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Extending matchgates to universal quantum computation via the Hubbard model
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Quantum circuits solely comprising matchgates can perform nontrivial (but nonuniversal) quantum al-
gorithms. Because matchgates can be mapped to noninteracting fermions, these circuits can be efficiently
simulated on a classical computer. Universal quantum computation is attainable by adding any nonmatchgate
parity-preserving gate, from which one may infer that interacting fermions are natural candidates for universal
quantum computation. We consider the quantum computational power of fermions hopping on a one-dimensional
double-well lattice within the context of matchgates. In particular, we show that universal quantum computation
can be implemented using spinless (spin-polarized) fermions and nearest-neighbor interactions, as well as
with spin-half fermions with on-site interactions (i.e., the Hubbard model). We suggest that these schemes are
currently within reach in the context of ultracold atomic gases.
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I. INTRODUCTION

Matchgates, first proposed by Valiant, are a special class of
two-qubit quantum gates that can perform nontrivial quantum
algorithms but are not universal [1]. Quantum circuits com-
posed of these quantum gates defined in the context of graph
theory can be efficiently simulated on a classical computer if
they just act on nearest-neighbor qubits. Matchgates can be
extended to universal quantum computation (UQC) by adding
the SWAP operation [2] or any parity-preserving nonmatchgate
unitary [3].

Matchgates physically correspond to noninteracting
fermions in one dimension [4–6], implying that simulating
noninteracting fermions is also classically efficient. Indeed,
the state of noninteracting fermions is described by a determi-
nant which can be evaluated in polynomial time. The efficient
classical simulatability of noninteracting fermions remains
even with adaptive measurements of fermion occupation
[4]. Fascinatingly, encoding the quantum information in the
fermion spin while performing measurements on the spatial
locations allows for universal quantum computation [7].

These results suggest that interacting fermions could be
natural candidates for universal quantum computation. In fact,
UQC is achievable in principle with interacting Majorana
fermions [8,9]. While Majorana fermions have the advantage
of topologically protecting the quantum information from
errors, they are difficult to realize in the laboratory. So far, few
experiments have unequivocally observed Majorana fermions,
let alone control and manipulate them [10,11]. Nevertheless,
these systems hold such promise that currently there is a large
push toward their experimental realization [12].

In this work, we study the possibility of realizing UQC
with conventional interacting fermions, within the matchgate
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formalism. Conventional fermions are not topologically pro-
tected, but are much easier to confine and manipulate in
the laboratory. Due to the Pauli principle, spinless fermions
would require at least nearest-neighbor interactions; how-
ever, controlling Coulomb or dipole-dipole interactions in the
laboratory is not necessarily straightforward. We therefore
consider the Hubbard model [13], which describes spin-1/2
fermions hopping between neighboring sites of a lattice and
repulsive on-site interactions between particles with opposite
spin projection. The Hubbard model has been used to describe
a wide variety of condensed matter systems [14], with partic-
ular success in high-temperature superconductivity [15,16],
and has been recently realized experimentally by confining
ultracold fermionic atoms in optical lattices [17].

We consider a variant of the Hubbard model in a one-
dimensional double-well lattice, where qubit registers corre-
spond to the fermionic occupation of sites within a given
double well. The time evolution under local potentials and
intersite hopping effects single-qubit gates, and maps the
system to matchgate circuits. Two-qubit gates that extend the
model beyond matchgate circuits result from interactions be-
tween fermions. We first consider spinless (or spin-polarized,
single-component) fermions for simplicity. Inducing nearest-
neighbor interactions can yield two-qubit (controlled-PHASE)
gates, which elevates the matchgates to universal quantum cir-
cuits. We discuss the feasibility of implementing this strategy
with ultracold atoms in optical lattices; while most aspects
are well within reach of current experimental capability, the
requirement of inducing time-dependent nearest-neighbor in-
teractions is expected to be a challenge. We therefore consider
the Hubbard model, which features spin-half fermions and
therefore allows on-site interactions. Surprisingly, we find
that entangling gates are never possible in this model if the
hopping amplitudes are assumed to be spin independent.
Allowing spin-dependent hopping enables two-qubit gates for
a wide range of parameters. Given that spin-dependent optical
lattices have been realized experimentally in the context of
ultracold atomic gases, we expect that this approach could be a
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FIG. 1. The complete graph G and the graph G′ resulting from
deleting the omittable node T = {2}. The input and output nodes are
X = {1} and Y = {4}, respectively.

promising avenue for the realistic implementation of universal
(small-scale) quantum algorithms.

Section II reviews the definitions of matchgates and their
relationship with noninteracting fermions. Section III then
considers the power of spinless (or spin-polarized) fermions
on a double-well lattice to perform universal quantum compu-
tation with the addition of nearest-neighbor interactions, and
discusses the feasibility of implementing the procedure using
ultracold atoms in optical lattices. Given possible experimen-
tal challenges, the Hubbard model for spin-half fermions is
explored in Sec. IV, where we show that universal quantum
computation is only possible with one-dimensional lattices if
the hopping amplitudes are spin dependent.

II. REVIEW

A. Perfect matchings and matchgates

Matchgates are defined in the context of the perfect match-
ings in graph theory [1]. In a connected graph G, with an even
number 2k of vertices, a matching is perfect if it contains k
edges and these k edges share no vertices. The Pfaffian can be
defined as a sum of all the possible perfect matchings, with
each perfect matching modified by the parity of the number of
overlapping pairs.

In Fig. 1, the Pfaffian of the graph G is

Pf(G) = w14w23 + w12w34 − w13w24, (1)

where wi j is the weight assigned to the edge connecting the
nodes i and j. The negative sign in the last term of the Pfaffian
arises from the overlap of the two edges (1,3) and (2,4). The
skew-symmetric matrix B associated with A is

B =

⎛
⎜⎝

0 w12 w13 w14

−w12 0 w23 w24

−w13 −w23 0 w34

−w14 −w24 −w34 0

⎞
⎟⎠. (2)

The determinant of this matrix is

det(B) = (w14w23 + w12w34 − w13w24)2, (3)

which is the square of the Pfaffian.
Since the determinant can be computed on a classical

computer in time O(n2.373), where n is the dimension of the
matrix, the Pfaffian is also efficiently computable. If n is odd,
the corresponding Pfaffian is simply zero which could be
understood in the light of the perfect matchings: If there are
an odd number of nodes in graph then it is impossible to pair
them all.

The Pfaffian sum is defined as the sum of Pfaffians of all
possible sizes,

PfS(G) =
∑

S

Pf(G − S), (4)

where S ⊆ T , and T is a set of omittable nodes in the graph
G (the choice of T is arbitrary). In Fig. 1, choosing node 2 of
G as omittable yields graph G′ (with node 2 removed). The
Pfaffian sum of the graph G is, then,

PfS(G) = Pf(G) + Pf(G′). (5)

Evidently, Pf(G′) = 0 because it has an odd number of nodes.
The character matrix of a matchgate � is defined as

χ (�, Z ) = μ(�, Z )PfS(G′), (6)

where Z ⊆ X ∪ Y are external nodes. The input and output
nodes of the graph G are X ⊆ V,Y ⊆ V , and G′ = (V −
Z, E ′,W ′) is the graph with external nodes Z and correspond-
ing edges deleted from the graph G. The modifier μ(�, Z ) =
±1, depending on the number of overlaps between E ′ and the
external edges. In the literature, the matchgate corresponds to
the character matrix χ .

Consider again the graph G in Fig. 1. Suppose that one
chooses two external nodes, Z = {1, 4}. This might corre-
spond to a single-qubit gate, for example. Following the
previous steps, one obtains

a = χ (�,∅)

= w23w14 − w13w24 + w12w34;

b = χ (�, {1}) = w34;

c = χ (�, {4}) = w13;

d = χ (�, {1, 4}) = w23. (7)

This yields the character matrix,

χ (�, Z ) =
( ∅ 4

∅ a b
1 c d

)
. (8)

For a (larger) graph with four external nodes, a 4 by 4 char-
acter matrix or matchgate can be obtained. Satisfying Valiant’s
five identities [1], the matchgate is generally expressed as
[2,4]

G(A, B) =

⎛
⎜⎝

A11 0 0 A12

0 B11 B12 0
0 B21 B22 0

A21 0 0 A22

⎞
⎟⎠, (9)

where det(A) = det(B) and A, B ∈ U (2). Designating the
four possible inputs as {|00〉, |01〉, |10〉, |11〉}, matchgates are
a special class of two-qubit quantum gates, in which the even-
parity subspace {|00〉, |11〉} and odd-parity subspace
{|01〉, |10〉} are completely decoupled. If these two-qubit
matchgates act only on nearest-neighbor qubits, then
any quantum circuit composed of them can be efficiently
simulated classically [1].

Matchgates can generate entanglement, which implies that
quantum circuits comprising them yield classically nontrivial
states in spite of their being efficiently simulatable classi-
cally. These quantum circuits can be elevated to UQC if any
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nonmatchgate parity-preserving gate is added [2], such as
SWAP [3]. The SWAP gate G(I, X ) is not a matchgate because
det(I ) = −det(X ); it is matchgate equivalent to the maximally
entangling controlled-PHASE (CZ) gate via the transforma-
tion CZ = G(Z, I ) = G(H, H )G(X, X )G(I, X )G(H, H ). The
power of the SWAP gate in this context can be readily under-
stood by considering the fermionic representation of match-
gates, discussed in the next section.

B. Matchgates and noninteracting fermions

In quantum field theory, Wick’s theorem is frequently used
to approximate the expectation value of a string of fermionic
field operators, by reducing it to products of operator pairs:

〈0|A1...A2n|0〉 =
∑

(±1)p〈Ai1 Aj1〉...〈Ain A jn〉, (10)

where the sum runs over all possible permutations of indices
1...2n and p is the number of permutations that take 1...2n
to i1, j1...in, jn. The phase accounts for fermionic statistics.
Evidently, this expectation value is zero unless there is an
even number of operators, implying that all operators must
be perfectly matched (paired). Consider the case with four
operators:

〈A1A2A3A4〉 = 〈A1A2〉〈A3A4〉 − 〈A1A3〉〈A2A4〉
+ 〈A1A4〉〈A2A3〉, (11)

which has the same form as the Pfaffian of the graph G
[Eq. (1)]. A similar approach was used to evaluate the output
probabilities for a fermionic quantum circuit [4].

The close relationship between fermions and Pfaffians
reflects the fact that in first quantization fermionic wave func-
tions are described by Slater determinants. Indeed, it is well
understood that the classical simulation of fermionic linear
optics is efficient [4–6], in marked contrast to the bosonic case
[18].

More important for the present work, matchgates can be
directly constructed directly via noninteracting fermions. The
general number-conserving Hamiltonian for two fermionic
modes or sites is

H = −t f †
i f j − t f †

j fi − μi f †
i fi − μ j f †

j f j, (12)

where fi ( f †
i ) annihilates (creates) a fermion at site i, −t is

the amplitude to hop between the ith and jth sites (t > 0),
and μi and μ j are local chemical potentials on sites i and
j. The number conservation follows from the vanishing of
the commutator [H, n] = 0, where the total number operator
is n = f †

i fi + f †
j f j . This can be easily verified using the

fermionic algebra,

{ fi, f †
j } = δi j ; { fi, f j} = { f †

i , f †
j } = 0, (13)

where {. . . , . . .} represents an anticommutator. The complete
fermionic Fock or occupation basis for two sites corresponds
to |x1〉 = |∅〉, |x2〉 = f †

i |∅〉, |x3〉 = f †
j |∅〉, and |x4〉 = f †

i f †
j |∅〉.

The Hamiltonian is then expressed as

H =

⎛
⎜⎝

0 0 0 0
0 −μi −t 0
0 −t −μ j 0
0 0 0 −μi − μ j

⎞
⎟⎠, (14)

where each block corresponds to a fixed particle number. The
time evolution of the system under this Hamiltonian is given
by the unitary matrix,

e−iHτ =

⎛
⎜⎝

1 0 0 0
0 b22 b23 0
0 b32 b33 0
0 0 0 eit (μi+μ j )

⎞
⎟⎠, (15)

where τ is the time variable, and the middle block is the
exponential of the corresponding block in the Hamiltonian.
For this to be a matchgate, one requires

det

∣∣∣∣b22 b23

b32 b33

∣∣∣∣ = ei(μi+μ j )τ . (16)

Using Jacobi’s identity det(esB) = etr(sB), where s is a scalar
and B is a matrix, one immediately obtains

det

∣∣∣∣b22 b23

b32 b33

∣∣∣∣ = exp

[
−iτ tr

(−μi −t
−t −μ j

)]
= ei(μi+μ j )τ .

(17)

Therefore, this Hamiltonian yields a matchgate.
Consider a more general number nonpreserving Hamilto-

nian:

H ′ = H + t̃ fi f j + t̃∗ f †
j f †

i , (18)

where evidently now [H ′, n] 
= 0. In the Fock basis one ob-
tains

H ′ =

⎛
⎜⎝

0 0 0 t̃
0 −μi −t 0
0 −t −μ j 0
t̃∗ 0 0 −μi − μ j

⎞
⎟⎠, (19)

which is block diagonal with row and column permutations.
The evolution operator can then be written,

e−iH ′τ =

⎛
⎜⎝

a11 0 0 a14

0 b22 b23 0
0 b32 b33 0

a41 0 0 a44

⎞
⎟⎠. (20)

Applying Jacobi’s identity twice, one obtains

det(a) = det(b) = ei(μi+μ j )τ , (21)

which demonstrates that this gate is also a matchgate.
Quadratic Hamiltonians like Eq. (18) can always be diago-

nalized into the form,

H ′ = λic
†
i ci + λ jc

†
j c j, (22)

using a local Bogoliubov transformation of the form,

ck = αk fk + β∗
k f †

k , (23)

with λ, α, and β complex coefficients. A special choice
of these parameters corresponds to Majorana fermions,
defined by

c2i = fi + f †
i ; c2i+1 = −i( fi − f †

i ); {ck, cl} = 2δkl . (24)

These operators are Hermitian, i.e., c2i = c†
2i and c2i+1 =

c†
2i+1, so that Majorana fermions are their own antiparticles.

Noninteracting Majorana fermions are efficiently simulatable

052324-3



JIA-WEI JI AND DAVID L. FEDER PHYSICAL REVIEW A 100, 052324 (2019)

FIG. 2. The double-well lattice potential for spinless fermions.
Each successive double well contains at most one fermion. Hopping
with amplitude t is only permitted between sites of a given double
well j. Local potentials in the left (	) and right (r) sites are de-
noted by μ	 j and μr j , respectively. The nearest-neighbor interaction
strength between sites i and j is λi, j .

classically [4], a result that follows directly from the un-
derlying quadratic Hamiltonian, but the addition of quartic
interactions allow for UQC [8].

III. SPINLESS FERMIONS

A. Single-qubit operations

Given the Hamiltonian for fermions in two modes or sites,
Eq. (12), it is convenient to encode quantum information in
the odd-parity subspace of the matchgate,

|0〉L = |10〉 = f †
	 |∅〉, |1〉L = |01〉 = f †

r |∅〉, (25)

where a fermion on the left (	) and right (r) sites are encoded
as logical states |0〉L and |1〉L, respectively. This is in contrast
with previous (Majorana fermion) schemes in which the en-
coding is in the even-parity subspace [2,3]. Figure 2 depicts a
possible arrangement of qubits in a one-dimensional double-
well lattice. Each successive double-well potential contains
a single fermion and thereby encodes a qubit. The potential
barrier between double wells is assumed to be so large that no
fermionic tunneling is possible between different double-well
potentials.

Within a given double-well potential, the Hamiltonian is

H =
(−μ	 −t

−t −μr

)
, (26)

where t ∈ R stands for the hopping strength between left and
right sites, and μ	 and μr are possible local potentials. This
can be rewritten as

H = −tX + −μ	 + μr

2
Z − μ	 + μr

2
I, (27)

where X , Z , and I are Pauli matrices. Time evolution under
this Hamiltonian yields

U = exp

{
i

[
tX + μ	 − μr

2
Z + μ	 + μr

2
I

]
τ

}
. (28)

A straightforward calculation yields the explicit expression,

U = ei(μ	+μr )τ/2

{
cos(ωτ )I + i

ω
sin(ωτ )

[
tX + μ	 − μr

2
Z

]}
,

(29)

where

ω =
√

t2 +
(

μ	 − μr

2

)2

.

Combinations of these, with different choices of local po-
tentials and evolution time (fixing the intersite tunneling
amplitude t) can yield any desired single-qubit unitary gate.
Particularly useful cases correspond to t = 0,

U (t = 0) = diag(eiμ	τ , eiμrτ ), (30)

which gives a rotation around the Z axis by an angle ω =
(μr − μ	)τ/2 up to an unimportant overall phase; and to
μ	 = μr ,

U (μ	 = μr ) = eiμrτ [cos(tτ )I + i sin(tτ )X ], (31)

corresponding to a rotation around the X axis by an angle −tτ
again up to an unimportant phase.

Successive rotations around these orthogonal axes are suf-
ficient to yield any single-qubit gate. Once the desired gate is
implemented, intersite hopping is quickly quenched by adding
a strongly repulsive local potential between the two sites;
this prevents the logical qubits from undergoing any further
rotation. Likewise, all on-site potentials μi are set to zero.

B. Matchgate representation

Now that we have obtained the single-qubit Hamiltonian
required to effect arbitrary single-qubit gates, it is instructive
to explore the underlying graph that yields the same set
of matchgates. Following the discussion in Sec. II A, for a
two-input, two-output gate one requires an underlying graph
with at least six vertices. Consider therefore the six-vertex
complete graph, with edges wi j for all i 
= j ∈ {1, . . . , 6}.
Suppose that the input and output vertices correspond to {1, 2}
and {4, 5}, respectively. Given external nodes Z = {1, 2, 4, 5},
the character matrix is given by

χ (�, Z ) =

⎛
⎜⎝

∅ 1 2 1, 2
∅ a b c d
5 e f g h
4 i j k 	

4, 5 m n o p

⎞
⎟⎠. (32)

Let’s work out the values of these 16 parameters. The simp-
lest is

p = χ (�, {1, 2, 4, 5}) = w36. (33)

The next set of four can be evaluated under the assumption
that vertex 6 is omittable:

h = χ (�, {1, 2, 4}) = w35 = 0;

	 = χ (�, {1, 2, 5}) = w34 = 0;

n = χ (�, {1, 4, 5}) = w23 = 0;

o = χ (�, {2, 4, 5}) = w13 = 0, (34)
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FIG. 3. The matchgate graph representation of arbitrary single-
qubit gates. The weights of the edges depend on the specific realiza-
tion of the single-qubit operation.

where the zero values are imposed in order that the character
matrix has the form of a matchgate. With these simplifi-
cations on the edge weights, it is straightforward to ver-
ify that χ (�, {1}) = χ (�, {2}) = χ (�, {4}) = χ (�, {5}) =
b = c = e = i = 0. One may also readily obtain

d = χ (�, {1, 2}) = w45w36;

f = χ (�, {1, 5}) = w24w36;

j = χ (�, {1, 4}) = −w25w36;

g = χ (�, {2, 5}) = −w14w36;

k = χ (�, {2, 4}) = w15w36;

m = χ (�, {4, 5}) = w12w36; (35)

and

a = χ (�,∅) = (w12w45 − w14w25 + w15w24)w36. (36)

Perhaps surprisingly, the graph underlying the matchgate is
disconnected, with vertices 3 and 6 uncoupled from the re-
maining four vertices.

Comparing the matchgate expression (15) with the bi j

coefficients given by Eq. (29), one immediately obtains w45 =
w12 = 0, and w36 = ei(μ	+μr )τ/2. The underlying graph con-
nectivity is depicted in Fig. 3. While general expressions
for the remaining nonzero weights are a bit unwieldy, the
values for the Z and X rotations, Eqs. (30) and (31), respec-
tively, take simple forms. For the Z rotation, the remaining
nonzero weights reduce to w15 = eiμrτ and w24 = eiμ	τ ; the
underlying graph therefore corresponds to three disconnected
length-two paths. For the X rotation, the remaining nonzero
weights reduce to w14 = w25 = −ieiμrτ sin(tτ ) and w24 =
w15 = eiμrτ cos(tτ ).

C. Two-qubit entangling gates

Performing UQC also requires a two-qubit entangling gate.
Within the current encoding, a general two-qubit quantum
state is spanned by

|00〉L = |10〉1 ⊗ |10〉2, |01〉L = |10〉1 ⊗ |01〉2,

|10〉L = |01〉1 ⊗ |10〉2, |11〉L = |01〉1 ⊗ |01〉2,
(37)

where labelings 1 and 2 stand for logical qubits 1 and 2. Like
the scheme in Ref. [2], the two-qubit gates are applied to the
crossover sites, i.e., on sites r1 and 	2. On-site interactions are
forbidden because of the Pauli principle, so that the shortest-
range interactions possible correspond to nearest neigh-
bors. Because all intersite tunneling is quenched, the only
term in the Hamiltonian corresponds to the nearest-neighbor

interaction:

Hint =
∑

i

λi,i+1nri n	i+1 , (38)

where nri = f †
ri

fri is the number operator on the right site of
qubit i; in principle, the interaction strength λi,i+1 can depend
on the site indices. Evolution of qubits 1 and 2 under this
Hamiltonian gives

e−iHintτ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 e−iλ12τ 0
0 0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠,

(39)

if λ12τ = π . This is a nonmatchgate parity-preserving gate,
equivalent to a CZ gate under local rotations.

D. Implementation with ultracold atomic gases

This approach to universal quantum computing requires
the ability to generate double-well potentials, implement the
initial conditions, dynamically adjust the tunneling ampli-
tudes, apply local potentials, activate and deactivate nearest-
neighbor interactions, and read out the atomic positions. All
of these capabilities (among a host of others) are currently
feasible in the context of ultracold atoms [19], which makes
these systems particularly promising for the realization of
universal quantum computing. While many other experimen-
tal approaches to quantum computation show promise, in
this work we will focus on ultracold atomic environments as
experimental applications of the proposed schemes.

One-dimensional double-well lattices result when polar-
ized orthogonal optical standing waves controlled by electro-
optical modulators are overlapped [20,21]. While the first
applications of double-well potentials focused on bosons,
fermions are now routinely cooled and trapped in optical
lattices [22–24], including periodic [25,26] and double-well
[27,28] lattices in one dimension. That said, this particular
scheme is independent of the particle statistics as there is
never an opportunity for the wave functions of two or more
particles to overlap.

A key ingredient of the above scheme is the state prepa-
ration, where one spin-polarized fermion is loaded into each
double well. This can be accomplished by cooling unpolarized
interacting fermions in optical lattices, where they sponta-
neously form a Mott insulating state (i.e., with one fermion
per site) characterized by antiferromagnetic spin correlations
[17,28–31]. One spin component can then be preferentially
ejected via a global resonant laser pulse [30–32]. The remain-
ing atoms can be spin polarized using an external magnetic
field, and the initial conditions can be obtained by cooling
the fermions in the double-well lattice to its ground state. Al-
ternatively, state preparation can be effected by manipulating
atomic positions in initial random states using movable optical
tweezers [33–37].

The manipulation of the site-to-site tunneling amplitudes,
generation of local potentials, and the read-out can all be
accomplished with the same technology of local address-
ing. Site-resolved microscopy originally employed a large
numerical-aperture lens [38,39], and recent work has brought
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the spatial resolution down to approximately half of the imag-
ing laser wavelength this way [40]. More recently, techniques
borrowed from super-resolution microscopy yielded spatial
imaging resolution as small as 50 times smaller than the laser
wavelength [41,42]. The read-out of the atomic positions has
been successfully implemented in fermionic atoms such as
40K [31,43,44] and 6Li [17,28,30,45].

The last key ingredient is the inclusion of nearest-neighbor
interactions on demand. Long-range interactions can be in-
duced in ultracold atomic gases by promoting atoms to Ry-
dberg states [46–49]. Because the interaction range falls off
with distance d between atoms as d−6, the Rydberg inter-
actions can be chosen such that only nearest-neighboring
atoms are affected. Another intriguing possibility is to induce
dipole-dipole interactions via the application of external fields
[50,51]. As on-demand interactions remain experimentally
challenging in these systems, however, for the rest of this
manuscript we consider the experimentally realizable Hub-
bard model, which requires on-site interactions that are native
to ultracold atomic gases.

IV. SPIN-1/2 FERMIONS

After extending the matchgate formalism to spin-1/2
fermions by considering hopping between two sites, we show
that the inclusion of on-site interactions in the Hubbard model
breaks the matchgate paradigm. In one-dimensional systems,
we show that it is impossible to implement a universal set
of single-qubit gates if one assumes that hopping on the
lattice is independent of spin, but that spin-dependent hopping
promotes the matchgate circuits to UQC in the presence of
on-site interactions assuming the ability to adjust the local
hopping strengths and chemical potentials.

A. Extending matchgates to spin-1/2 fermions

The noninteracting Hamiltonian for spin-1/2 fermions on
a lattice is

Hhop = −
∑

〈i, j〉,σ
(ti jσ f †

iσ f jσ + H.c.) −
∑
i,σ

μiσ niσ , (40)

where 〈i j〉 denotes the inclusion of nearest neighbors only,
and niσ = f †

iσ fiσ is the number operator for a fermion with
spin σ = {↑,↓} at site i. In general, the hopping ampli-
tudes may depend on both position and spin, but hopping
accompanied by spin flips is not included. In the two-site
case where i, j = {1, 2} only, at most four fermions can be
accommodated. The number-preserving Hamiltonian is the
16-dimensional block-diagonal matrix,

Hhop = H0 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ H4, (41)

where Hk corresponds to the k-particle block, with dimension
( 4

k ). If the evolution under this Hamiltonian can also be
mapped to matchgates, one requires that

Uhop = e−iHhopτ = G↑ ⊗ G↓, (42)

where Gσ corresponds to the matchgate associated with spin
σ . This is equivalent to showing that the Hamiltonian Hhop can
be written as the Cartesian product,

Hhop = H↑ ⊗ I↓ + I↑ ⊗ H↓, (43)

FIG. 4. The double-well lattice potential for spin-half fermions.
Each successive double well contains at most one fermion with
alternating spin projection. The spin-dependent hopping amplitudes
are tσ and t̃σ for intra- and interwell hopping, respectively. Local
spin-dependent potentials are μ jσ , and on-site interactions are de-
noted by g.

which would imply

G↑ = e−iH↑τ , G↓ = e−iH↓τ . (44)

The proof that this is in fact the case is straightforward but
unwieldy, and is therefore relegated to Appendix A.

The corresponding generator of the matchgate corresponds
to two disconnected graphs, each of which is the graph
depicted in Fig. 3. This is because two sets of spatially
separated nodes and edges yields two independent matchgates
(for different spin projections), which can be written as the
form in Eq. (42). The presence of interactions between par-
ticles of opposite spin, discussed in detail below, gives rise
to additional edges between these disconnected graphs. The
resulting character matrix no longer will have the matchgate
form.

B. The Hubbard model

The Hubbard model allows for on-site interactions, which
can only occur if the fermions have a spin degree of freedom:

H = −
∑
〈i j〉,σ

(
ti jσ f †

iσ f jσ + H.c.
) −

∑
i,σ

μiσ niσ

+ g
∑

i

ni↑ni↓, (45)

where the parameter g represents the strength of on-site in-
teractions between fermions of different spin projection. In
the case where there are only two sites, the interaction term
modifies the H2, H3, and H4 blocks of the number-preserving
Hamiltonian discussed above, in Sec. IV A. As shown in
Appendix A, the presence of these terms violates the match-
gate condition for all choices of interaction strength save
g = 0. This suggests that the Hubbard model has the power
to enable the fermions to effect arbitrary quantum gates.

In this work, we will consider only one-dimensional sys-
tems. Consider the double-well lattice depicted in Fig. 4,
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inspired by the encoding scheme employed in Sec. III. The
qubits are encoded as follows:

|0〉1 = f †
1↑|∅〉; |1〉1 = f †

2↑|∅〉;
|0〉2 = f †

3↓|∅〉; |1〉2 = f †
4↓|∅〉,

(46)

where the subscripts label the qubit index. The lattice is
therefore one-quarter filled: sites 1 and 2 share one spin-up
particle, and sites 3 and 4 share one spin-down particle, as
depicted in Fig. 4. Like the spin-polarized case, high (but
adjustable) potential barriers between double wells prevent
hopping between different double wells unless demanded.
The corresponding Hamiltonian can be written,

H = −
∑
i,σ

(tσ f †
2i−1σ f2iσ + t̃σ f †

2iσ f2i+1σ + H.c.)

−
∑
i,σ

μiσ niσ + g
∑

i

ni↑ni↓, (47)

where tσ and t̃σ are the (potentially spin-dependent) hopping
amplitudes within sites of a double well and between wells,
respectively.

As each qubit is encoded by the presence or absence of a
single fermion in a given double well, to perform single-qubit
gates one can neglect hopping between adjacent double-well
potentials and set t̃ = 0. Under this condition, particles with
different spin projection will never occupy the same site and
the interaction term can also be neglected. Single-qubit gates
are then implemented in precisely the same way for each sep-
arate double-well potential as in the spinless (spin-polarized)
case treated in Sec. III A.

1. Spin-independent lattice

In order to utilize the on-site interaction to generate two-
qubit gates, we must allow hopping of spin-up and spin-down
fermions between adjacent double wells that were initially
separated by the high potential barrier. The encoding of
quantum information in the system could be disrupted if these
two qubits fail to return to their previous positions; this is a
key constraint that needs to be satisfied in the current scheme.
As discussed in this subsection, this constraint is impossible

to satisfy under the assumption that the hopping between
adjacent double wells is independent of spin.

The approach to generate an entangling gate between two
nearest-neighbor fermionic qubits works as follows: Turn on
the hopping between these two qubits for a certain amount of
time, during which they pick up a phase and also return to
where they start. Given the initial two-qubit state,

|ψ0〉 = (α|1↑〉 + β|2↑〉)(γ |3↓〉 + δ|4↓〉), (48)

the goal is to produce the following state:

|ψ〉 = αγ |1↑3↓〉 + αδ|1↑4↓〉 + βγ eiθ |2↑3↓〉
+βδ|2↑4↓〉

= αγ |00〉L + αδ|01〉L + βγ eiθ |10〉L + βδ|11〉L, (49)

where the two-qubit state becomes entangled as long as
θ 
= 2πn. In principle, the phase term could be located on
any of the basis states, but the |2↑3↓〉 = |10〉L is the most
natural if hopping is induced between sites 2 and 3. With
θ = π , the entangling gate is equivalent to CZ under local
unitaries, and could therefore also readily generate SWAP gates
to induce entanglement between distant encoded qubits. For a
spin-independent lattice, the hopping strengths in Eq. (47) are
independent of spin, {tσ , t̃σ } → {t, t̃}.

In the simplest model, intrawell hopping is turned off and
the qubits’ states are frozen by raising the barrier between
sites 1 and 2, and between sites 3 and 4. Then hopping
between sites 2 and 3 is enabled by lowering this potential
barrier. As only states involved with sites 2 and 3 are affected,
the target state and the Hamiltonian can be characterized by
the number of particles on these sites:

|ψ〉 = αγ |1↑3↓〉︸ ︷︷ ︸
one-body

+αδ|1↑4↓〉︸ ︷︷ ︸
vacuum

+βγ |2↑3↓〉︸ ︷︷ ︸
two-body

+ βδ|2↑4↓〉︸ ︷︷ ︸
one-body

, (50)

and

H = H0b ⊕ H1b ⊕ H2b, (51)

where the submatrices have labels nb which stand for “number
of bodies” and are given by

H0b = (0);

H1b =

⎛
⎜⎝

−μ2 −t̃ 0 0
−t̃ −μ3 0 0
0 0 −μ2 −t̃
0 0 −t̃ −μ3

⎞
⎟⎠

|2↑〉
|3↑〉
|2↓〉
|3↓〉

,

H2b =

⎛
⎜⎝

−2μ2 + g −t̃ −t̃ 0
−t̃ −μ2 − μ3 0 −t̃
−t̃ 0 −μ2 − μ3 −t̃
0 −t̃ −t̃ −2μ3 + g

⎞
⎟⎠

|2↑2↓〉
|2↑3↓〉
|3↑2↓〉
|3↑3↓〉

, (52)

where t̃ = t̃23 = t̃32 is the hopping amplitude for both spin-
up and down fermions at sites 2 and 3. The states are shown
explicitly for convenience.

The input quantum state (50) requires that the time evo-
lution apply the identity to the zero and one-body matrices
but a nontrivial phase to the two-body term. Because the
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two submatrices in H1b are exactly the same, one only need
consider one 2 × 2 matrix. Choosing t̃ as the energy scale, the
time evolution of the one-body term becomes

U1b = exp

[
i

(
μ̃2 1
1 μ̃3

)
τ̃

]
, (53)

where μ̃i = μi/t̃ and τ̃ = τ/t̃ . With the restriction that the
(1,1) and (4,4) matrix elements of U1b must have unit norm,
one obtains

U1b = (−1)n exp

[
−inπ

μ̃2 + μ̃3√
4 + (μ̃2 − μ̃3)2

]
I (54)

for τ̃ = 2πn/
√

4 + (μ̃2 − μ̃3)2. For n = 1, the condition that
U1b = I requires μ̃3 = 1/μ̃2, while n = 2 yields μ̃3 = −μ̃2;
larger values of n yield more complicated (but not very
insightful) expressions for μ̃3 in terms of n and μ̃2.

This leaves two adjustable parameters (g̃ = g/t̃ and μ̃2) in
H2b. One need only consider the (2,2) element of the unitary
U2b = exp(−iH2bτ ), as no other two-body states appear in
Eq. (50). After evolution time τ̃ this element must have both
a nontrivial phase and unit norm to ensure that none of the
quantum information has leaked to a noncoding space. The
analytics are unwieldy, so we present instead a numerical
analysis for specific choices of g̃ and μ̃2 for the specific case
μ̃3 = 1/μ̃2. The numerical results can be found in Table I
in Appendix B. It is clear that the only case where the
(2,2) matrix element has unit norm corresponds to g̃ = 0 and
therefore zero phase: no entanglement can be generated in
the absence of particle interactions. For the case μ̃3 = −μ̃2,
there is again no nonzero value of g̃ for which the (2,2)
norm is unitary with a nontrivial phase. Perhaps surprisingly, a
nontrivial interaction strength g̃ = 3 nevertheless yields U2b =
I for μ̃2 = μ̃3 = 0 and an evolution time of τ̃ = 2π .

The restriction of zero phases on both one-body terms is
perhaps too strong. One can instead suppose that accumulated
phases on these terms could work with the two-body term to
nevertheless yield an entangling gate while preserving the unit
norms on the diagonals of the one-body unitaries. Keeping
these phases, we also numerically analyze U2b (using the
appropriate relationships between μ2 and μ3). Unfortunately,
the same conclusion is reached as above: No nonzero value
of g can yield an entangling gate. This failure is readily ex-
plained; on-site phases from one-body terms can be generated
only by controlling the local potentials at sites 2 and 3, which
clearly has no power to entangle qubits because entanglement
is impervious to local operations.

In light of the fact that local potentials fail to generate
entanglement, a full analytical calculation can be obtained
without loss of generality by considering only the μ̃2 = μ̃3 =
0 case. The minimum evolution time is then τ̃ = π , and the
(2,2) element of U2b becomes

U2b(2, 2) = e− i
2 (g̃+

√
16+g̃2 )π

4
√

16 + g̃2

[
(−1 + ei

√
16+g̃2π )g̃

+ (1 + ei
√

16+g̃2π + 2e
i
2 (g̃+

√
16+g̃2 )π )

√
16 + g̃2

]
.

(55)
The goal is to make this entry a phase; this is true only when
the following criteria are satisfied:

ei
√

16+g2π = 1, e
i
2 (g+

√
16+g2 )π = 1. (56)

Unfortunately, the resulting phase e− i
2 (g+

√
16+g2 )π = 1. This

agrees with the numerical calculation discussed above. These
two equations can be solved for the on-site interaction g:

1
2 (g̃ +

√
16 + g̃2) = 2m,

√
16 + g̃2 = 2n, m, n ∈ Z. (57)

Thus, the on-site interaction is found to be g̃ = 4m − 2n,
where the integers m, n satisfy n = m + 1

m . The only solution
here is that m = 1, n = 2, which gives us g = 0. Again, this
analytical result agrees with the numerical result in Appendix
B.

Thus far, the analysis has been restricted to hopping be-
tween sites 2 and 3. It is reasonable to test the effect of adding
hopping between sites 1 and 2 (or its symmetric counterpart
sites 3 and 4) to check if this helps in generating entanglement.
In this case, the general quantum state becomes

|ψ〉 = αγ |1↑3↓〉︸ ︷︷ ︸
two-body

+αδ|1↑4↓〉︸ ︷︷ ︸
one-body

+βγ |2↑3↓〉︸ ︷︷ ︸
two-body

+ βδ|2↑4↓〉︸ ︷︷ ︸
one-body

, (58)

which is the same as the state (50), but now the fermion
occupation has changed. Unfortunately, as fermionic hopping
is a local operation that maps to matchgates, adding new
hopping cannot generate any entanglement.

2. Spin-dependent lattice for two-qubit gates

Given the failure of a spin-independent Hubbard Hamilto-
nian to generate entanglement, consider now a spin-dependent
lattice model. In this case, the matrices become H0b = (0) and

H1b =

⎛
⎜⎝

−μ2↑ −t̃↑ 0 0
−t̃↑ −μ3↑ 0 0

0 0 −μ2↓ −t̃↓
0 0 −t̃↓ −μ3↓

⎞
⎟⎠; H2b =

⎛
⎜⎝

−μ2↑ − μ2↓ + g −t̃↓ −t̃↑ 0
−t̃↓ −μ2↑ − μ3↓ 0 −t̃↑
−t̃↑ 0 −μ2↓ − μ3↑ −t̃↓

0 −t̃↑ −t̃↓ −μ3↑ − μ3↓ + g

⎞
⎟⎠.

(59)

Because the hopping strengths between sites 2 and 3 and the
local potentials at sites 2 and 3 can be controlled separately for
spins ↑ and ↓ by assumption, consider the simplest nontrivial

configuration of parameters:

t̃↑ = μ2↑ = μ2↓ = μ3↑ = μ3↓ = 0. (60)
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This choice implies zero hopping for spin ↑ and no local
potentials, keeping only hopping for spin ↓ and the on-
site interaction g. The one-body terms impose the constraint
τ̃ = 2πn/t̃↓, n ∈ Z. Again enforcing unit norm on the (2,2)
matrix element of the two-body unitary, one obtains g =√

m2 − 4nt̃↓/n, |m| � 2|n|, or a phase of (−1)me±iπ
√

m2−4n2
.

This is a nontrivial phase, and therefore entanglement is
possible for a spin-dependent lattice.

Ideally, for a (local-unitary equivalent) CZ gate, one would
like m ± √

m2 − 4n2 = 2k + 1 to hold. Unfortunately, this
is impossible; expanding the two sides of this equation and
rearranging them, one obtains

4km + 2m − 4k − 1
?= 4n2 + 4k2. (61)

Unfortunately, this equality can never be satisfied as the left
side is always odd while the right side is even. That said,
with a judicious parameter set it is possible to achieve a phase
that is arbitrarily close to an odd multiple of π . For example,
{n, m} = {6, 72} gives a phase of approximately 142.993π ,
or a coefficient of −0.9998 + 0.0221i. These choices require
the physical parameters τ = 12π/t̃↓ and g ≈ 11.83t̃↓. More
accurate approximations to the phase would require longer
evolution times.

Because entanglement can already be generated in the
spin-dependent lattice with minimal parameters, it is con-
ceivable that the addition of local potentials can change the
value of the phase. While local potentials cannot produce
entanglement on their own if interactions are unable to do so,
in principle local potentials could change the magnitude of
entanglement generated by interactions. Consider instead the
following parameters:

t̃↑ = μ2↑ = μ3↑ = μ3↓ = 0, (62)

while μ2↓ 
= 0. Choosing t̃↓ as the energy scale, the require-
ment that the (3,3) and (4,4) matrix elements of the one-body
unitary have unit norm yields the condition,

τ̃

2

√
μ̃2

2↓ + 4 = 2kπ, k ∈ N. (63)

Thus, setting

τ̃ = 4kπ√
μ̃2

2↓ + 4
(64)

gives U1b = I ⊕ ei2πkμ̃2↓/
√

4+μ̃2
2↓ I .

Next consider the two-particle unitary. The relevant (2,2)
matrix element can be made a pure phase term,

U2b(2, 2) = ei2πkμ̃2↓/
√

4+μ̃2
2↓ (−1)ne−i2πkg̃/

√
4+μ̃2

2↓ , (65)

if

2πk
√

4 + (g̃ − μ̃2↓)2√
4 + μ̃2

2↓
= πn, n ∈ N. (66)

Note that the first term in Eq. (65) is the same as the one-body
term. For the remaining terms to equal negative unity (with an

eye on producing a gate equivalent to a CZ), one can choose

g̃ =
(n − 1)

√
4 + μ̃2

2↓
2k

. (67)

The state then becomes

|ψ〉 = ei2πkμ̃2↓/
√

4+μ̃2
2↓αγ |1↑3↓〉 + αδ|1↑4↓〉

− ei2πkμ̃2↓/
√

4+μ̃2
2↓βγ |2↑3↓〉 + βδ|2↑4↓〉. (68)

Inserting the expression for the interaction strength, Eq. (67),
into Eq. (66) allows for the determination of the local poten-
tial:

μ̃2↓ = ± 2(2n − 1 − 4k2)√
(4k2 − 1)[(2n − 1)2 − 4k2]

, (69)

which requires n > k. In turn this yields the interaction
strength:

g̃ = 4(n − 1)2√
(4k2 − 1)[(2n − 1)2 − 4k2]

. (70)

Finally, the state becomes

|ψ〉 = e±iπ (2n−1−4k2 )/2(n−1)αγ |1↑3↓〉 + αδ|1↑4↓〉
− e±iπ (2n−1−4k2 )/2(n−1)βγ |2↑3↓〉 + βδ|2↑4↓〉

= iαγ |1↑3↓〉 + αδ|1↑4↓〉 − iβγ |2↑3↓〉
+βδ|2↑4↓〉 (71)

for the simple case k = 1 and n = 2 and μ̃2↓ > 0; one also
obtains the parameters μ̃2↓ = 2/

√
15, g̃ = 4/

√
15, and τ̃ =√

15π/2.
The additional factors of i in the expression for the state,

Eq. (71), can be eliminated by noticing that they are common
to states with spin-down on site 3. Turning off all hopping and
adding only a local potential μ̃3↓ yields an additional phase
of e−iμ̃3↓ τ̃ ′

on all states with support on site 3. Setting τ̃ ′ =
3π/2μ̃3↓ cancels all unwanted phases, and one is left with the
state,

|ψ〉 = αγ |1↑3↓〉 + αδ|1↑4↓〉 − βγ |2↑3↓〉
+βδ|2↑4↓〉, (72)

where a CZ gate (modulo local unitaries) has been performed.
This scheme hinges on the ability to allow one spin com-

ponent to hop while preventing the other component from
doing so. In fact, such spin-dependent hopping has been
realized in ultracold atomic gases [52,53]. Together with the
technology discussed in detail in Sec. III D, these systems
provide all of the requirements to perform universal quantum
gates.

V. CONCLUSIONS

Through the investigation of Hamiltonians that are within
the family of (fermionic) Hubbard models, a universal set of
quantum gates can be generated making use of a specially
prepared one-dimensional lattice. In the spinless case, the
standard matchgates are elevated to a universal gate set via
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the interaction of fermions on nearest-neighbor sites. In the
spin-1/2 case, the single-qubit gates fall under an extension
of the set of matchgates, where the logical qubits are encoded
in the odd-parity subspace. These generalized matchgates
are promoted to universality via the physical interaction be-
ween fermions of opposite spin on a single lattice site, but
controlled-PHASE gates are realizable only if the hopping
strength can depend on the spin projection. Implementations
for both the spinless and spin-1/2 cases are suggested in the
context of ultracold atoms in optical lattices and optical trap
arrays.

ACKNOWLEDGMENTS

We thank Simon Apers for the interesting discussions at
the early stage of this work. This work was supported by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

APPENDIX A: NONINTERACTING SPIN-1/2 FERMIONS
YIELD MATCHGATES

Consider the specific form of H↑ ⊗ I↓ and I↑ ⊗ H↓ for
spin-1/2 fermions hopping between two sites:

H↑ ⊗ I↓ =

⎛
⎜⎝

0 0 0 0
0 −μ1↑ −t1↑2↑ 0
0 −t2↑1↑ −μ2↑ 0
0 0 0 −μ1↑ − μ2↑

⎞
⎟⎠ ⊗

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (A1)

and

I↑ ⊗ H↓ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ⊗

⎛
⎜⎝

0 0 0 0
0 −μ1↓ −t1↓2↓ 0
0 −t2↓1↓ −μ2↓ 0
0 0 0 −μ1↓ − μ2↓

⎞
⎟⎠. (A2)

The hopping Hamiltonian Hhop = H↑ ⊗ I↓ + I↑ ⊗ H↓ then becomes

Hhop = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 μ1↓ t↓ 0 0 0 0 0 0 0
0 t↓ μ2↓ 0 0 0 0 0 0 0
0 0 0 μ1↓ + μ2↓ 0 0 0 0 0 0
0 0 0 0 μ1↑ 0 0 0 t↑ 0
0 0 0 0 0 μ1↓ + μ1↑ t↓ 0 0 t↑
0 0 0 0 0 t↓ μ1↑ + μ2↓ 0 0 0
0 0 0 0 0 0 0 μ1↓ + μ2↓ + μ1↑ 0 0
0 0 0 0 t↑ 0 0 0 μ2↑ 0
0 0 0 0 0 t↑ 0 0 0 μ1↓ + μ2↑
0 0 0 0 0 0 t↑ 0 0 t↓
0 0 0 0 0 0 0 t↑ 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

· · ·

· · ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
t↑ 0 0 0 0 0
0 t↑ 0 0 0 0
0 0 0 0 0 0
t↓ 0 0 0 0 0

μ2↓ + μ2↑ 0 0 0 0 0
0 μ1↓ + μ2↓ + μ2↑ 0 0 0 0
0 0 μ1↑ + μ2↑ 0 0 0
0 0 0 μ1↓ + μ1↑ + μ2↑ t↓ 0
0 0 0 t↓ μ2↓ + μ1↑ + μ2↑ 0
0 0 0 0 0 μ1↓ + μ2↓ + μ1↑ + μ2↑

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= −(0) ⊕
(

μ1↓ t↓
t↓ μ2↓

)
⊕

(
μ1↑ t↑
t↑ μ2↑

)
⊕ (μ1↓ + μ2↓) ⊕

⎛
⎜⎝

μ1↓ + μ1↑ t↓ t↑ 0
t↓ μ1↑ + μ2↓ 0 t↑
t↑ 0 μ1↓ + μ2↑ t↓
0 t↑ t↓ μ2↓ + μ2↑

⎞
⎟⎠

⊕ (μ1↑ + μ2↑) ⊕
(

μ1↓ + μ2↓ + μ1↑ t↑
t↑ μ1↓ + μ2↓ + μ2↑

)
⊕

(
μ1↓ + μ1↑ + μ2↑ t↓

t↓ μ2↓ + μ1↑ + μ2↑

)
⊕ (μ1↓ + μ2↓ + μ1↑ + μ2↑), (A3)

where the last expression follows from row and column permutations. It is clear that this corresponds exactly to the block-
diagonal representation of the k-particle Hamiltonian,

H = (−t↑c†
2↑c1↑ − t↓c†

2↓c1↓ + H.c.) − μ↑(n1↑ + n2↑) − μ↓(n1↓ + n2↓), (A4)

for 0 � k � 4, assuming that basis states are defined as |n1↑n2↑n1↓n2↓〉 with niσ ∈ {0, 1}. Note that the k-particle blocks
themselves decompose into {1, 2, 3, 2, 1} smaller blocks for k = 0, . . . , 4.

In the presence of on-site interactions, the two-particle Hamiltonian,

H = (−t↑c†
2↑c1↑ − t↓c†

2↓c1↓ + H.c.) − μ↑(n1↑ + n2↑) − μ↓(n1↓ + n2↓) + g(n1↓n1↑ + n2↓n2↑), (A5)

takes the block-diagonal form:

Htot = −(0) ⊕
(

μ1↓ t↓
t↓ μ2↓

)
⊕

(
μ1↑ t↑
t↑ μ2↑

)
⊕ (μ1↓ + μ2↓) ⊕

⎛
⎜⎝

g + μ1↓ + μ1↑ t↓ t↑ 0
t↓ μ1↑ + μ2↓ 0 t↑
t↑ 0 μ1↓ + μ2↑ t↓
0 t↑ t↓ g + μ2↓ + μ2↑

⎞
⎟⎠

⊕ (μ1↑ + μ2↑) ⊕
(

g + μ1↓ + μ2↓ + μ1↑ t↑
t↑ g + μ1↓ + μ2↓ + μ2↑

)
⊕

(
g + μ1↓ + μ1↑ + μ2↑ t↓

t↓ g + μ2↓ + μ1↑ + μ2↑

)
⊕ (2g + μ1↓ + μ2↓ + μ1↑ + μ2↑). (A6)

Assuming the interacting Hamiltonian has the matchgate
form, the total Hamiltonian must be able to be expressed as
Htot = H ′

↑ ⊗ I↓ + I↑ ⊗ H ′
↓, where

H ′
σ =

⎛
⎜⎝

0 0 0 0
0 k1σ k2σ 0
0 k2σ k3σ 0
0 0 0 k1σ + k3σ

⎞
⎟⎠, (A7)

where σ ∈ {↑,↓} and kiσ are arbitrary parameters. Compari-
son with Eq. (A6) implies that kiσ = g + μiσ and simultane-
ously kiσ = μiσ for i = 1, 2, which is possible only if g = 0.
That said, the matchgate criterion is less restrictive, requiring
only that e−iHtotτ = G′

↑ ⊗ G′
↓ for some choice of parameters

g and t . The last block in Eq. (A6) imposes the constraint
2gτ = 2πn, while the second-to-last and third-to-last blocks
impose gτ = 2πm, with integer m, n; the second condition
evidently supersedes the first, so that g = 2πm/τ . It remains
only to determine if there exist specific values of τ for which
the exponentiation of the fifth block in Eq. (A6) yields the
same matrix as when g = 0, and it is straightforward to verify
that this is not possible for any choice of the remaining
parameters.

APPENDIX B: NUMERICAL RESULTS FOR THE
HUBBARD MODEL WITH SPIN-INDEPENDENT HOPPING

TABLE I. The phase and norm of the two-body term |2↑3↓〉 in Eq. (50), not including the state-dependent βγ contribution, for spin-half
fermions in the Hubbard model with spin-independent hopping.

μ̃2 g̃ Density Phase(π ) μ̃2 g̃ Density Phase(π ) μ̃2 g̃ Density Phase(π )

0.1 −1.0 0.993012 0.00745759 0.4 −0.2 0.980642 0.0421786 0.7 0.6 0.73859 −0.163649
0.1 −0.8 0.995521 0.00598884 0.4 0.0 1.0 0.0 0.7 0.8 0.577803 −0.212813
0.1 −0.6 0.997477 0.00450487 0.4 0.2 0.980642 −0.0421786 0.8 −1.0 0.460391 0.245466
0.1 −0.4 0.998878 0.00300953 0.4 0.4 0.924252 −0.0842184 0.8 −0.8 0.614348 0.20292
0.1 −0.2 0.999719 0.00150665 0.4 0.6 0.835698 −0.125969 0.8 −0.6 0.76334 0.155565
0.1 0.0 1.0 0.0 0.4 0.8 0.722508 −0.167257 0.8 −0.4 0.888006 0.10518
0.1 0.2 0.999719 −0.00150665 0.4 1.0 0.59407 −0.20786 0.8 −0.2 0.970922 0.0530067
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TABLE I. (Continued).

μ̃2 g̃ Density Phase(π ) μ̃2 g̃ Density Phase(π ) μ̃2 g̃ Density Phase(π )

0.1 0.4 0.998878 −0.00300953 0.5 −1.0 0.465361 0.258526 0.8 0.0 1.0 0.0
0.1 0.6 0.997477 −0.00450487 0.5 −0.8 0.622976 0.209325 0.8 0.2 0.970922 −0.0530067
0.1 0.8 0.995521 −0.00598884 0.5 −0.6 0.771225 0.158276 0.8 0.4 0.888006 −0.10518
0.1 1.0 0.993012 −0.00745759 0.5 −0.4 0.892651 0.106076 0.8 0.6 0.76334 −0.155565
0.2 −1.0 0.921425 0.0494269 0.5 −0.2 0.972273 0.0531965 0.8 0.8 0.614348 −0.20292
0.2 −0.8 0.949163 0.039883 0.5 0.0 1.0 0.0 0.8 1.0 0.460391 −0.245466
0.2 −0.6 0.971164 0.0301065 0.5 0.2 0.972273 −0.0531965 0.9 −1.0 0.500339 0.240856
0.2 −0.4 0.987107 0.0201618 0.5 0.4 0.892651 −0.106076 0.9 −0.8 0.648705 0.196998
0.2 −0.2 0.996765 0.0101078 0.5 0.6 0.771225 −0.158276 0.9 −0.6 0.787354 0.149939
0.2 0.0 1.0 0.0 0.5 0.8 0.622976 −0.209325 0.9 −0.4 0.900398 0.100902
0.2 0.2 0.996765 −0.0101078 0.5 1.0 0.465361 −0.258526 0.9 −0.2 0.974303 0.050716
0.2 0.4 0.987107 −0.0201618 0.6 −1.0 0.406373 0.267638 0.9 0.0 1.0 0.0
0.2 0.6 0.971164 −0.0301065 0.6 −0.8 0.572701 0.220232 0.9 0.2 0.974303 −0.050716
0.2 0.8 0.949163 −0.039883 0.6 −0.6 0.736422 0.168184 0.9 0.4 0.900398 −0.100902
0.2 1.0 0.921425 −0.0494269 0.6 −0.4 0.874832 0.113396 0.9 0.6 0.787354 −0.149939
0.3 −1.0 0.764985 0.126308 0.6 −0.2 0.967436 0.0570528 0.9 0.8 0.648705 −0.196998
0.3 −0.8 0.844452 0.101833 0.6 0.0 1.0 0.0 0.9 1.0 0.500339 −0.240856
0.3 −0.6 0.910196 0.0768075 0.6 0.2 0.967436 −0.0570528 1.0 −1.0 0.514615 0.239762
0.3 −0.4 0.959339 0.0514022 0.6 0.4 0.874832 −0.113396 1.0 −0.8 0.661186 0.195256
0.3 −0.2 0.989721 0.0257586 0.6 0.6 0.736422 −0.168184 1.0 −0.6 0.796175 0.148144
0.3 0.0 1.0 0.0 0.6 0.8 0.572701 −0.220232 1.0 −0.4 0.904983 0.0994785
0.3 0.2 0.989721 −0.0257586 0.6 1.0 0.406373 −0.267638 1.0 −0.2 0.975559 0.0499368
0.3 0.4 0.959339 −0.0514022 0.7 −1.0 0.415927 0.255948 1.0 0.0 1.0 0.0
0.3 0.6 0.910196 −0.0768075 0.7 −0.8 0.577803 0.212813 1.0 0.2 0.975559 −0.0499368
0.3 0.8 0.844452 −0.101833 0.7 −0.6 0.73859 0.163649 1.0 0.4 0.904983 −0.0994785
0.3 1.0 0.764985 −0.126308 0.7 −0.4 0.8755 0.110827 1.0 0.6 0.796175 −0.148144
0.4 −1.0 0.59407 0.20786 0.7 −0.2 0.96755 0.0558974 1.0 0.8 0.661186 −0.195256
0.4 −0.8 0.722508 0.167257 0.7 0.0 1.0 0.0 1.0 1.0 0.514615 −0.239762
0.4 −0.6 0.835698 0.125969 0.7 0.2 0.96755 −0.0558974
0.4 −0.4 0.924252 0.0842184 0.7 0.4 0.8755 −0.110827
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