alice’s quantum signal modulation reference
frame. At this time, Alice’s and Bob’s quantum signal pulses
share the same phase reference frame.

C. Thermal excess noise introduced by imperfect phase
reference calibration

Theoretically, after local oscillator reference quadrature
measurement, relative phase estimation, and correction, Alice
and Bob’s quantum signal pulses are expected to stay in
the same phase reference frame with the phase difference
ϕcal. However, in practice, the phase reference calibration
operation is not as perfect as in theory, and the estimator
ϕ̂cal always has estimation error, which will introduce thermal
excess noise. Here we assume that the modulation variance
of Alice and Bob VAM = VBM = VM in shot noise units. This
is an ideal setting to simplify calculation. In the case of
Gaussian-modulated protocol, we assume the thermal excess
noise introduced by imperfect phase reference calibration
is Gaussian, which is similar with the specific phase noise
denoted in Refs. [44,45], and can be written as

εprc = 2VM (1 − e−Vprc/2), (8)

where VM = VAM = VBM is the modulation variance of both
Alice and Bob and Vprc is the variance of the thermal excess

noise introduced by imperfect phase reference calibration,
which is expressed as [46,47]

Vprc = var(ϕcal − ϕ̂cal ). (9)

Assume that the laser in Alice’s side, LA, has spectral
linewidth 	νA, and the laser in Bob’s side, LB, has spectral
linewidth 	νB. Both lasers are centered around the same
optical frequency. f is the repetition rate of the system. The
thermal excess noise Vprc is constituted by three terms

Vprc = Vlaser + Vmeasure + Vpath. (10)

The term Vlaser represents the variance of the relative phase
drift between two free-running lasers LA and LB, which can be
obtained as

Vlaser = 2π

f
(	νA + 	νB). (11)

Obviously, Vlaser is caused by the fact that the pulses of LA and
LB are nonsynchronization, which mainly leads by the sepa-
rate spectral linewidths of two lasers. In the specific system of
the CV-MDI-QKD protocol, Vlaser is a fixed parameter.

The term Vmeasure corresponds to the noise that is caused
by the measurement error of the local oscillator phase. In the
CV-MDI-QKD protocol, Vmeasure can be expressed as

Vmeasure = χA + 1∣∣αA
LO

∣∣2 + χB + 1∣∣αB
LO

∣∣2

= χA + χB + 2

|αLO|2 , (12)

where χA is the total noise imposed on the local oscillator
LOA, which is sent by Alice to Charlie, and χB is the total
noise imposed on the local oscillator LOB, which is sent by
Bob to Charlie. |αA

LO| and |αB
LO| are the amplitude of the local

oscillators LOA and LOB, respectively, and αA
LO = αB

LO =
αLO. χA and χB are defined in Eq. (15).

The term Vpath represents the relative phase drift which is
caused by the accumulation of the phase difference between
the quantum signal pulse and the local oscillator pulse. Practi-
cally, it is caused by the different optical path lengths between
two kinds of pulses. In CV-MDI-QKD protocol, the quantum
signal pulse and the local oscillator pulse transmit through
the same optical path each for Alice and Bob. Thus we have
Vpath = 0, and the thermal excess noise Vprc is caused by two
major components: Vprc = Vlaser + Vmeasure.

When the deviation of ϕ̂cal is quite small, Vprc stays in a
relatively low range. Under this condition, the thermal excess
noise introduced by imperfect phase reference calibration can
be approximated as [46]

εprc = VMVprc

= 2π
VM (	νA + 	νB)

f
+ VM (χA + χB + 2)

|αLO|2 . (13)

We denote the transmittance of the quantum channel be-
tween Alice (Bob) and Charlie is TA (TB), and both quantum
channel losses are l = 0.2 dB/km; then the transmittance can
be given as TA = 10

−lLAC
10 , TB = 10

−lLBC
10 . The thermal excess

noise introduced by two separate quantum channels are εA

and εB, respectively. εc is the equivalent thermal excess noise
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introduced by all quantum channels, which is obtained as

εc = 1 + χA + TB

TA
(χB − 1)

+ TB

TA

(√
2

TBg2

√
VB − 1 −

√
VB + 1

)2

, (14)

where VB = VBM + 1, g is the amplification coefficient of the
Bob’s displacement in the EB version, and

χA = 1

TA
− 1 + εA, χB = 1

TB
− 1 + εB. (15)

As g is an optimization parameter, we denote g2 = 2(VB−1)
ηB (VB+1)

to minimize ε. Then the optimized equivalent thermal excess
noise introduced by all quantum channels can be calculated as

εc = TB

TA
(εB − 2) + εA + 2

TA
. (16)

We suppose the homodyne detectors in Charlie are ideal
apparatuses; then the total added noise expressed in shot noise
units is

χt = 1

η
− 1 + εc + εprc, (17)

where η = 1
2 g2TA is a normalized parameter associated with

the total quantum channel transmittance [30].

III. CALCULATION OF THE SECRET KEY RATE

In this section, we will derive the secret key rate of the CV-
MDI-QKD protocol against one-mode collective Gaussian
attack [29–31,34,37–39,41–43] with considering the imper-
fection of practical phase reference calibration operation.

In order to facilitate the analysis, we restrict the quantum
channels to two Markovian memoryless Gaussian quantum
channels, which do not interact with each other. Under this
assumption, the quantum channels of CV-MID-QKD protocol
can be reduced to a one-mode channel [48], and the optimal
attack turns into one-mode collective Gaussian attack, where
Eve takes entangling cloner collective Gaussian attacks on
each quantum channel independently. All the simulations in
this paper are under one-mode collective Gaussian attack. We
should point out that Eve’s attack strategy described here is
not the optimal and general one. In addition, when TMSB

and the displacement operation are regarded as manipulated
by Eve, the EB version of CV-MDI-QKD protocol can be
simplified to an equivalent one-way CVQKD protocol. Then
we can use the secret key rate of equivalent one-way protocol
to obtain the lower bound of the secret key rate of our protocol

Considering the lossy and noisy quantum channel and
imperfection of practical phase reference calibration, the
covariance matrix of ρA1B′

1
in the EB version can be

expressed as

γA1B′
1 =

(
aI2 cσz

cσz bI2

)

=
(

V I2

√
η(V 2 − 1)σz√

η(V 2 − 1)σz η(V + χt )I2

)
, (18)

where I2 is 2 × 2 identity matrix, σz = diag(1,−1), and V =
VA = VB = VM + 1.

The secret key rate of the CV-MDI-QKD protocol with
imperfect phase reference calibration under reverse reconcili-
ation can be calculated as

Kprc = βIAB − χBE , (19)

where β is the reconciliation efficiency, χBE is the Holevo
bound [49] which defines the maximum information available
to Eve on Bob’s key, and IAB is the mutual information
between Alice and Bob, which can be calculated by [49]

IAB = 2 × 1

2
log2

[
a + 1

a + 1 − c2/(b + 1)

]
. (20)

The Holevo bound χBE is given as

χBE = S(ρE ) −
∫

dmB p(mB)S
(
ρ

mB
E

)
, (21)

where S is the Von Neumann entropy of the quantum state
ρ, mB represents the measurement of Bob, p(mB) is the
probability density of the measurement, and ρ

mB
E is Eve’s state

conditional on Bob’s measurement result. Based on the fact
that ρ

mB
A1

is independent of mB for Gaussian protocols, and Eve
purifies the system A1B′

1, χBE can be obtained as

χBE = S(ρA1B′
1
) − S

(
ρ

mB
A1

)
, (22)

where S(ρA1B′
1
) is a function of the symplectic eigenvalues λ1,2

of γA1B′
1 characterizing the state ρA1B′

1
, with the form

S(ρA1B′
1
) = G[(λ1 − 1)/2] + G[(λ2 − 1)/2], (23)

and S(ρmB
A1

) is a function of the symplectic eigenvalues λ3 of
γ

mB
A1

characterizing the state ρ
mB
A1

, with the form

S
(
ρ

mB
A1

) = G[(λ3 − 1)/2], (24)

where the Von Neumann entropy

G(x) = (x + 1)log2(x + 1) − x log2x. (25)

The symplectic eigenvalues λ1,2 can be calculated by

λ2
1,2 = 1

2 (A ±
√

A2 − 4B2), (26)

with the notations

A = a2 + b2 − 2c2 = V 2 + η2(V + χt )
2 − 2η(V 2 − 1),

B = ab − c2 = η(V χt + 1). (27)

The covariance matrix of the state ρ
mB
A1

can be calculated as

γ
mB
A1

= aI2 − cσz(bI2 + I2)−1cσz

= [a − c2/(b + 1)]I2, (28)

and then the symplectic eigenvalue λ3 is given by

λ3 = a − c2/(b + 1) = ηV χt + V + η

η(V + χt ) + 1
. (29)

IV. PERFORMANCE ANALYSIS

In this section, we give the numerical simulation and
provide the sufficient analysis of the CV-MDI-QKD protocol
with imperfect phase reference calibration compared with
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FIG. 4. Secret key rates as a function of VM in the extreme asym-
metric case, where Charlie is extremely close to Bob. Transmission
distances D = LAC are set to 10 km, 20 km, and 30 km. N0 is the
shot noise variance. PRC is phase reference calibration. The solid
lines denote the CV-MDI-QKD protocol with ideal phase reference
calibration; the dashed lines denote the CV-MDI-QKD protocol
with imperfect phase reference calibration. Parameters are fixed as
follows: εA = εB = 0.002 [7], Vlaser = 0.005, |αLO|2/VM = 108, and
reconciliation efficiency β = 96%.

previous works which do not consider the impact of imperfect
phase reference calibration.

In CV-MDI-QKD protocols, the asymmetric case, where
LAC �= LBC , has obvious advantage in performance compared
with the symmetric case, where LAC = LBC [28], and the
extreme asymmetric case, where Charlie is extremely close
to Bob [30], has the optimal performance. In other words,
the shorter the distance between Bob and Charlie, the better
the performance we can obtain. Employing the same param-
eters, the extreme asymmetric case can obtain the maximal
transmission distance, which is more suitable for point-to-
point communications. In short-range network applications
where the relay needs to be in the middle of the legitimate
communication parties, the symmetric case is more suitable
and has unique potentials. Our following analysis is based on
two cases: the extreme asymmetric case and the symmetric
case.

A. Performance analysis in the extreme asymmetric case

The modulation variance VM is critical to the performance
and security of CV-MDI-QKD protocol. Before obtaining the
secret key rate of the CV-MDI-QKD protocol with imperfect
phase reference calibration as a function of transmission
distance in the extreme asymmetric case, we need to know
how the secret key rate changes with the modulation variance
in order to obtain the optimal modulation variance. We plot
the secret key rates as a function of the modulation variance
VM with different transmission distance in the extreme asym-
metric case, for both the CV-MDI-QKD protocol with ideal
phase reference calibration and the protocol with imperfect
phase reference calibration, which is shown Fig. 4.
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FIG. 5. Secret key rates as a function of the transmission distance
in the extreme asymmetric case, where Charlie is extremely close to
Bob. The uppermost heavy solid line denotes the PLOB bound. The
thin solid lines denote the CV-MDI-QKD protocol with ideal phase
reference calibration. The dashed lines denote the CV-MDI-QKD
protocol with imperfect phase reference calibration, where Vlaser

are set to 0.005, 0.01, and 0.02 with the units of shot noise (N0).
Parameters are fixed as follows: εA = εB = 0.002, |αLO|2/VM = 108,
modulation variance VM = 6, and reconciliation efficiency β = 96%.

There are two key parameters, Vlaser and |αLO|2/VM , di-
rectly deciding the impact of imperfect phase reference cal-
ibration on the protocol. Vlaser is related with the spectral
linewidth of two free-running lasers and the repetition rate of
the system. We denote Vlaser = 0.005 based on the parameters
of the practical equipment. |αLO|2/VM is related with the light
intensity of the local oscillator pulse. We choose |αLO|2/VM =
108, which is the value commonly used in practical CV
systems.

Obviously, when considering the imperfection of practical
phase reference calibration, the practicable VM values are
much lower than the one without taking this imperfection
into account, which means that we need to set the modula-
tion variance more strictly under the condition of imperfect
phase reference calibration. In addition, when transmission
distance increases, the optional areas of VM are gradually
compressed and the secret key rate decreases evidently. There
is a noteworthy phenomenon that, under the fixed parameters,
the optimal value of VM for the CV-MDI-QKD protocol with
imperfect phase reference calibration, which leads to the best
performance, is always about six in short noise units. Hence,
in the next analysis of the extreme asymmetric case, we
always denote VM = 6.

The secret key rates as a function of the transmission
distance in the extreme asymmetric case are shown in the
plot of Fig. 5, for both the CV-MDI-QKD protocol with
imperfect phase reference calibration and the one with ideal
phase reference calibration. Besides, different values of Vlaser

are taken into account for the CV-MDI-QKD protocol with
imperfect phase reference calibration, and the PLOB bound
is plotted as a reference for performance comparison. Here
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FIG. 6. Secret key rates as a function of Vlaser in the extreme
asymmetric case, where Charlie is extremely close to Bob. The
dashed lines denote the CV-MDI-QKD protocol with imperfect
phase reference calibration, where transmission distances D = LAC

are set to 20 km and |αLO|2/VM are set to 108, 103, and 102. The
solid line denotes the initial secret key rate of CV-MDI-QKD proto-
col with imperfect phase reference calibration, where transmission
distances D = LAC = 0 km and |αLO|2/VM = 108. Parameters are
fixed as follows: εA = εB = 0.002, modulation variance VM = 6, and
reconciliation efficiency β = 96%.

we denote |αLO|2/VM = 108 as a fixed value. As shown in the
figure, the performance curve of the CV-MDI-QKD protocol
with imperfect phase reference calibration is always lower
than that of the one without considering this imperfection,
and the gap between the former curve and the PLOB bound is
always larger than that between the later curve and the PLOB
bound. Furthermore, the gap between these two performance
curves will become larger and larger as the value of Vlaser

increases, and the performance of the CV-MDI-QKD protocol
with imperfect phase reference calibration reduces rapidly as
Vlaser increases.

On the one hand, the figure shows that the imperfect phase
reference calibration will seriously affect the performance and
security of the CV-MDI-QKD protocol, and the reduction is
more obvious with the larger Vlaser. On the other hand, a tight
bound of the secret key rate is given with considering this
imperfection in security analysis. Specifically, this imperfec-
tion will introduce additional thermal excess noise into the
formula of the secret key rate under the one-mode collective
Gaussian attack, which will weaken the performance of the
CV-MDI-QKD protocol. Therefore, a tight bound of the secret
key rate can be obtained, which is closer to the practical
situation.

Figure 6 depicts the secret key rates as a function of Vlaser in
the extreme asymmetric case, for the CV-MDI-QKD protocol
with imperfect phase reference calibration. The lower dashed
lines denote the case of the secret key rate changing with
Vlaser under fixed transmission distance and different value of
|αLO|2/VM . On one hand, when the local oscillator pulse is too
weak, the coherent detectors cannot work effectively. On the

other hand, when the local oscillator pulse is too strong, it will
exceed the performance of the coherent detectors. Therefore,
in the practical system, we take the intensity of the local
oscillator pulse as a fixed range, which leads the value of
|αLO|2/VM to be always around 108.

Although the value of |αLO|2/VM has been limited in the
practical system, we still need to consider its impact on system
security, as it is an important parameter in the calculation
formula of εprc. According to the figure, we can obtain that the
value of |αLO|2/VM and the performance of the protocol are
negatively correlated. However, when |αLO|2/VM is larger than
104, its effect on the performance of the protocol is negligible.
Therefore, in practical systems, even if the value of |αLO|2/VM

fluctuates around 108, it will not have a significant impact on
the security key rate. In other words, the effect of |αLO|2/VM

on the performance of the protocol is not obvious in practice.
Hence, in the extreme asymmetric case, the most important
parameter affecting the impact of imperfect phase reference
calibration in practical CV-MDI-QKD systems is Vlaser.

The upper black solid line, which is denoted
as “|αLO|2/VM = 108 with D = 0 km,” gives
the upper bound of tolerance threshold for the
CV-MDI-QKD protocol to the imperfection of
practical phase reference calibration in the extreme
asymmetric case. The upper bound is obtained in the
form of the specific values of Vlaser, which is calculated as
Ṽ asy

laser = 0.0367 in shot noise units. This means that there is
just no secret key extracted when the variance of the relative
phase drift between two free-running lasers Vlaser is greater
than 0.0367 in the extreme asymmetric case. Under this
situation, the CV-MDI-QKD system will not be secure.

From the point of view of the thermal excess noise intro-
duced by the imperfect phase reference calibration, the upper
bound of tolerance threshold for εprc is 0.2202 in shot noise
units under the fixed parameters.

B. Performance analysis in the symmetric case

In the symmetric case, the untrusted third party Char-
lie is right in the middle of Alice and Bob, which is
quite suitable for the applications where two legitimate parties
are roughly equidistant from a public server [32]. Same as the
previous subsection, we should obtain the optimal value of
VM before simulating the secret key rate of the CV-MDI-QKD
protocol with imperfect phase reference calibration in the
symmetric case. The plot of Fig. 7 shows the secret key rates
as a function of the modulation variance VM with different
transmission distance in the symmetric case, for both the
CV-MDI-QKD protocol with ideal phase reference calibration
and the protocol with imperfect phase reference calibration.
The feasible range of VM in the latter is much smaller than that
in the former. Considering the imperfection of phase reference
calibration, with transmission distance increases, the optional
areas of VM are gradually compressed, which is similar to what
is shown in Fig. 4. Under the fixed parameters, the optimal
value of VM in the symmetric case is about 12.

The secret key rate as a function of the transmission
distance in the symmetric case is shown in the plot of Fig. 8,
for both the CV-MDI-QKD protocol with imperfect phase
reference calibration and the one with ideal phase reference
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FIG. 7. Secret key rates as a function of VM in the symmetric
case, where Charlie is in the middle of Alice and Bob. Transmission
distances D = LAC + LBC are set to 2 km, 3 km, and 4 km. N0 is
the shot noise variance. PRC is phase reference calibration. The
solid lines denote the CV-MDI-QKD protocol with ideal phase
reference calibration; the dashed lines denote the CV-MDI-QKD
protocol with imperfect phase reference calibration. Parameters are
fixed as follows: εA = εB = 0.002, Vlaser = 0.005, |αLO|2/VM = 108,
and reconciliation efficiency β = 96%.

calibration. The modulation variance VM of both protocols are
all set to 12; |αLO|2/VM is also fixed as 108. Same as the
former case, the performance curves of the CV-MDI-QKD

FIG. 8. Secret key rates as a function of the transmission distance
in the symmetric case, where Charlie is in the middle of Alice and
Bob. The uppermost heavy solid line denotes the PLOB bound. The
thin solid lines denote the CV-MDI-QKD protocol with ideal phase
reference calibration. The dashed lines denote the CV-MDI-QKD
protocol with imperfect phase reference calibration, where Vlaser

are set to 0.005, 0.01, and 0.02 with the units of shot noise (N0).
Parameters are fixed as follows: εA = εB = 0.002, |αLO|2/VM = 108,
modulation variance VM = 12, and reconciliation efficiency β =
96%.

FIG. 9. Secret key rates as a function of Vlaser in the symmetric
case, where Charlie is in the middle of Alice and Bob. The dashed
lines denote the CV-MDI-QKD protocol with imperfect phase ref-
erence calibration, where transmission distances D = LAC + LBC are
set to 3 km and |αLO|2/VM are set to 108, 103, and 102. The solid
lines denote the initial secret key rate of CV-MDI-QKD protocol
with imperfect phase reference calibration, where transmission dis-
tances D = LAC = 0 km and |αLO|2/VM = 108. Parameters are fixed
as follows: εA = εB = 0.002, modulation variance VM = 12, and
reconciliation efficiency β = 96%.

protocol with considering imperfect phase reference calibra-
tion are always lower than the one without considering this
imperfection, and the gap will rise with the increase of Vlaser.
A more compact secret key rate is given with considering this
imperfection in the symmetric case.

Furthermore, for both the CV-MDI-QKD protocol with
imperfect phase reference calibration and the one with ideal
phase reference calibration, the maximal transmission dis-
tances of the symmetric case are less than one-tenth of these
of the extreme asymmetric case. The secret key rate of the
CV-MDI-QKD protocol with imperfect phase reference cal-
ibration in the symmetric case looks more sensitive to the
change of Vlaser than that in the extreme asymmetric case,
which will be confirmed in Fig. 9.

Figure 9 depicts the secret key rates of the CV-MDI-
QKD protocol with imperfect phase reference calibration as a
function of Vlaser in the symmetric case, with different values
of |αLO|2/VM and transmission distance. Similar to what is
shown in Fig. 6, although |αLO|2/VM and the performance
of the protocol have negative correlation, when |αLO|2/VM

surpasses 104, its effect on the performance of the protocol
is not worth mentioning. So the most critical parameter for
determining the impact of the imperfect phase reference cali-
bration in practical CV-MDI-QKD systems is still Vlaser in the
symmetric case.

The upper black solid line denoted as “|αLO|2/VM = 108

with D = 0 km” shows the upper bound of tolerance threshold
for the CV-MDI-QKD protocol to the imperfection of
practical phase reference calibration in the symmetric case,
which is obtained as Ṽ sy

laser = 0.0220 in shot noise units in
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the form of the specific values of Vlaser. It is clear that the
upper bound of tolerance threshold for the CV-MDI-QKD
protocol to the imperfection of practical phase reference
calibration in the symmetric case is lower than that in the
extreme asymmetric case. This shows that the symmetric case
of the CV-MDI-QKD protocol is more sensitive to Vlaser than
the extreme asymmetric case. In addition, the upper bound of
tolerance threshold for εprc in the symmetric case is 0.2640
in shot noise units, which is higher than that of the extreme
asymmetric case. This is mainly caused by the quite higher
modulation variance of the former case.

V. CONCLUSION AND DISCUSSIONS

CV-MDI-QKD protocol can ignore the side-channel at-
tacks against imperfect measurement devices, but it is not
immune to the imperfection of other parts. Phase reference
calibration is of vital importance for the experimental real-
ization of CV-MDI-QKD, as it’s a necessary operation for
BSM. But in practice, phase reference calibration operation
is not as perfect as in theory, which will bring security vul-
nerabilities to the system. In this paper, we have investigated
the imperfection of practical phase reference calibration on
the security of CV-MDI-QKD protocol, which is caused by
the nonsynchronization of two remote lasers in senders and
has not been taken into account in previous security analysis
of this protocol. Both the extreme asymmetric case and the
symmetric case are taken into account. We developed a com-
prehensive security framework to model and characterize this
imperfection. Through reasonable modeling, the effect of this
imperfection on the security of the CV-MDI-QKD protocol
is equivalent to the thermal excess noise εprc introduced by
imperfect phase reference calibration. A tight bound of the
secret key rate is derived under one-mode collective Gaussian
attack, where the tightness is caused by the thermal excess
noise introduced by the imperfect phase reference calibra-
tion. The security analysis shows that the imperfect phase
reference calibration will obviously damage the performance
and security of the CV-MDI-QKD protocol. Moreover, based
on the variance of the relative phase drift between two free-
running lasers Vlaser, we give the upper bound of tolerance
threshold for the CV-MDI-QKD protocol to the imperfection
of practical phase reference calibration. This work can ef-
fectively eliminate the potential security hazards caused by
the imperfect phase reference calibration without changing
the protocol structure, and make the security analysis closer
to the practical situation. Furthermore, this work will be
conducive to further improving the practical security frame-
work of the CV-MDI-QKD protocol, and provide theoretical
guidance for the experimental implementation of the CV-
MDI-QKD protocol in the next step.

In the analysis of εprc, we find that the most critical
parameter for determining the impact of the imperfect phase
reference calibration in practical CV-MDI-QKD systems is
Vlaser, which is a fixed parameter in the specific system and
decided by the spectral linewidth of two free-running lasers
and the repetition rate f of the system. We usually choose
f below 100 MHz with considering the current bandwidth
limitation of shot-noise limited coherent detectors. In order
to minimize Vlaser, we can choose low-phase-noise lasers,
such as external-cavity lasers (ECL), whose typical spectral
linewidth is of a few kHz [44]. In this case, Vlaser may even
be less than 10−4. The participation of such equipment can
effectively narrow the impact of the imperfect phase reference
calibration on the security and performance of CV-MDI-QKD
protocol. In future work, we will strive to design a comprehen-
sive security framework to characterize the overall practical
security of CV-MDI-QKD protocol under the optimal attack
strategy.

In addition, there is indeed a link between Alice and Bob
due to the need for phase reference calibration, and this link
transmits the phase reference light that Alice sends to Bob,
which is the local oscillator and easily controlled by Eve.
Therefore, we must consider the attack strategy that Eve may
take on the link. The attack strategy that Eve can adopt is
as follows. Eve can work hard to keep the link between
Alice and Bob stable, so that Alice’s and Bob’s lasers are
always in synchronization. At the same time, Eve interferes
with the link between Alice and Charlie by imitating the
fluctuation of Alice’s practical laser, thus hiding the thermal
excess noise caused by her own eavesdropping. In this way,
Eve can successfully steal the key information without being
discovered by legitimate users. At this point, Alice and Bob’s
phase calibration is inaccurate, which will be mistaken by
Alice and Bob as being in synchronization, and the secret key
rate estimated according to the results of BSM is higher than
the practical situation. The system is no longer secure. We can
take some countermeasures against Eve’s attack strategy on
the link between Alice and Bob: real-time phase monitoring of
Alice’s reference light or Charlie’s local preparation of local
oscillator. This will be our next research focus.
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