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Tripartite non-maximally-entangled mixed states as a resource for optimally
controlled quantum teleportation fidelity

K. G. Paulson*

Department of Physics, Pondicherry University, Puducherry 605 014, India
and Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India

Prasanta K. Panigrahi†

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India

(Received 25 June 2019; published 19 November 2019)

Three-qubit mixed states are used as a channel for controlled quantum teleportation (CQT) of single-qubit
states. The connection between different channel parameters to achieve maximum controlled teleportation
fidelity is investigated. We show that for a given multipartite entanglement and mixedness a class of non-
maximally-entangled mixed X states (X -NMEMS) achieves optimum controlled quantum teleportation fidelity;
interestingly a class of maximally entangled mixed X states (X -MEMS) fails to do so. This demonstrates,
for a given spectrum and mixedness, that X -MEMS are not sufficient to attain optimum controlled quantum
teleportation fidelity, which is in contradiction with the traditional quantum teleportation of single qubits. In
addition, we show that biseparable X -NMEMS, for a certain range of mixedness, are useful as a resource to attain
high controlled quantum teleportation fidelity, which essentially lowers the requirements of quantum channels
for CQT.
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I. INTRODUCTION

Quantum teleportation is the process of transferring quan-
tum states across two parties separated by large distance
without traversing the actual distance between them [1]. In
the celebrated teleportation protocol, a single qubit’s state
is teleported between two parties, where the maximally en-
tangled bipartite pure state shared by both parties acts as
a quantum channel for the process. Teleportation fidelity
determines the success of quantum teleportation; it is defined
as the overlap of the state to be teleported and the output
state at the receiver’s end. It can be considered as an ascribed
characteristic of the quantum channel used for the telepor-
tation of an arbitrary quantum state. For a pure quantum
channel, the existence of a monotonic relationship between
entanglement and teleportation fidelity is well known [2–4].
In reality, quantum systems are open; interaction of the system
with surroundings changes the properties of quantum states
in general. Hence, the exploration of quantum states in noisy
environments for implementing various quantum information
processing protocols has attracted wide attention. In [2,3], it is
shown that mixed quantum states can also be used as a channel
to achieve imperfect teleportation. In the case of a mixed
entangled teleportation channel, there exists no monotonic
relationship between entanglement and teleportation fidelity,
i.e., a higher value of entanglement of the quantum chan-
nel is not sufficient to achieve maximum fidelity [5]. The
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connection among different parameters of the quantum chan-
nel [2,3,6–8] should be known for the wise usage of channels
for quantum teleportation under the effects of noise. For
mixed quantum channels, both mixedness and entanglement
contribute to the success of teleportation [5]. Manipulation
of multipartite qubits [9–13] is an important task to scale
up the quantum based technology efficiently. A multipartite
variant of quantum teleportation has been proposed in [14],
and it is known as controlled quantum teleportation (CQT).
In CQT, an arbitrary single-qubit state is transferred from
sender to receiver only with the permission of the controller.
The authority power of the controller to decide the success or
failure of teleportation for the tripartite CQT protocol shows
its difference from the bipartite one. Recently, Barasinski
et.al., experimentally implemented controlled quantum tele-
portation of single-qubit states on linear optical devices [15]
and discussed the possibilities of controlled quantum tele-
portation by lowering the requirements of quantum channels.
Conditioned and nonconditioned fidelity are two quantities
that are measured with and without the permission of the
controller, characterizing the CQT protocol. It is assumed that,
in CQT, FCQT (conditioned fidelity) should be always greater
than the classical limit, whereas the value of FNC (noncon-
ditioned fidelity) [14,16,17] cannot exceed the classical limit
2
3 (FNC � 2

3 ). The classical limit of nonconditioned fidelity
is calculated for the set of pure input states that are chosen
according to the Haar measure [18]. The control power (CP),
a quantity to define the authority of the controller in CQT, is
estimated as the difference of conditioned and nonconditioned
fidelity. As is known, for bipartite quantum states, purity
of the quantum channel along with entanglement [5,19,20]
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plays a significant role in the implementation of the quantum
teleportation process with maximum achievable fidelity. Dif-
ferent classes of states are considered as quantum channels for
teleportation, among which a class of X states, having nonzero
diagonal and antidiagonal elements, deserves special attention
[21–23]. In the case of the bipartite qubit system, a given
density matrix can be unitarily transformed to the X state
with the same degree of entanglement and spectrum [24,25].
Thus quantum states in X structure form an important class
of density matrices in general and are used as a representative
class of states for quantum information processing. The use of
tripartite quantum states as a channel for controlled quantum
teleportation and the estimation of controlled teleportation
fidelity for X states are shown in [26]. Both maximally and
non-maximally-entangled pure Greenberger-Horne-Zeilinger
(GHZ)-like states act as quantum channels for CQT. In [27]
it is shown how genuine multipartite entanglement (GME)
and CP affect the controlled quantum teleportation fidelity
for a class of X states. Purity of tripartite quantum states
is an important parameter that affects quantum correlations,
and investigation of the efficacy of tripartite quantum states
for CQT will not be conclusive without accounting for the
purity of the quantum channel along with other channel
parameters. We fill this gap by a detailed investigation on
the performance of the mixed quantum channel for controlled
quantum teleportation. We systematically investigate the roles
played by various parameters, like purity, entanglement, and
control power of tripartite qubit states, in achieving optimum
controlled quantum teleportation fidelity (FCQT). For this pur-
pose, we consider different classes of multipartite X states and
analyze their performance as CQT channels. First, we exam-
ine the faithfulness of a class of rank dependent maximally
entangled mixed X states (X -MEMS), defined for a given
spectrum of eigenvalues and linear entropy as a CQT resource.
Since the performance of X -MEMS as a CQT channel is not
optimum, a class of tripartite non-maximally-entangled mixed
X states (X -NMEMS) is constructed and its teleportation
fidelity is estimated. We show that our class of X -NMEMS
outperforms X -MEMS as a quantum channel for CQT and
rank-2 X -NMEMS give maximum achievable teleportation
fidelity for a given entanglement and mixedness as shown
in [27]. This clearly demonstrates that CQT protocol lowers
the requirements of the quantum channel for the successful
quantum teleportation of a single qubit’s state. At a high
value of mixedness, X -NMEMS become biseparable. Even
with the biseparability condition, X -NMEMS are found to
give high values for controlled quantum teleportation fidelity
above the classical limit. This high value of fidelity of the
biseparable quantum channel is a direct evidence that mixed
tripartite quantum states can lower the requirements of the
quantum channel for successful controlled teleportation. From
our investigation on tripartite mixed quantum channels, we
show that tripartite X -MEMS are not sufficient to achieve
optimum CQT fidelity, whereas optimum controlled quan-
tum teleportation fidelity is achieved using a class of X -
NMEMS. Even though genuine multipartite entanglement
of X -NMEMS vanishes for high values of mixedness, the
process of controlled quantum teleportation of single-qubit
states is enabled by the biseparability nature of X -NMEMS.
These results, which lower the requirements of the quantum

channel, are quite important for the experimental realization
of controlled quantum teleportation in a noisy environment.
The present paper is organized as follows. In Sec. II, we
discuss the prerequisites for implementing the CQT protocol.
Section III contains two subsections. The first subsection deals
with the construction of tripartite qubit X -MEMS and its
usefulness for controlled quantum teleportation. It is followed
by the construction of a class of X -NMEMS, and its efficacy
as a quantum channel for CQT is analyzed in the second
subsection. Results and discussion in Sec. IV are followed by
the concluding section (Sec. V).

II. PRELIMINARIES

Below, we define different parameters like GME, tele-
portation fidelity, control power, and linear entropy, which
characterize the tripartite mixed entangled quantum channels
for controlled quantum teleportation.

A. Genuine multipartite entanglement

The three-qubit symmetric mixed X states [28]
are defined with diagonal elements denoted by
a1, a2, a3, a4, b1, b2, b3, b4 � 1 and antidiagonal elements
given by z1, z2, z3, z4, z∗

1, z∗
2, z∗

3, z∗
4. The GME of a three-qubit

X state is given as

CGME = 2 max{0, |z j | − w j}, (1)

where
∑

i(ai + bi ) = 1 and w j = ∑
k �= j

√
akbk . The positivity

criterion of the X matrix is satisfied with the condition |zi| �√
aibi. The tripartite X states are entangled for 0 < CGME � 1

and CGME is zero for biseparable states [29].

B. Controlled quantum teleportation fidelity

Here, we describe the protocol of controlled quantum
teleportation of a single qubit’s state via the tripartite qubit
channel. Consider that three parties, labeled as A, B, and
C, share an entangled three-qubit quantum state ρabc, which
acts as a channel connecting them to each other. Suppose
party A wants to teleport an unknown state of qubit d to B
with the consent of party C. At this moment controller C
makes an orthogonal measurement on his qubit c, with ζ as
the measurement outcome. This results in the projection of
entangled channel ρabc onto the two-qubit state [17] ρ

ζ

ab:

ρ
ζ

ab = Trc[12 ⊗ 12 ⊗ |ζ 〉〈ζ |Uρabc12 ⊗ 12 ⊗ U †|ζ 〉〈ζ |]
〈ζ |UρcU †|ζ 〉 . (2)

Here 12, a 2 × 2 identity matrix, acts on the qubit’s state with
observers A and B; U , a 2 × 2 unitary matrix, along with the
projection operation acts on the qubit’s state with observer
C; and ρc = Trab[ρabc]. Following this, party A makes a joint
orthogonal measurement on qubits a and d and communicates
the results to B, and appropriate unitary operations on qubit
b complete the process of CQT. The controlled quantum
teleportation fidelity FCQT(ρ) in this scenario is defined as

FCQT(ρ) = 2maxU
[∑1

ζ=0〈ζ |UρcU †|ζ 〉 f
(
ρ

ζ

ab

)] + 1

3
. (3)
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We have nonconditioned teleportation fidelity (without the
controller’s participation) given as

FNC(ρ) = 2 f (ρab) + 1

3
, (4)

where f (ρ) is the fully entangled fraction [30–32] and
〈ζ |UρU †|ζ 〉 is the maximum probability of receiving out-
come ζ . The fidelities derived in Eqs. (3) and (4) are estimated
for general three-qubit mixed X states [26] as follows:

FCQT(ρX ) = max
{
F 1

CQT, F 2
CQT, F 3

CQT, F 4
CQT

}
(5)

where

F 1
CQT = 3 + |�1| + 4(|z1| + |z4|)

6
,

F 2
CQT = 3 + |�1| + 4(|z2| + |z3|)

6
,

F 3
CQT =

3 +
√

�2
2 + 16(|z1| + |z4|)2

6
,

F 4
CQT =

3 +
√

�2
2 + 16(|z2| + |z3|)2

6
. (6)

Here �1 = a1 − a2 − a3 + a4 + b1 − b2 − b3 + b4, �2 =
a1 − a2 + a3 − a4 − b1 + b2 − b3 + b4. The nonconditioned
teleportation fidelity of the state ρX is

FNC(ρX ) = 3 + |�1|
6

. (7)

The influence of the control qubit in the CQT process is
quantified by estimating CP and is defined as

CP(ρX ) = FCQT(ρX ) − FNC(ρX ). (8)

The two conditions FCQT(ρ) > 2
3 and FNC(ρ) � 2

3 should be
satisfied by tripartite quantum channels to ensure the active
participation of the controller in the controlled quantum tele-
portation process. Mixedness of quantum states is an impor-
tant parameter that influences fidelity of controlled quantum
teleportation. We use linear entropy to estimate the mixedness
of a state, which is defined for a multipartite qubit state ρ as

SL(ρ) = 2N − 1

2N
[1 − Tr(ρ2)]. (9)

Here N is the number of qubits and Tr(ρ2) is the purity of the
multipartite quantum state. Mixed states satisfy the condition
0 < SL(ρ) � 1 and SL(ρ) = 0 for pure states.

III. MIXED X STATES: A RESOURCE FOR CONTROLLED
QUANTUM TELEPORTATION

In this section, we investigate in detail the mixed three-
qubit X states as a resource for controlled quantum telepor-
tation. We show how purity and other quantum correlations
of tripartite qubit states are connected to each other for their
usage as a CQT channel. From the study of the bipartite
mixed quantum channel as a resource for teleportation of
single-qubit states, we infer the nontrivial dependence of
teleportation fidelity on mixedness and entanglement of the
quantum channel. In [5,20], one of the present authors has

shown the existence of rank dependent bounds on mixed-
ness and entanglement of quantum states for their useful-
ness for successful quantum teleportation. Among bipartite
qubit quantum channels, a class of MEMS [33–36] gives
maximum teleportation fidelity for a given mixedness and
entanglement. This demonstrates its importance in investigat-
ing the efficacy of mixed entangled teleportation channels in
higher-dimensional state space. We address this situation by
considering tripartite mixed X quantum channel for CQT.

A. Tripartite maximally entangled mixed X states

The genuine maximally entangled mixed X states for N
qubits are given in [37] for a given spectrum of eigenvalues.
The class of three-qubit X -MEMS as a convex sum of maxi-
mally entangled pure GHZ and separable states is given as

ρ(X )MEMS = p1|GHZ+
1 〉〈GHZ+

1 | + p2|001〉〈001|
+ p3|010〉〈010| + p4|011〉〈011|
+ p5|GHZ−

1 〉〈GHZ−
1 | + p6|100〉〈100|

+ p7|101〉〈101| + p8|110〉〈110|, (10)

where p1 � p2 � p3 � p4 � p5 � p6 � p7 � p8 � 0 are
the eigenvalues of density matrix ρ(X )MEMS and p1 + p2 +
p3 + p4 + p5 + p6 + p7 + p8 = 1 satisfy the normalization
condition of the density matrix. The maximally entangled
three-qubit GHZ state basis is given as

|GHZ±
1 〉 = 1√

2
[|000〉 ± |111〉],

|GHZ±
2 〉 = 1√

2
[|001〉 ± |110〉],

|GHZ±
3 〉 = 1√

2
[|010〉 ± |101〉],

|GHZ±
4 〉 = 1√

2
[|011〉 ± |100〉]. (11)

It is shown that the given density matrix ρ(X )MEMS possesses
maximum value of GME for a given spectrum of eigenvalues
{�}. We calculate the GME of ρ(X )MEMS, and it is given by

C∗[ρ(X )] = max{0, p1 − p5 − 2[
√

p2 p8

+√
p3 p7 + √

p4 p6]}. (12)

If GME of a given ρ(X ) is equal to C∗[ρ(X )], then the
state ρ(X ) belongs to the class of ρ(X )MEMS. The maximally
entangled mixed three-qubit X states, defined with respect to
the mixedness of quantum states [38], are given as

ρ(X )=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (γ ) 0 0 0 0 0 0 γ

0 g(γ ) 0 0 0 0 0 0
0 0 g(γ ) 0 0 0 0 0
0 0 0 g(γ ) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
γ 0 0 0 0 0 0 f (γ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)
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FIG. 1. Genuine multipartite entanglement of various rank X -
MEMS is plotted as a function of linear entropy. Ranks of the
states vary from 2 to 8. The entanglement of three-qubit X -MEMS
[Eq. (13)] defined with respect to purity of the quantum states
possesses maximum value for the full range of values of linear
entropy.

where

f (γ ) =
{

1/5, 0 � γ � 1/5

γ , 1/(5) < γ � 1/2
(14)

and

g(γ ) =
{

1/5, 0 � γ � 1/5

(1 − 2γ )/3, 1/5 < γ � 1/2
. (15)

The tripartite X -MEMS, defined with respect to purity, are
of rank 4 and 5. The GME of the above-defined maximally
entangled mixed state is max[0, 2|γ |]. The GME of three-
qubit X -MEMS of different ranks as a function of linear
entropy is given in Fig. 1. From Fig. 1, it is clear that rank-4
and -5 X -MEMS possess the highest values of entanglement
for a fixed linear entropy. The tripartite X -MEMS, defined
with respect to purity, possess maximum achievable multi-
partite entanglement among all rank dependent X -MEMS.
Here, we use this class of tripartite qubit X -MEMS as a
channel for controlled quantum teleportation and show how
the teleportation fidelity of different rank MEMS varies as
a function of mixedness and other quantum correlations.
The controlled quantum teleportation fidelity of X -MEMS
is given as

FCQT(MEMS) = 1
6 [3 + 2(p1 − p5) + |p1 − p2 − p3

+ p4 + p5 + p6 − p7 − p8|]. (16)

The nonconditioned fidelity takes the value 1
6 (3 + |p1 − p2 −

p3 + p4 + p5 + p6 − p7 − p8|) and is always less than or
equal to the classical limit of fidelity 2

3 . The CQT fidelity of
X -MEMS as a function of linear entropy is given in Fig. 2.
From Fig. 2, in which teleportation fidelity of X -MEMS
of ranks varying from 2 to 8 is analyzed as a function of
linear entropy, we infer that higher rank maximally entangled
mixed states survive as a CQT channel for higher values of
mixedness. In Fig. 3, we analyze the controlled teleportation
fidelity of different rank X -MEMS as a function of genuine
multipartite entanglement. It is seen that higher rank states
possess higher values of teleportation fidelity for lower values
of GME instead of maximally entangled mixed X states
(with maximum GME) defined with respect to purity. This
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FIG. 2. Controlled teleportation fidelity FCQT of X -MEMS is
given as a function of linear entropy SL . It is clear that higher rank
MEMS give higher values of teleportation fidelity for a fixed linear
entropy.

implies that there exists no monotonic relationship between
entanglement and teleportation fidelity in the case of tripartite
mixed channels. The control parameter is another quantity
that captures the authority of the controller’s qubit in the
process of CQT. Control quantum teleportation fidelity as a
function of control power for different rank X -MEMS is given
in Fig. 4. The CQT fidelity of different rank X -MEMS under
the authority of the controller qubit holds the bounds proposed
in [27]. The boundaries for maximally entangled mixed X
states of rank r (2 � r � 8) are constructed by identifying the
spectrum of eigenvalues as p1 = 1+(r−1)p

r and the rest of the
r − 1 eigenvalues equal to 1−p

r . These boundary states act as
an upper bound of corresponding rank dependent X -MEMS
for the curves in which teleportation fidelity is analyzed as
a function of linear entropy and multipartite entanglement.
Since the CQT fidelity of X -MEMS is not optimum, we
construct a class of non-maximally-entangled mixed states, X -
NMEMS. The details of the investigation and its performance
as a quantum channel for controlled quantum teleportation are
discussed in the next section.

B. Tripartite non-maximally-entangled mixed X states

In this section, we construct a class of tripartite X -
NMEMS; their performance as a CQT channel is investigated
and is compared with that of X -MEMS. We show that our
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FIG. 3. Controlled quantum teleportation fidelity FCQT of rank
dependent tripartite X -MEMS is plotted as a function of genuine
multipartite entanglement; it is shown that higher rank states possess
higher values of teleportation fidelity for lower values of GME.
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FIG. 4. X -MEMS of all ranks are generated and the controlled
teleportation fidelity FCQT of X -MEMS is plotted as a function of
control power CP.

class of X -NMEMS is a potential candidate for controlled
quantum teleportation of a qubit’s state through a three-qubit
quantum channel at a high value of mixedness and a low
value of entanglement. The class of X -NMEMS, as a convex
combination of maximally entangled GHZ states in Eq. (11),
is given as

ρ(X )NMEMS = p1|GHZ+
1 〉〈+GHZ+

1 | + p2|GHZ+
4 〉〈GHZ+

4 |
+ p3|GHZ+

2 〉〈GHZ+
2 | + p4|GHZ+

3 〉〈GHZ+
3 |

+ p5|GHZ−
1 〉〈GHZ−

1 | + p6|GHZ−
4 〉〈GHZ−

4 |
+ p7|GHZ−

2 〉〈GHZ−
2 | + p8|GHZ−

3 〉〈GHZ−
3 |.
(17)

The eigenvalues p′s
i of non-maximally-entangled mixed X

states satisfy the conditions of normalization and positivity
discussed in Sec. III A. We investigate the details of the X -
NMEMS quantum channel for CQT and show that tripartite
mixed entangled states lower the requirements of the con-
trolled quantum teleportation channel. The genuine multipar-
tite entanglement of the non-maximally-entangled mixed state
is estimated as

C[ρ(X )NMEMS] = (p1 − p5) − (p2 + p3

+ p4 + p6 + p7 + p8). (18)

The above-constructed tripartite X state does not fall in the
class of X -MEMS, since the estimated GME of X states is
not equal to C∗ρ(X ) in Eq. (12). The calculated controlled
teleportation fidelity of X -NMEMS is given by

FCQT(NMEMS) = 1
6 [3 + 3(p1 + p2) − (p3 + p4

+ p5 + p6 + p7 + p8)]. (19)

The classical limit of teleportation fidelity of X -NMEMS
is FNC = 1

6 (3 + |p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8|).
The genuine multipartite entanglement of different rank X -
NMEMS is plotted as a function of linear entropy in Fig. 5.
From Fig. 5, it is clear that the class of tripartite X -NMEMS
possesses a lower value of GME as compared to that of
X -MEMS for a defined spectrum of eigenvalues and linear
entropy. Moreover, from Fig. 5, we infer that the entanglement
of three-qubit X -NMEMS increases as rank increases, which
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FIG. 5. Genuine multipartite entanglement of tripartite X -
NMEMS of all ranks is plotted as a function of linear entropy SL .

is not the case for X -MEMS. We use this non-maximally-
entangled mixed state as a CQT channel, and teleportation
fidelity as a function of linear entropy is given in Fig. 6.

We analyze the performance of our X -NMEMS for the
CQT process as a function of both entanglement and mixed-
ness. It is clear from Eq. (19) that rank-2 X -NMEMS give
maximum achievable controlled teleportation fidelity for all
values of entanglement and mixedness. This is in contradic-
tion with the case of the conventional quantum teleportation
process. From Figs. 6 and 7, wherein controlled teleportation
fidelity is analyzed as a function of mixedness and entangle-
ment, respectively, it is seen that rank dependent X -NMEMS
give maximum CQT fidelity in both cases as compared to
X -MEMS. At the same time, as it is known from Fig. 5,
even though GME of X -NMEMS is lower than that of X -
MEMS for a given purity, its performance as a CQT channel is
optimum. This indicates that maximum value of entanglement
is not a necessary and sufficient condition to achieve optimum
controlled quantum teleportation fidelity, which is not the
case for bipartite quantum channels. At lowest rank (rank 2),
X -NMEMS are the same as the states in [26] and they give
maximum achievable controlled teleportation fidelity among
all mixed states. The CQT fidelity of X -NMEMS is given
as a function of control power in Fig. 8. X -NMEMS hold
the lower and upper bounds defined for CQT fidelity, in
terms of control power and multipartite entanglement. As
we have discussed for maximally entangled mixed multi-
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FIG. 6. Tripartite controlled quantum teleportation fidelity
(FCQT) of X -NMEMS of various ranks is plotted for a given value of
linear entropy (SL ). Rank-2 X -NMEMS give the maximum achiev-
able CQT fidelity.
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FIG. 7. Controlled quantum teleportation fidelity FCQT of three-
qubit X -NMEMS is given as a function of genuine multipartite
entanglement, and it is shown that the maximum achievable CQT
fidelity is attained for rank-2 X -NMEMS for the full range of values
of GME.

partite states, the rank dependent boundary X -NMEMS are
constructed by considering the eigenvalues, p1 = 1+(r−1)p

r ,
and the rest of the r − 1 eigenvalues equal to (1−p)

r . In the
case of X -NMEMS, rank dependent boundary states act as
lower bounds of respective rank X -NMEMS for CQT fi-
delity, given as a function of multipartite entanglement and
mixedness.

IV. RESULTS AND DISCUSSIONS

In this paper, we systematically investigated the efficacy of
the tripartite mixed entangled state as a resource for controlled
quantum teleportation. Mixedness and entanglement jointly
decide the efficiency of mixed quantum channels for CQT. To
investigate the interdependence of multipartite entanglement,
mixedness, and control power of the quantum states on the
success of controlled quantum teleportation in detail, we used
a class of tripartite maximally entangled mixed X states as
a channel for CQT. The rank dependent performance of X -
MEMS as a CQT channel has been analyzed as a function
of the aforementioned channel parameters and it is shown
that the X -MEMS do not give optimum controlled quantum
teleportation fidelity, as is true for the bipartite quantum states.
The problem of controlled quantum teleportation via non-
maximally-entangled pure states has already been studied.
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FIG. 8. Controlled quantum teleportation fidelity FCQT of non-
maximally-entangled mixed X states (X -NMEMS) is plotted as a
function of control power CP.

Here we extended this work to the usage of non-maximally-
entangled mixed states as a CQT resource. We constructed
a class of non-maximally-entangled mixed states and inves-
tigated its application as a controlled quantum teleportation
channel. We showed that a class of X -NMEMS outperforms
X -MEMS as a CQT channel, for a given mixedness and
entanglement. This essentially proves that maximum multi-
partite entanglement is not sufficient for achieving optimum
teleportation fidelity. From Fig. 5, it is known that for some
values of linear entropy the genuine multipartite entanglement
of tripartite X -NMEMS becomes zero. Zero GME implies
that states are biseparable. From our investigation on tripartite
X -NMEMS for CQT, it is evident that biseparable states are
useful for CQT at a high degree of mixedness. This result
is an important one for the experimental realization of CQT
in a noisy environment. For example, consider the case of
boundary X -NMEMS [ρ3(X )] of rank 3: the eigenvalues
of ρ3(X ) are p1 = 1+2p

3 and p2 = p3 = 1−p
3 . We calculated

the channel parameters of ρ3(X ) as FCQT = 7+2p
9 , FNC =

5+p
9 , GME = max{0,

4p−1
3 }, and SL = 16(1−p2 )

21 . Multipartite
entanglement of ρ3(X ) is zero for 0 � p � 1

4 ; i.e., for high
values of mixedness SL � 15

21 , rank-3 boundary X -NMEMS
possess no genuine multipartite entanglement. However, the
controlled teleportation fidelity of rank-3 X -NMEMS does
not vanish above this value of mixedness, FCQT = { 7

9 , 5
6 } for

15
21 � SL � 16

21 . Even for the biseparability nature of boundary
X -NMEMS at high values of mixedness, the controlled quan-
tum teleportation fidelity possesses a high value above the
classical limit.

V. CONCLUSIONS

Analysis of the performance of tripartite rank depen-
dent X states as a resource for controlled quantum tele-
portation revealed many intriguing properties of multipar-
tite systems that can be exploited for the efficient im-
plementation of quantum information processing protocols.
We showed that for a given multipartite entanglement and
mixedness a class of non-maximally-entangled mixed X
states achieves optimum controlled quantum teleportation
fidelity. At the same time, investigation on X -MEMS as a
resource for CQT proved that tripartite maximally entangled
mixed states fail to attain optimum teleportation fidelity.
From our investigation on X -NMEMS, we showed that the
class of biseparable X -NMEMS can also be considered as
a potential candidate for CQT, since it gives high con-
trolled quantum teleportation fidelity for highly mixed cases.
These results hold true for different measures of multipartite
entanglement.
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