
PHYSICAL REVIEW A 100, 052322 (2019)
Editors’ Suggestion

Entanglement improvement via a quantum scissor in a realistic environment
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We propose a protocol for improving quantum entanglement based on a quantum scissor scheme [D. T. Pegg
et al., Phys. Rev. Lett. 81, 1604 (1998)]. Compared to existing protocols for entanglement improvement, our
scheme does not require biside operation on two-mode squeezed vacuum states. This greatly enhances the
success probability as well as entanglement, while reducing the resources. A squared gain factor can be obtained
from our scheme. In addition, our scheme is robust against the decoherence when considering more realistic
cases. Finally, a comparison between the single-side quantum scissor scheme and the single-side quantum
catalysis is also investigated.
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I. INTRODUCTION

Quantum entanglement plays a central role in the fields
of quantum information and quantum computation [1,2].
However, how to protect or enhance entanglement when it
comes to realistic situations is still a challenging problem. The
entanglement cannot be improved by local Gaussian unitary
operation due to the limitation of the no-go theorem [3–5].
However, many schemes using local non-Gaussian operation
are proposed theoretically and experimentally [6–25]. For
example, the entanglement in the continuous-variable two-
mode squeezed vacuum state (TMSVS) can be improved
by applying photon addition and subtraction to one or both
modes. Photon catalysis offers another scheme for the en-
tanglement enhancement where non-Gaussian operations can
be implemented using a photon number state as the input
of a beam splitter. Quantum catalysis has been shown as a
method to accomplish noiseless linear amplification (NLA)
[26–28] and coherence enhancement [29], and to improve
the performance of quantum key distribution [30]. All of
these non-Gaussian operations, which can be implemented
using the number state as the input of a beam splitter, are
probabilistic. Thus, from the point of operation, the success
probability of such events should be taken into account.

In this paper, we introduce a scheme based on the quantum
scissor idea that not only improves entanglement but with
less resources and higher success probability compared to
the existing schemes. The enhancement of amplification is
verified, using a single-side modified quantum scissor, for a
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single-mode coherent state and two-mode squeezed vacuum.
We further propose a more realistic scenario by replacing
the ideal single-photon state and photon detectors with the
heralded single-photon state and on-off photon detectors.
We show that an overall improvement can still be accom-
plished by single-side operation even when both modes of the
TMSVS pass through the lossy channels.

This paper is organized as follows. In Sec. II, we introduce
the modified quantum scissor model and derive analytically
the general input-output relation using operator formalism for
any input state. We demonstrate that a squared gain factor
can be obtained for coherent-state input compared to the
original scheme. In Sec. III, we apply a single-side and biside
quantum scissor device to both one mode and two modes
of the TMSVS, respectively. A comparison is made with
respect to the entanglement enhancement and corresponding
success probability. In Sec. IV, we further consider the realis-
tic TMSVS and ideal quantum scissor device. In Sec. V, we
discuss a more realistic scenario: a realistic quantum scissor
device applied to a realistic TMSVS. We summarize our
results in Sec. VI.

II. MODEL OF QUANTUM SCISSOR AND
ITS CORRESPONDING OPERATOR

In this section, we first examine the quantum scissor from
the operator point of view. As shown in Fig. 1, the quantum
scissor device consists of two beam splitters (denoted as BSac

and BSbc) and two ideal single-photon detectors (denoted by
D1 and D2). The transmission coefficients of the two beam
splitters are Tac and Tbc. The single-photon state |1〉b and
vacuum state |0〉c are fed into the two input ports of an asym-
metrical beam splitter (BSbc) to generate an entangled state.
Thus, the input mode a for the input state ρin is combined
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FIG. 1. Quantum scissors scheme for any input state ρin. The
effect will convert any input state into an output state in a Fock space
spanned by both a vacuum and single photon. The beam splitters
(BSac and BSbc) are asymmetrical with transmission coefficient Tac

and Tbc, respectively. The relation between the output and input states
can be described by an operator Mab.

with mode c in the second asymmetrical BSac (Tac). In the
original scheme [26,31], the quantum scissor device consists
of a symmetrical (Tac = 1/2) and an asymmetrical (Tbc) beam
splitter. The expected output state can be heralded success-
fully when two detectors D1 and D2 register (1,0) at modes a
and c, respectively, since the output state is conditioned on the
measurement results of the two detectors D1 and D2, which is
in some sense similar to quantum teleportation. If the quantum
scissor protocol is used for quantum teleportation in a distant
place, a classical communication channel is needed. However,
if it is used for quantum entanglement improvement in a local
place, a classical communication channel is not needed.

For any pure input state ρin = |ψ〉in,in〈ψ |, the output state
|ψ〉out can be given by

|ψ〉out = 1√
pd

Mab|ψ〉in, (1)

where pd is the success probability of such an event, and
Mab is a kind of projective measurement corresponding to
the quantum-scissor operation in the dashed box in Fig. 1,
which is an operator for input mode a and final output mode
b. Mathematically, Mab can be represented as

Mab = c〈0|a〈1|BacBbc|1〉b|0〉c , (2)

where Bkl = exp[θ (a†
kal − a†

l ak )] are the unitary operators
coupling both k and l modes by a beam splitter, and the
transmission coefficient Tkl = cos2 θ . Here, a†

k (ak ) and a†
l (al )

are the creation (annihilation) operators for the k and l modes,
respectively.

In order to see the operation of the quantum scissor device,
we consider the following transformation relations [32]:

Bkl

(
ak

al

)
B†

kl =
(√

Tkl −√
Rkl√

Rkl
√

Tkl

)(
ak

al

)
, (3)

B†
kl

(
ak

al

)
Bkl =

( √
Tkl

√
Rkl

−√
Rkl

√
Tkl

)(
ak

al

)
, (4)

and Bkl |00〉 = |00〉, where Rkl = 1 − Tkl denotes the re-
flectance coefficient of the beam splitter. After some algebraic
manipulations, it follows from Eq. (2) that

Mab = −√
RacRbc|0〉b,a〈0| + √

TacTbc|1〉b,a〈1|. (5)

Here, we notice that the sign of the first term in Eq. (5) can
be changed by simply choosing which beam splitter to deal
with. For instance, if we take Bac = exp[θ (ac† − a†c)], then
Eq. (5) becomes Mab = √

RacRbc|0〉b,a〈0| + √
TacTbc|1〉b,a〈1|.

It is clear that the operator Mab in Eq. (5) can be considered
as a projection operator, which is composed of a vacuum
state and a single-photon state. Thus, any input pure state
going through the quantum scissor device is truncated into the
superposition of the vacuum state and the single-photon state.
For instance, when considering the coherent state as an input
|α〉 = e−|α|2/2∑∞

n=0 αn/
√

n!|n〉, we have

|ψ〉out → |0〉b − gα|1〉b � |gα〉b, g =
√

TacTbc

RacRbc
. (6)

In particular, when Tac = 1/2, Tbc = T , the gain factor is g0 =√
T/(1 − T ). This result is also obtained in Refs. [26,31]. It

is interesting to notice that when these two BSs are asymmet-
rical, say Tac = Tbc = T , then g = T/(1 − T ) = g2

0, i.e., we
have a squared gain compared to the original scheme [26,31].
This indicates that using two asymmetrical beam splitters can
further enhance the amplification.

For any input mixed state ρin, Eq. (1) becomes

ρout = 1

pd
MabρinM†

ab

= 1

pd

{
RacRbcρ

00
in |0〉b,b〈0| + TacTbcρ

11
in |1〉b,b〈1|

−√
TacTbcRacRbc

[
ρ01

in |0〉b,b〈1| + ρ10
in |1〉b,b〈0|]}, (7)

where, ρ lm
in = 〈l|ρin|m〉 is the matrix element in Fock

space. For thermal state ρth =∑∞
n=0 n̄n/(n̄ + 1)n+1|n〉〈n|,

the corresponding output state is ρout → [RacRbc|0〉b,b〈0| +
TacTbcn̄/(n̄ + 1)|1〉b,b〈1|]/(n̄ + 1), in which the nondiagonal
elements are absent due to the fact that only diagonal elements
are included in the thermal state. It is clear from Eq. (7) that
nondiagonal elements (|0〉b,b〈1| and |1〉b,b〈0|) can be involved
in the output state for a general mixed input state. These
states can present some interesting nonclassical properties,
including but not limited to the squeezing effect and the
negative Wigner function. Thus the quantum scissor device
plays a role in preparing a highly nonclassical state from a
classical state, even for a thermal state.

III. IDEAL QUANTUM SCISSOR DEVICE
TO IDEAL TMSVS

In this section, we first consider the ideal quantum scissor
device and then move to the ideal TMSVS, i.e., without
considering loss effect, detector inefficiency, or an imperfect
single-photon source. We start with the single mode and then
the two-mode quantum scissor scenario in order to make a
comparison between the two.
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FIG. 2. Scheme of quantum scissors device (QSD) for the TMSV
(a) single-side scheme and (b) biside scheme. The relation between
input and output can be described by the operator Mab and Ma′b′ .

A. Single-side quantum scissor device to the TMSVS

First we consider one quantum scissor device to one mode
of the TMSVS, as shown in Fig. 2(a). Theoretically, the
TMSVS is given by

|TMSV〉 = sechr
∞∑

n=0

tanhn r|n, n〉aa′ , (8)

where r is the squeezing parameter and |n, n〉 are two-mode
Fock states. When the single-side quantum scissor device is
applied to the TMSVS, it follows from Eqs. (1) and (5) that
the output state is

|�S〉out = −(C00S|00〉b,a′ − C11S|1, 1〉b,a′ ), (9)

where C00S = √
RacRbc/pSsechr, C11S = √

TacTbc/pS ×
tanh rsechr, and pS = (RacRbc + TacTbc tanh2 r)sech2r is the
success probability of the single-side quantum scissor device
operation. Here the subscript “S” means single side. It is easy
to see that the output state is a kind of Bell-like state, which
is in two-qubit Hilbert space spanned by the vacuum and
the single-photon states, as expected. As a particular case,
we choose C00S = C11S leading to RacRbc = TacTbc tanh2 r.
Then, Eq. (9) reduces to a Bell state, ∼(|00〉 − |1, 1〉)/

√
2.

In addition, if the squeezing parameter r is small, then the
TMSVS can be approximated as (|00〉 + tanh r|1, 1〉), while
the output state is (|00〉 − g tanh r|1, 1〉), where g is defined
in Eq. (6). Thus, it is clear that when g > 1, one can realize
the amplification of the squeezing degree of the TMSVS. A
squared gain can also be achieved by two asymmetrical beam
splitters compared to the single asymmetrical case.

Next, in order to clearly see the effect of the quantum scis-
sor device on the TMSVS, we further examine the correlation
properties by quantifying the degree of entanglement. Here,
we use the logarithmic negativity to quantify the degree of
entanglement [33], which is an easily computable measure of
entanglement. It differs from another measure called entropy
of entanglement [34]. The logarithmic negativity is defined by

Eρ = log2 ‖ρTA‖1, (10)

where ρTA means the partial transpose of density operator ρ

with respect to party A, and the symbol ‖O‖1 is the trace norm
‖O‖1 = tr|O| = tr

√
O†O, which is the sum of the singular

values of O. For a pure state in the Schmidt form, |ψ〉 =∑∞
n=0 cn|αn〉a|βn〉b with cn being the normalized factor and

|αn〉a and |βn〉b being orthonormal and normalized states, the

FIG. 3. The logarithmic negativity is plotted as a function of
the transmissivity Tac and the squeezing parameter r for given
(a) Tac = 0.5 and (b) Tac = Tbc, respectively. The corresponding
success probability is shown in (c) and (d). Here, for comparison,
the corresponding logarithmic negativity of the TMSV is also plotted
(see the dotted line).

logarithmic negativity can be calculated as

E|ψ〉 = log2

( ∞∑
n=0

|cn|
)2

. (11)

For the TMSVS in Eq. (8), the degree of entanglement is given
by E|TMSV〉 = log2 e2r . Similarly, for the pure-state output
shown in Eq. (9), the entanglement degree of |�S〉out can be
evaluated as

E|�S〉out
= log2

[
1 + 2

√
RacRbcTacTbc tanh r

RacRbc + TacTbc tanh2 r

]
� 1. (12)

It is interesting to note that the degree of entanglement,
E|�S〉out

, approaches the maximum value of unity when
we choose RacRbc = TacTbc tanh2 r. This corresponds to the
Bell-like state. For instance, when Tac = 1/2 and Tbc =
cosh2 r/ cosh 2r, |�S〉out → (|00〉 − |1, 1〉)/

√
2 and E|�S〉out

=
1; when Tac = Tbc = T = 1/(1 + tanh r), then E|�S〉out

= 1.
In order to clearly see the effect of different parameters

Tac and Tbc as well as r on the amount of entanglement,
we plot the degree of entanglement E|�S〉out

as a function
of these three parameters. For a given Tac = 1/2, we plot
E|�S〉out

and the success probability pS as a function of Tbc

and r in Figs. 3(a) and 3(c), respectively. For a compari-
son, we also show E|TMSV〉. It is obvious that the enhanced
degree of entanglement can be found in the small squeez-
ing and high-transmission region, say about 0 < r � 0.35
and 0.5 � Tbc < 1.0. In addition, the maximum of E|�S〉out

is
equal to unity by modulating the transmissivity according to
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FIG. 4. The difference of logarithmic negativity between the
generated state and the TMSVS is plotted as a function of the
transmissivity Tac and Tbc for the given squeezing parameter (a) r =
0.1 and (b) r = 0.2, respectively.

Tbc = cosh2 r/ cosh 2r for a small squeezing parameter r. A
similar case is true for the case of Tac = Tbc = T ; see Fig. 3(b).
Although the latter can present better performance than the
former, the effect is not substantially improved. The difference
between these two success probabilities is shown in Fig. 3(d)
from which it is clear that the former with Tac = 1/2 presents
a higher success probability than the latter with Tac = Tbc = T
in the whole enhanced region. The difference between the
two probabilities is small. In Fig. 4, we further analyze the
effect of two beam splitters on the entanglement improvement
for different values of r. It is clearly shown here that there
is a bigger enhanced region, including a low-transmission
region for 0 < Tbc(Tac) < 0.5, while it is high for the other
region, 0.5 < Tac(Tbc) < 1.0. This implies that for a given
small squeezing parameter, one can realize the entanglement
improvement in the whole transmission region by introducing
two asymmetrical beam splitters. In addition, for a smaller
squeezing parameter, the enhance effect is more obvious when
a comparison is made between Figs. 4(a) and 4(b). Note
that, on one hand, the differences of both performances for
entanglement improvement and the success probability are not
substantial. On the other hand, in order to realize the same
gain factor as the original biside case, we will mainly focus on
two asymmetrical beam splitters for the single-side protocol in
the following.

B. Biside quantum scissors devices to the TMSVS

In this section, we examine the case when two quantum
scissors devices are applied on two modes of the TMSVS,
respectively, as shown in Fig. 2(b). In a similar fashion, when
deriving Eq. (9) and by using Eq. (5), we have

|�D〉out = C00D|00〉b,b′ + C11D|1, 1〉b,b′ , (13)

where C00D = √
RacRbcRa′c′Rb′c′/pDsechr, C11D = sechr

tanh r
√

TacTbcTa′c′Tb′c′/pD, and pD = (RacRbcRa′c′Rb′c′

+ TacTbcTa′c′Tb′c′ tanh2 r)sech2r is the success probability.
Here, these quantities with prime correspond to the other side
quantum scissors device applied on mode a′. It is obvious
that when two quantum scissors devices are applied on the
TMSVS, the output state has the same form as that of (9),
which resulted from the single quantum scissors device
except for the negative sign. In fact, the sign difference

can be eliminated by modulating the phase of the beam
splitter as mentioned above. By comparing pS and pD,
it is easy to see that the success probability of biside
quantum scissors devices is lower than that of the single-side
quantum scissors device due to the presence of Ta′c′ and
Tb′c′ . For the original scheme with Tac = Ta′c′ = 1/2, we
have Ra′c′Rb′c′ = Ta′c′Tb′c′ = 1/4 and the success probability
reduces to pD = 1/4(RbcRb′c′ + TbcTb′c′ tanh2 r)sech2r. Thus,
when comparing the original scheme with our single-side
quantum scissors device scheme (9), it is interesting to see
that

pD = 1
4 pS, (14)

when Rb′c′ = Rac. This implies that we can achieve the same
entangled state by either a biside quantum scissors device
with two symmetrical beam splitters (Tac = Ta′c′ = 1/2) or
single-side quantum scissors device with two asymmetrical
beam splitters (Tac = Tbc �= 1/2). The probability of the latter
is four times that of the former. Therefore, the single-side
quantum scissors device performs better when considering the
enhancement of the entanglement together with the success
probability.

Now we turn to the small squeezing parameter r. Both
the single-side and the biside quantum scissors devices can
achieve enhancement of the degree of squeezing. The gain
factors are

gS =
{

TacTbc

RacRbc

}1/2

, gD =
{

TacTbcTa′c′Tb′c′

RacRbcRa′c′Rb′c′

}1/2

, (15)

for the single-side and biside quantum scissors devices, re-
spectively. For asymmetrical beam splitters and taking Tac =
Tbc = Ta′c′ = Tb′c′ , we obtain

gD = g2
S = g4

0. (16)

Compared to Ferreyrol et al.’s scheme with g0 =√
T /

√
1 − T , from Eq. (16) it is clear that a squared

and a biquadrate gain can be obtained, respectively, by
single-side and biside quantum scissors operations. The
reason for gS = g2

0 is due to the presence of two asymmetrical
beam splitters in the single side of the quantum scissors
device, in which the asymmetry is a necessary condition
for the amplification, while the reason for gD = g2

S lies in
the fact that a biside quantum scissors device amplifies the
single-photon coefficient weight twice. In particular, the
single-side quantum scissors device with two asymmetrical
beam splitters can achieve the same entangled state with a
higher success probability as the biside original quantum
scissors device. Thus, in order to realize a higher squeezing
amplification for the TMSVS, it is better to use two
asymmetrical beam splitters in a set of quantum scissors
device.

IV. IDEAL QUANTUM SCISSORS DEVICE
TO THE REALISTIC TMSVS

In a realistic scenario, a quantum system undergoes deco-
herence as a result of interaction with its environment. This
motivates us to go beyond the ideal TMSVS to a realis-
tic scenario, i.e., passing through a dissipative channel (see
Fig. 5). For simplicity, we examine two symmetrical photon
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FIG. 5. Scheme of the QSD for the realistic TMSV (a) single-
side case and (b) biside case. The relation between output and input
can be described by operator Mab and Ma′b′ .

loss channels with transmission coefficient ηt . In view of the
transformation property of the quantum scissors device as
shown in Eq. (5), it is convenient to discuss photon loss in
Fock space. For this purpose, we derive the normal ordering
form of the output state.

A. Output state after channel loss

In order to obtain the output state after channel loss, it is
often convenient to use the Wigner function in phase space.
Using the formula connecting the Wigner function of the
output and the initial states for the single-mode case [35],

Wout (q1, p1) =
∫

dq′d p′

πηr
Win(q′

1, p′
1)

× e− 1
ηr

[(q1−√
ηt q′

1 )2+(p1−√
ηt p′

1 )2]
, (17)

where Win(q′
1, p′

1) is the initial Wigner function of the single-
mode system, whose definition in the coordinate state repre-
sentation is given by

W
(
q′

1, p′
1

) =
∫

dy

2π
eiyp′

1

〈
q′

1 − y

2

∣∣∣ρ∣∣∣q′
1 + y

2

〉
= Tr[ρ
1(q′

1, p′
1)]. (18)

Here, 
1(q1, p1) is the Wigner operator,


1
(
q′

1, p′
1

) =
∫

dyeiyp′
1

2π

∣∣∣q′
1 + y

2

〉〈
q′

1 − y

2

∣∣∣. (19)

When each mode of the TMSVS independently goes through
a loss channel, the output Wigner function can be calculated
as

Wout (q1, p1, q2, p2)

=
∫

dq′
1d p′

1dq′
2d p′

2

(πηr )2 Win(q′
1, p′

1, q′
2, p′

2)

× e− 1
ηr

[(q1−√
ηt q′

1 )2+(p1−√
ηt p′

1 )2]

× e− 1
ηr

[(q2−√
ηt q′

2 )2+(p2−√
ηt p′

2 )2]
, (20)

where Win(q′
1, p′

1, q′
2, p′

2) = Tr[ρ
1(q′
1, p′

1)
2(q′
2, p′

2)].
Thus the Wigner function after the TMSVS through photon
loss is given by

Wout (q1, p1, q2, p2)

= B1

π2
exp {2B3(q1q2 − p1 p2)}

× exp
{−B2

(
p2

1 + p2
2 + q2

1 + q2
2

)}
, (21)

where we define ηr = 1 − ηt , and

B1 = 1

1 + 4ηtηr sinh2 r
, (22)

B2 = ηr + ηt cosh 2r

1 + 4ηrηt sinh2 r
, (23)

B3 = ηt sinh 2r

1 + 4ηrηt sinh2 r
. (24)

It is interesting to note that the Wigner function of the output
is similar to the initial Wigner function, which indicates that
the Gaussian nature of the TMSVS can be kept after photon
loss [3,36]. In particular, when ηt = 0 corresponds to the case
without photon loss, Eq. (21) just reduces to the initial Wigner
function. From the Wigner function, we can derive the density
operator by using the formula

ρ = (2π )2
∫

W (�q)
(�q)dq1d p1dq2d p2, (25)

where �q = (q1, p1, q2, p2), 
(�q) = 
(q1, p1) ⊗ 
(q2, p2)
and 
(q, p) is called the Wigner operator, whose normal
ordering form is given by [37]


(q, p) = 1

π
: exp{−(q − Q)2 − (p − P)2} :, (26)

with Q = (a + a†)/
√

2, P = (a − a†)/(i
√

2). Here, the sym-
bol : · · · : represents the normal ordering. On substituting
Eqs. (21) and (26) into Eq. (25), we obtain

ρbef = C1 : e−C2(a†a+a′†a′)+C3(a†a′†+aa′) :, (27)

where ρbef is the density operator before the quantum scissors
device, and

C1 = sech2 r

1 − η2
r tanh2 r

, (28)

C2 = 1 − ηr tanh2 r

1 − η2
r tanh2 r

, (29)

C3 = ηt tanh r

1 − η2
r tanh2 r

. (30)

We expect that ρbef in Eq. (27) is still of a Gaussian form.
Using the coherent-state representation of the Fock state, i.e.,
|m〉 = 1/

√
m! ∂m

∂tm ‖t〉|
t=0

where ‖t〉 = eta† |0〉 is the unnormal-
ized coherent state, the matrix elements of ρbef in Fock space
can be obtained as

ρbef =
∞∑

m,n,m′,n′=0

Cm,n,m′,n′ |m, n〉〈m′, n′|, (31)

where we use 〈ν‖t〉 = eνt and define

Cm,n,m′,n′ = D̂
e−(C2−1)(μτ+νt )+C3(μν+τ t )

√
m!n!m′!n′!/C1

∣∣∣∣
τ,t,μ,ν=0

, (32)

as well as D̂ ≡ ∂m+n+m′+n′
/∂μm∂νn∂τm′

∂t n′
.

B. Ideal quantum scissor devices to the realistic TMSVS

We start by considering the single quantum scissor device
applied to the realistic TMSVS, i.e., operating a single-side
quantum scissor device to one mode of the realistic TMSVS
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[see Fig. 5(a)]. From Eq. (7), it is clear that we need to
calculate ρ00

bef , ρ
01
bef , ρ

10
bef , and ρ11

bef . Using Eq. (27) or Eq. (31),
we obtain

ρ00
bef = C1

C2
ρth,a′ (x̄), (33)

ρ01
bef = C1C3

C2
ρth,a′ (x̄)a′, (34)

ρ10
bef = C1C3

C2
a′†ρth,a′ (x̄), (35)

ρ11
bef = C1C2

3

C2
a′†ρth,a′ (x̄)a′ + x̄C1ρth,a′ (x̄), (36)

where ρth,a′ (x̄) is the thermal state with average number x̄ =
(1 − C2)/C2. On substituting Eqs. (33)–(36) into Eq. (7), the
resulting expression of ρS

out is

ρS
out = C1

p̄S

{
TacTbc

C2
3

C2
a′†ρth,a′ (x̄)a′|1〉b,b〈1|

+ ρth,a′ (x̄)

(
RacRbc

C2
|0〉b,b〈0| + TacTbcx̄|1〉b,b〈1|

)
−T[ρth,a′ (x̄)a′|0〉b,b〈1| + a′†ρth,a′ (x̄)|1〉b,b〈0|]

}
,

(37)

where we can see that the third term has certain coherence and
T = {TacTbcRacRbc}1/2C3/C2.

In order to clearly see the property of ρS
out, we consider the

space spanned by Fock state (|0〉, |1〉), which is a good ap-
proximation for a weak squeezing parameter r. Here, for sim-
plicity, we take Tac = Tbc = T, Rac = Rbc = R for the single-
side quantum scissor device case. Under Fock representation
of the thermal state,

ρth(u) =
∞∑

m=0

um

(u + 1)m+1
|m〉〈m|, (38)

Eq. (37) can be rewritten as

ρS
out = sech2r

p̄S

{
R2
∣∣ψS

out

〉〈
ψS

out

∣∣+ tanh2 r
[
η2

r R2|00〉ba′,ba′ 〈00|

+ ηtηrT 2|10〉ba′,ba′ 〈10| + ηtηrR2|01〉ba′,ba′ 〈01|]},
(39)

where we have dropped high-order terms, which are less than
η2

r tanh2 r, and set∣∣ψS
out

〉 = |00〉ba′ − T

R
ηt tanh r|11〉ba′ . (40)

Thus, there is a coherence in the first term of ρS
out.

Next, we consider the case of biside quantum scissors
devices applied to the realistic TMSVS [see Fig. 5(b)]. In a
similar fashion to the derivation of Eqs. (37), (39), and (40),
and according to Eqs. (7) and (37), we obtain

ρD
out = sech2r

4 p̄D

{
R2
∣∣ψD

out

〉〈
ψD

out

∣∣+ tanh2 r
[
η2

r R2|00〉bb′,bb′ 〈00|

+ ηtηrT R|10〉bb′,bb′ 〈10| + ηtηrT R|01〉bb′,bb′ 〈01|]},
(41)

where, for simplicity, we have taken Tac = Ta′c′ = 1/2 and
Tbc = Tb′c′ = T, as well as Rbc = Rb′c′ = R, and

∣∣ψD
out

〉 = |00〉 + T

R
ηt tanh r|11〉. (42)

One can see that |ψD
out〉 and |ψS

out〉 can have the same form. In
addition, ρD

out can be described fully in 0-1 photon subspace,
which is different from ρS

out. This point is clear by looking at
Eq. (7).

For a small squeezing TMSVS, |TMSV〉 can be ap-
proximately rewritten as |TMSV〉 → |00〉 + tanh r|11〉. From
Eq. (40), one can realize the amplification of the TMSVS
by choosing T such that T > 1/(1 + ηt ) even in the present
of photon loss. Furthermore, it is obvious that a squared
gain improvement can still be achieved compared to that of
Ferreyrol et al.’s scheme [31], in which g0 = √

T /
√

1 − T .

This amplification implies that the degree of entanglement
can still be improved by the single-side and biside quantum
scissors operation even after the TMSVS goes through a
dissipative channel.

1. Total entanglement

We again examine the entanglement using logarithmic
negativity defined in Eq. (10) but with an inclusion of the
photon losses. Using Eqs. (39) and (41), we have

Eρ
S,D
out

= log2

(
4∑

i=1

|λi|
)

, (43)

where λi are the eigenvalues of partial transpose density

operator (ρS,D
out )

Tb (see Appendices A and B for more details).
In Fig. 6, we plot the entanglement as a function of

squeezing parameter for some given values of T and ηt . For
comparison, we also plot the entanglement degrees of the
ideal and dissipated TMSVS. Both cases are also plotted when
the quantum scissors device is absent. It is clear that for ηt =
1, the same enhanced level is shared by both single-side and
biside quantum scissors devices. As r increases, the enhanced
degree initially increases within a small squeezing region and
then decreases. The maximal squeezing parameter r, which
corresponds to the enhanced region, becomes smaller, while
the maximal degree of entanglement becomes bigger as T
increases. When considering the effect of photon loss, there
is a somewhat different performance in these two cases. For a
given dissipation of, say, ηt = 0.9, although the biside quan-
tum scissors devices presents a better performance than the
single-side quantum scissors device, this advantage becomes
less obvious as the transmissivity T decreases [see Fig. 6(a)].
For a given T = 0.92, the effects of different dissipation
are presented in Fig. 6(b). It is clear that under given ηt =
0.90, 0.85, the entanglement is almost kept unchanged for
the biside quantum scissors device case, while for the single-
side case, there is a certain reduction, which becomes more
obvious as squeezing parameter r increases. This indicates
that the biside quantum scissors device case is more robust
against the environment than the single-side quantum scissors
device case.
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FIG. 6. The logarithmic negativity is plotted as a function of
squeezing parameter r for given transmissivity T and dissipative ηt :
(a) ηt = 0.90 and T = 0.92, 0.82, and (b) T = 0.92, ηt = 0.9, 0.85,
respectively. The corresponding logarithmic negativity of the TMSV
is also plotted (see black dotted line).

2. Entanglement enhanced rate

Success probability is an important factor for the nondeter-
ministic operation. The success probabilities for the generated
output states for both single-side and biside quantum scissors
devices cases using Eqs. (39) and (41), respectively, are
given by

p̄S = sech2r[R2 + (R2 + ηt − 2Rηt ) tanh2 r], (44)

p̄D = sech2r

4
[R2 + (R + ηt − 2Rηt )

2 tanh2 r]. (45)

The success probabilities depend on R, r, and dissipation
factor ηt . One particular case is when ηt = 1 corresponding
to the lossless case. In that case, Eqs. (44) and (45) reduce
to those of the ideal cases above, as expected. Comparing pS

with pD, it is clear that

p̄S � 4 p̄D, (46)

where the equal sign holds for ηt = 0, 1 or R = 1/2. Thus, the
success probability of the single-side quantum scissors device
is four times more than that of the biside quantum scissors
devices when the photon-loss case is considered.

1.0
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−3.5
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0.8

ΔE
r/
10
0
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g 1
0[
E
r]
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0.4

0.2

0.0
0.0 0.1 0.2 0.3

r
0.4

0.0 0.1 0.2 0.3
r

0.50.4

FIG. 7. The logarithmic negativity is plotted as a function of
squeezing parameter r for given transmissivity T = 0.92 and dis-
sipative ηt = 0.90, 0.88 for (a) the entanglement rate Er and (b) the
enhancement rate of entanglement 
Er, respectively.

In order to consider the effect of both entangle-
ment and success probability, we can use the product of
entanglement and probability together, i.e., the entanglement
rate [21] Er = E (ρ)p(ρ), which gives the average entangle-
ment per trial of the scheme. From Fig. 7(a), it is clear that
the entanglement rate of the single side is higher than that
of the biside. In Fig. 7(b), we show the enhancement rate
of entanglement, which is defined as the average increase
per trial, i.e., 
Er = p(ρ)[E (ρ) − E (ρinit )], where ρ and ρinit

are the final and initial states, respectively. Again, for given
T = 0.92, ηt = 0.90, 0.88, Fig. 7(b) shows that the single-
side quantum scissors device performs better than the biside
quantum scissors devices within the range 0 < r < 0.23, and
the opposite is true within 0.23 < r < 0.25. These results
indicate that the single-side quantum scissors device presents
a better performance than the biside quantum scissors device
in a wider squeezing range.

V. REALISTIC QUANTUM SCISSORS DEVICE
TO THE REALISTIC TMSVS

So far we looked at the scenario where an ideal single-
photon state and an ideal single-photon detector are used.
However, this is not the case when we consider a realistic
situation. On one hand, it is inevitable that the photon state
can interact with the environment. On the other hand, both
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FIG. 8. Realistic scheme of a single-side QSD for any input
state ρin. The beam splitters (BSac and BSbc) are asymmetrical
with transmission coefficients Tac and Tbc, respectively. The relation
between output and input can be described by operator M̂S . And the
heralded single photon is generated from the two-mode squeezed
state |�〉. Here, all detectors are dichotic “on-off” detectors.

the perfect single-photon source and single-photon detector
are difficult to obtain experimentally. Hence, in order to
consider a more realistic scenario, we replace the single-
photon level detector with the “on-off” detector � = 1 −
|0〉〈0| and use a conditional measurement with the parametric
down-conversion state |�〉 = sechλ

∑∞
m=0 tanhm λ|m, m〉 (8)

to generate the single-photon state [29]. To avoid confusion,
we should mention that λ here is the squeezing parameter of
the TMSV used for the b port in Fig. 8 which is fixed and r
is the squeezing parameter of the input state ρin which is a
varying variable. Here, the conditional measurement is also
realized by the on-off detector (see Fig. 8). In this case, we
use the on/off-type detector where we can only distinguish
whether or not there is a photon. We do not distinguish the
photon number, so there can be a photon number larger than
1. In the following numerical calculation, we truncated the
photon number to 5, which is a very good approximation when
the average photon is small. Thus, the heralded single-photon
state (HSPS) ρb (normalized state) after detection by � is
given by

ρb = 1

n̄
[(n̄ + 1)ρth(n̄) − |0〉bb〈0|], (47)

where ρth(n̄) =∑∞
m=0 n̄m/(n̄ + 1)m+1|m〉〈m| is the thermal

state with n̄ = sinh2 λ being the average photon number. It is a
good approximation to talk about the single-photon state when
the squeezing parameter λ is very small. The HSPS ρb can be
seen as a superposition of the thermal state and vacuum. This
property shall be used in the following calculation.

A. Relation between input and output states

In order to deal with the realistic quantum scissors device,
we first consider a single-mode input state (shown in Fig. 8).
Moreover, for any single-mode density operator ρa, after the
single quantum scissors device, the output state ρout can be
expressed as

ρout = NTrac[�a|0〉cc〈0|BacBbcρaρb|0〉cc〈0|B†
bcB†

ac], (48)

where N is the normalization factor determined by Trbρout =
1. Similar to the above discussion of Eq. (1), the output state

ρout can also be put into the following form (see Appendix C
for details):

ρout = NTra[(�ab − �b|0〉aa〈0|)ρa], (49)

where we have set

�ab = 1

n̄
[�(n̄ + 1) − (Tac)a†a|0〉bb〈0|], (50)

�b = 1

n̄

[
x(n̄ + 1)

n̄Tbc
ρth(x) − |0〉bb〈0|

]
, (51)

in which ρth(x) is the thermal state with average photon
number x = n̄Tbc/(n̄Rbc + 1), and

� = A1 : e−[A2a†a+A3b†b+A4(a†b+b†a)] : . (52)

Here, Aj ( j = 1, 2, 3, 4) are defined in Eqs. (C22)– (C25) in
Appendix C.

When the single-side quantum scissors device is applied
to one mode of any two-mode system (denoted as ρaa′ ), the
yielded output state is ρS

out from Eq. (49), i.e.,

ρS
out = NTra[(�ab − �b|0〉aa〈0|)ρaa′ ], (53)

while for both modes independently going through quantum
scissors devices, the output state ρD

out is

ρD
out = NTraa′ {ρaa′ (�ab − �b|0〉aa〈0|)|

⊗(�a′b′ − �b′ |0〉a′a′ 〈0|)}. (54)

Based on Eq. (53) or (54), one can derive the normal ordering
form of the output state when the input state ρaa′ is known.
Here, for convenience, we only consider the single-side quan-
tum scissors device due to its advantage in both success
probability and enhanced entanglement, which are analyzed
in Sec. III.

Substituting Eq. (27) into Eq. (53), one can finally obtain
the output density operator (see Appendix D),

ρS
out = N{Ô − P2ρth,a′ (y)ρth(x)

+ [P3ρth,a′ (y) − P1ρth,a′ (z)]|0〉bb〈0|}, (55)

where N−1 = Tr(Ô) − P1 − P2 + P3, Ô (normal ordering
form) and y, z, and Pj ( j = 1, 2, 3) are defined in Appendix D
(not shown here for convenience). ρth,a′ (u) is a thermal state
for mode a′ with average photon number u. From Eq. (55), it is
clear that the output state is composed of two-mode entangled
state Ô, thermal, and vacuum states. With the help of Eq. (55),
one can evaluate the output state in the form of density matrix
and phase space.

B. Entanglement enhancement

Except for Ô, the other three terms only have the diagonal
elements as shown in Eq. (55). In order to calculate the
degree of entanglement using Eq. (10), in a similar fashion
to Eq. (32), one needs to expand Ô in Fock space to get the
factor

Omnm′n′ = D̂
e(1−W2 )μτ+(1−W3 )νt−W4(μν+τ t )

n̄
√

m!n!m′!n′!/[(n̄ + 1)W1]

∣∣∣∣
μ,ν,τ,t=0

. (56)

And, hence, using Eqs. (55) and (56), we can numerically
evaluate the degree of entanglement. Here it should be empha-
sized that Eq. (56) is obtained when the single-side quantum
scissors device is applied to one mode of the dissipated
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FIG. 9. The entanglement degree and success probability as a function of squeezing parameter r and transmission efficiency T , for ηt =
0.9, λ = 0.2, and (a),(b) T = 0.92, and (c),(d) r = 0.2.

TMSVS, where the TMSVS is assumed to be transmitted
through the biside symmetrical photon-loss channel with the
same efficiency ηt .

In Fig. 9, we plot the entanglement degree and the success
probability N−1 as a function of squeezing parameter and
transmission efficiency, for some given parameters. From
Fig. 9(a), there is clear evidence that (i) entanglement im-
provement still takes place in a small squeezing region (0 �
r � 0.22), even when the realistic quantum scissors device
is applied to a realistic TMSVS; (ii) in this realistic situ-
ation, both the maximum of enhanced entanglement (about
0.854) and the region of r, which corresponds to the same
enhanced entanglement region, are slightly smaller than the
case when the ideal quantum scissors device is applied to
a realistic TMSVS, where the maximum and the region are
about 0.934 and 0 � r � 0.23. However, one should notice
that they almost share the same success probability [see
Fig. 9(b)]. For given r = 0.2 and ηt = 0.9, Fig. 9(c) shows
that the entanglement initially increases and then decreases as
T increases, while Fig. 9(d) shows different behavior, where
the success probability decreases with the increase of T . Our
results show that there is no clear-cut difference between the
ideal quantum scissors device and realistic quantum scissors
device, of course, within the situations that we consider.

C. Comparison with quantum catalysis

Next we make a comparison with another entangle-
ment distillation scheme, namely, the quantum catalysis. The

quantum catalysis, here, is on the TMSVS and we assume that
both modes go through beam splitters with equal transmission
TC . One can refer to Refs. [11,13,18,21,38,39] for other non-
Gaussian distillation schemes. Notice that for our current
scheme, the entanglement can be improved within the high-
transmission and low squeezing region using the quantum
scissors device [see Fig. 10(a)]. It seems that the region of
T , which corresponds to the enhanced entanglement, becomes
smaller as r increases. However, for the quantum catalysis
case in Ref. [20], it is shown there that the entanglement
of the TMSVS can also be enhanced by quantum catalysis,
but within a low region of transmission TC (0 < TC < 0.26)
and a small squeezing region (0 < r < 0.57); see Fig. 10(b).
Looking at Figs. 10(a) and 10(b), one can see that the max-
imal value of enhanced entanglement by quantum catalysis
is slightly larger than unity, while unity is just the upper
bound that is obtained by the quantum scissors device. The
reason may be that the optimal output after the quantum
scissors device is very similar to that of the Bell-like state
[(|00〉 + |11〉)/

√
2], especially in an ideal case.

Quantum catalysis and quantum scissors schemes have
different success probabilities for different transmission and
squeezing parameters, which makes comparison somewhat
difficult. Thus, we only consider the enhanced scenario to
compare the success probabilities. In Figs. 10(c) and 10(d),
we plot the success probabilities as a function of parameter
r and transmissivity T (TC ) for some given parameters. From
Fig. 10(c), and for given TC = 0.1 and T = 0.8, it is inter-
esting to see that both single-side operations (for catalysis
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FIG. 10. The entanglement of the output state (a) after QSD and (b) after catalysis, as a function of transmission for several given squeezing
parameters r = 0.1, 0.2 and ηt = 0.9. Single-side QSD: black and blue; two-side QSD: red and orange. For comparison, the entanglement of
the TMSVS is also plotted in dashed blue and dashed pink for r = 0.1, 0.2, respectively. (c) Success probability as a function of (c) r for given
T , and (d) T for given r with ηt = 0.9.

and quantum scissors) present a higher success probability
than those of biside operations. The single-side catalysis has
the largest success probability, while the second one is the
single-side quantum scissors device. But when we have the
squeezing parameter r = 0.1, one can find that there is a
higher success probability for the quantum scissors device, not
the quantum catalysis, in a certain transmission region [see
Fig. 10(d)]. Thus, in order to generate the expected output
states effectively, one needs to seek the optimal trade-off
between the success probability and the figure of merits by
adjusting the squeezing parameter r and the transmission rate.

VI. CONCLUSION

In this work, we proposed a modified quantum scissor
scheme to improve both quantum state amplification and
entanglement. Squared gain can be secured using our scheme
compared to the original amplification scheme for a single-
mode quantum state. Along with the effects of the modified
quantum scissor scheme, we considered the original scheme
of the TMSVS entanglement. Our scheme helps to obtain the
same squared gain for a squeezing parameter when applied
to the single side of the TMSVS as opposed to applying the
original scheme to the biside of the TMSVS. In this case,
our scheme uses not only less resources and less energy, but
also helps to enhance entanglement by a factor of four with
the success probability of the biside scheme. We investigated

the effect of the environment on the entanglement and the
success probability. We found that even when both modes
of the TMSVS go through a photon-loss channel, a realistic
single-side quantum scissors device can still play a role in
enhancing the entanglement if the initial squeezing is small.
The entanglement enhancement effect in this case is slightly
smaller than that of the ideal single-side quantum scissors
device. The success probability is almost the same as that of
the ideal single-side quantum scissors device. These results
reveal the usefulness of the single-side quantum scissors
device characteristic of two asymmetrical beam splitters for
improving the gain and the entanglement as well as the ability
to work in the present of the decoherence. This also provides
a useful insight for applying such scheme for long-distance
quantum communication. In addition, we also provide a con-
cise way to calculate the output state using the operator form.

Non-Gaussian operations have been applied to many
fields, such as quantum key distribution and quantum steer-
ing with continuous variables to improve their performance
[40–43]. In quantum key distribution, the success probability
is an important factor describing the secret key rate, and
the single-side non-Gaussian operation, not the biside, is
a more practical protocol. Furthermore, asymmetry is an
important characteristic of quantum steering, which has be-
come a kind of key source for single-side device-independent
quantum information protocols. Thus, our current investi-
gation should be beneficial for further consideration when
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such quantum scissors device non-Gaussian operation is ap-
plied to quantum key distribution and quantum steering. It
should help to improve the transmission distance and either
one-way or two-way steering. These features will be exam-
ined later.
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APPENDIX A: ENTANGLEMENT FOR DENSITY
OPERATOR SHOWN IN EQ. (39)

First we rewrite Eq. (39) as

ρS
out = c1|00〉〈00| + c2|11〉〈11| + c3|10〉〈10|

+ c4|01〉〈01| − c5(|00〉〈11| + |11〉〈00|)], (A1)

or

ρS
out =

⎛⎜⎝ c1 0 0 −c5

0 c4 0 0
0 0 c3 0

−c5 0 0 c2

⎞⎟⎠, (A2)

where ρS
out is a real and symmetrical matrix, and c j are

defined by

c1 = sech2r

pS
R2
(
1 + η2

r tanh2 r
)
, (A3)

c2 = sech2r

pS
T 2η2

t tanh2 r, (A4)

c3 = sech2r

pS
ηtηrT 2 tanh2 r, (A5)

c4 = sech2r

pS
ηtηrR2 tanh2 r, (A6)

c5 = sech2r

pS
RT ηt tanh r. (A7)

Making partial transpose for mode b, we have

(
ρS

out

)Tb =

⎛⎜⎝c1 0 0 0
0 c4 −c5 0
0 −c5 c3 0
0 0 0 c2

⎞⎟⎠ = [(ρS
out

)Tb
]†

. (A8)

The eigenvalues λi of partial transpose density operator
(ρS

out )
Tb can be calculated as

λ1 = c1, λ2 = c2, (A9)

λ3 = 1
2 c3+4 − 1

2

√
c2

3−4 + 4c2
5, (A10)

λ4 = 1
2 c3+4 + 1

2

√
c2

3−4 + 4c2
5, (A11)

where c3+4 = c3 + c4, c3−4 = c3 − c4.Thus the degree of en-
tanglement is given by

Eρ = log2

∥∥(ρS
out

)Tb
∥∥

1

= log2 Tr

√[(
ρS

out

)Tb
]2

= log2

(
4∑

i=1

|λi|
)

, (A12)

where λ1 = R2(1 + η2
r tanh2 r)/p̄S , λ2 = T 2η2

t tanh2 r/p̄S,

and

λ3 = 1

2 p̄S
(Q −

√
K )ηt tanh r,

λ4 = 1

2 p̄S
(Q +

√
K )ηt tanh r,

K = 4T 2R2 + [(T 2 − R2)ηr tanh r]2,

Q = (T 2 + R2)ηr tanh r,

p̄S = R2 + (R2 + ηt − 2Rηt ) tanh2 r. (A13)

APPENDIX B: THE DEGREE OF ENTANGLEMENT
CORRESPONDING TO EQ. (41)

For this purpose, we rewrite Eq. (41) as the following
matrix form:

ρD
out = sech2r

4pD

⎛⎜⎝c′
1 0 0 c′

5
0 c3 0 0
0 0 c3 0
c′

5 0 0 c′
2

⎞⎟⎠, (B1)

and

[
ρD

out

]Tb = sech2r

4pD

⎛⎜⎜⎝
c′

1 0 0 0
0 c′

3 c′
5 0

0 c′
5 c′

3 0
0 0 0 c′

2

⎞⎟⎟⎠, (B2)

where c′
1 = R2(1 + η2

r tanh2 r), c′
2 = T 2η2

t tanh2 r, c′
5 =

T Rηtηr tanh r, and c′
3 = ηtηrT R tanh2 r. The eigenvalues of

partial transpose density matrix [ρD
out]

Tb are given by

λ′
1 = 1

p̄d
R2(1 + η2

r tanh2 r
)
, (B3)

λ′
2 = 1

p̄d
T 2η2

t tanh2 r, (B4)

λ′
3 = 1

p̄d
T Rηt (ηr tanh r − 1) tanh r, (B5)

λ′
4 = 1

p̄d
T Rηt (ηr tanh r + 1) tanh r, (B6)

p̄d = R2 + (R + ηt − 2Rηt )
2 tanh2 r. (B7)

Thus the degree of entanglement involved in Eq. (41) can be
calculated as

Eρ = log2

(
4∑

i=1

|λ′
i|
)

. (B8)
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APPENDIX C: DERIVATION OF EQ. (49)

After the measurement, the output state can be shown as

ρout = NTrac
[
(1 − |0〉aa〈0|)|0〉cc〈0|ρbef

out

]
= N (ρb1 − ρb2), (C1)

where ρbef
out is the state before the measurements for a and c

modes, i.e.,

ρbef
out = BacBbcρaρb|0〉cc〈0|B†

bcB†
ac, (C2)

and ρb1 and ρb2 are defined as

ρb1 = Tra[c〈0|ρbef
out |0〉c] = Tra[ÔabρaρbÔ†

ab], (C3)

ρb2 = ac〈00|ρbef
out |00〉ac = P̂abρaρbP̂†

ab, (C4)

and

Ôab ≡ c〈0|BacBbc|0〉c , P̂ab ≡ ac〈00|BacBbc|0〉c . (C5)

Next, we solve the operators Ôab and P̂ab. For this purpose, we
appeal to the normal ordering form of the beam splitter [44],
i.e.,

Bac =: e(
√

Tac−1)(a†a+c†c)+(a†c−ac† )
√

Rac :, (C6)

Bbc =: e(
√

Tbc−1)(b†b+c†c)+(b†c−bc† )
√

Rbc :, (C7)

and noticing that ac〈00|Bac = ac〈00|, thus we see

P̂ab = c〈0|Bbc|0〉c a〈0|
=: exp[(

√
Tbc − 1)b†b] : a〈0|

= (
√

Tbc)b†b
a〈0| , (C8)

and

Ôabab = c〈0|BacBbc|0〉c

= c〈0| : e(
√

Tac−1)a†a+a†c
√

Rac :

× : e(
√

Tbc−1)b†b−bc†√Rbc : |0〉c

=: e(
√

Tac−1)a†a+(
√

Tbc−1)b†b−a†b
√

RacRbc :

= e−√
RacRbc/Tbca†bT a†a/2

ac T b†b/2
bc , (C9)

where we have used the following formula: eAeB =
eBeAe[A,B], which is valid for [A, [A, B]] = [B, [A, B]] = 0,
and the operator identity

eλb†bbe−λb†b = e−λb,

: exp{(eu − 1)b†b} : = eub†b. (C10)

Now, we take ρb = [(1 + n̄)ρth(n̄) − |0〉bb〈0|]/n̄ into account.
Using Eq. (C8), Eq. (C4) becomes

ρb2 = P̂abρaρbP̂†
ab

= 1

n̄
[(1 + n̄)P̂abρaρth(n̄)P̂†

ab − P̂abρa|0〉bb〈0|P̂†
ab]

= 1

n̄ a
〈0|ρa|0〉a[(1 + n̄)�b − |0〉bb〈0|], (C11)

where �b is defined by

�b = (Tbc)b†b/2ρth(n̄)(Tbc)b†b/2. (C12)

Further using the integration form in coherent-state repre-
sentation and the normal ordering form of the thermal state
[45,46], i.e.,

ρth(n̄) = 1

n̄

∫
d2α

π
e− |α|2

n̄ |α〉bb〈α| (C13)

= 1

n̄ + 1
: exp

{
− b†b

n̄ + 1

}
:, (C14)

and the formula

gb†b|α〉 = exp
{

1
2 (g2 − 1)|α|2}|gα〉, (C15)

as well as ∫
d2α

π
e−ξ |α|2+ηα+λα∗ = 1

ξ
e

ηλ

ξ , (C16)

we have

�b =
∫

d2α

n̄π
e− |α|2

n̄ (Tbc)b†b/2|α〉〈α|(Tbc)b†b/2

=
∫

d2α

n̄π
e− |α|2

n̄ e(Tbc−1)|α|2 |√Tbcα〉〈√Tbcα|

=
∫

d2α

n̄π
: e− 1+n̄

n̄ |α|2+√
Tbcb†α+√

Tbcα
∗b−b†b :

= 1

1 + n̄
: exp

{
− n̄Rbc + 1

1 + n̄
b†b

}
:

= x

n̄Tbc
ρth(x), (C17)

where x = n̄Tbc/(n̄Rbc + 1). In the above derivation of
Eq. (C17), the technique of integration within an ordered
product (IWOP) of operators is used [47]. Thus, ρb2 is

ρb2 = a〈0|ρa|0〉a �b = Tra[|0〉aa〈0|�bρa], (C18)

where the operator �b is defined in Eq. (51).
Using Eqs. (C9) and (47), Eq. (C3) becomes

ρb1 = 1

n̄
Tra{(n̄ + 1)Ôabρaρth(n̄)Ô†

ab − Ôab|0〉bρab〈0|Ô†
ab}

= 1

n̄
[(n̄ + 1)Tra(�ρa) − Tra(T a†a

ac ρa|0〉bb〈0|)], (C19)

where

Tra[�ρa] = Tra[Ôabρaρth(n̄)Ô†
ab]. (C20)

Using Eqs. (C13), (C15), and (C16), as well as the IWOP
technique again, we can finally obtain

� = A1 : e−[A2a†a+A3b†b+A4(a†b+b†a)] :, (C21)

where we have defined

A1 = 1

1 + n̄(1 − RacRbc)
, (C22)

A2 = (n̄Tbc + 1)Rac

1 + n̄(1 − RacRbc)
, (C23)

A3 = 1 + n̄RbcTac

1 + n̄(1 − RacRbc)
, (C24)

A4 = n̄
√

TacTbcRacRbc

1 + n̄(1 − RacRbc)
. (C25)
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Thus, Eq. (C19) can be rewritten as

ρb1 = Tra[�abρa], (C26)

�ab = 1

n̄
[(n̄ + 1)� − (Tac)a†a|0〉bb〈0|]. (C27)

Combining Eqs. (C18) and (C26) leads to Eq. (49), i.e.,

ρout = NTra[(�ab − �b|0〉aa〈0|)ρa]. (C28)

APPENDIX D: DERIVATION OF EQ. (55)

Here we consider the TMSV going through a photon-loss
channel as inputs shown in Eq. (27). In order to derive the
density operator after the single-side quantum scissors device,
we only need to calculate three items, as follows. Here,
the normal ordering forms in Eqs. (27) and (C14) will be
convenient for the following calculations. The first item is

a〈0|ρaa′ |0〉a = C1 : e−C2a′†a′
:

= sech2 r

1 − ηr tanh2 r
ρth,a′ (y), (D1)

where ρth,a′ (y) is the thermal state for mode a′ with the av-
erage photon number y = ηtηr tanh2 r/(1 − ηr tanh2 r) > 0.
The second item is

Tra[(Tac)a†aρaa′]

= C1Tra[T a†a
ac : e−C2(a†a+a′†a′ )+C3(a†a′†+aa′ ) :]. (D2)

In order to get the normal ordering form of Eq. (D2), using the
completeness of the coherent state and the IWOP technique,
as well as noticing that

(Tac)a†a = (Tac)a†a/2
∫ ∞

−∞

d2α

π
|α〉aa〈α|(Tac)a†a/2

=
∫ ∞

−∞

d2α

π
e−Rac|α|2 |√Tacα〉aa〈

√
Tacα|, (D3)

we have

Tra[(Tac)a†aρaa′ ]

= C1

∫ ∞

−∞

d2α

π
e−Rac|α|2

a 〈√Tacα|

× : e−C2(a†a+a′†a′ )+C3(a†a′†+aa′ ) : |√Tacα〉a

= sech2 r

1 − (ηr + ηt Tac) tanh2 r
ρth,a′ (z), (D4)

with

z = ηt (ηr + ηt Tac) tanh2 r

1 − (ηr + ηt Tac) tanh2 r
. (D5)

The last item is Tra(�ρaa′ ), which can be calculated in a
similar way to deriving Eq. (D4). Using the completeness of

two coherent states and the IWOP technique, we finally obtain

Tra(�ρaa′ ) = C1

∫ ∞

−∞

d2αd2β

π2 a〈α|�|β〉a

× a〈β| : e−C2(a†a+a′†a′)+C3(a†a′†+aa′) : |α〉a

= W1 : e−W2a′†a′−W3b†b−W4(a′b+a′†b† ) :, (D6)

where we have defined

W1 = A1C1

A2 + (1 − A2)C2
, (D7)

W2 = (1 − A2)
(
C2

2 − C2
3

)+ A2C2

A2 + (1 − A2)C2
, (D8)

W3 = (1 − C2)
(
A2A3 − A2

4

)+ A3C2

A2 + (1 − A2)C2
, (D9)

W4 = A4C3

A2 + (1 − A2)C2
. (D10)

Then, substituting Eqs. (D1), (D4), and (D6) into Eq. (49), we
can see that

Tra(�abρaa′ ) = Ô − P1ρth,a′ (z)|0〉bb〈0|, (D11)

and

Tra[�b|0〉aa〈0|ρaa′ ] = [P2ρth(x) − P3|0〉bb〈0|]ρth,a′ (y),

(D12)

where we have set

Ô = n̄ + 1

n̄
W1 : e−W2a′†a′−W3b†b−W4(a′b+a′†b† ) :, (D13)

P1 = 1

n̄

sech2 r

1 − (ηr + ηt Tac) tanh2 r
, (D14)

P2 = n̄ + 1

n̄

sech2 r

1 − ηr tanh2 r

x

n̄Tbc
, (D15)

P3 = 1

n̄

sech2 r

1 − ηr tanh2 r
. (D16)

Thus, the final output state is given by

ρS
out = NTra[(�ab − �b|0〉aa〈0|)ρaa′]

= N{Ô − P2ρth,a′ (y)ρth(x)

+ [P3ρth,a′ (y) − P1ρth,a′ (z)]|0〉bb〈0|}, (D17)

and the normalized factor is

N−1 = Tr(Ô) + P3 − P1 − P2, (D18)

where Tr(Ô) can be given from Eq. (D13), i.e.,

Tr(Ô) = n̄ + 1

n̄

W1

W2W3 − W 2
4

. (D19)

[1] D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of
Quantum Information (Springer-Verlag, Berlin, 2000).

[2] S. L. Braunstein and P. van Loock, Quantum information with
continuous variables, Rev. Mod. Phys. 77, 513 (2005).

052322-13

https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513


HU, AL-AMRI, LIAO, AND ZUBAIRY PHYSICAL REVIEW A 100, 052322 (2019)

[3] J. Eisert, S. Scheel, and M. B. Plenio, Distilling Gaussian States
with Gaussian Operations is Impossible, Phys. Rev. Lett. 89,
137903 (2002).

[4] G. Giedke and J. I. Cirac, Characterization of Gaussian op-
erations and distillation of Gaussian states, Phys. Rev. A 66,
032316 (2002).

[5] J. Fiurasek, Gaussian Transformations and Distillation of En-
tangled Gaussian States, Phys. Rev. Lett. 89, 137904 (2002).

[6] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to classical
transition with single-photon-added coherent states of light,
Science 306, 660 (2004).

[7] G. S. Agarwal and K. Tara, Nonclassical properties of states
generated by the excitations on a coherent state, Phys. Rev. A
43, 492 (1991).

[8] A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Entan-
glement evaluation of non-Gaussian states generated by photon
subtraction from squeezed states, Phys. Rev. A 73, 042310
(2006).

[9] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier,
Increasing Entanglement between Gaussian States by Coherent
Photon Subtraction, Phys. Rev. Lett. 98, 030502 (2007).

[10] L.-Y. Hu, X.-X. Xu, Z.-S. Wang, and X.-F. Xu, Photon-
subtracted squeezed thermal state: Nonclassicality and decoher-
ence, Phys. Rev. A 82, 043842 (2010).

[11] S. Y. Lee and H. Nha, Quantum state engineering by a coherent
superposition of photon subtraction and addition, Phys. Rev. A
82, 053812 (2010).

[12] J. Fiurasek, Distillation and purification of symmetric entangled
Gaussian states, Phys. Rev. A 82, 042331 (2010).

[13] S. L. Zhang and P. van Loock, Distillation of mixed-
state continuous-variable entanglement by photon subtraction,
Phys. Rev. A 82, 062316 (2010).

[14] J. Fiurasek, Improving entanglement concentration of Gaussian
states by local displacements, Phys. Rev. A 84, 012335 (2011).

[15] J. N. Wu, S. Y. Liu, L. Y. Hu, J. H. Huang, Z. L. Duan, and Y. H.
Ji, Improving entanglement of even entangled coherent states
by a coherent superposition of photon subtraction and addition,
J. Opt. Soc. Am. B 32, 2299 (2015).

[16] A. Datta, L. Zhang, J. Nunn, N. K. Langford, A. Feito, M. B.
Plenio, and I. A. Walmsley, Compact Continuous-Variable En-
tanglement Distillation, Phys. Rev. Lett. 108, 060502 (2012).

[17] Y. Kurochkin, A. S. Prasad, and A. I. Lvovsky, Distillation of
The Two-Mode Squeezed State, Phys. Rev. Lett. 112, 070402
(2014).

[18] T. J. Bartley, P. J. D. Crowley, A. Datta, J. Nunn, L. Zhang, and
I. Walmsley, Strategies for enhancing quantum entanglement by
local photon subtraction, Phys. Rev. A 87, 022313 (2013).

[19] A. I. Lvovsky and J. Mlynek, Quantum-Optical Catalysis: Gen-
erating Nonclassical States of Light by Means of Linear Optics,
Phys. Rev. Lett. 88, 250401 (2002).

[20] L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, Continuous-variable en-
tanglement via multiphoton catalysis, Phys. Rev. A 95, 012310
(2017).

[21] T. J. Bartley and I. A. Walmsley, Directly comparing
entanglement-enhancing non-Gaussian operations, New J.
Phys. 17, 023038 (2015).

[22] S. L. Zhang, J. S. Guo, W. S. Bao, J. H. Shi, C. H. Jin, X. B. Zou,
and G. C. Guo, Quantum illumination with photon-subtracted
continuous-variable entanglement, Phys. Rev. A 89, 062309
(2014).

[23] L. Fan and M. S. Zubairy, Quantum illumination using non-
Gaussian states generated by photon subtraction and photon
addition, Phys. Rev. A 98, 012319 (2018).

[24] S. Kocsis, G. Y. Xiang, T. C. Ralph and G. J. Pryde, Her-
alded noiseless amplification of a photon polarization qubit,
Nat. Phys. 9, 23 (2013).

[25] H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S.
Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, Measurement-
based noiseless linear amplification for quantum communica-
tion, Nat. Photon. 8, 333 (2014).

[26] T. C. Ralph and A. P. Lund, Nondeterministeric niosless linear
amplification of quantum systems, in Quantum Communication,
Measurement and Computing (QCMC): Ninth International
Conference on QCMC, AIP Conf. Proc. No. 1110 (AIP, New
York, 2009), p. 155.

[27] D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical State
Truncation by Projection Synthesis, Phys. Rev. Lett. 81, 1604
(1998).

[28] G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J.
Pryde, Heralded noiseless linear amplification and distillation
of entanglement, Nat. Photon. 4, 316 (2010).

[29] S. Zhang and X. Zhang, Photon catalysis acting as noiseless lin-
ear amplification and its application in coherence enhancement,
Phys. Rev. A 97, 043830 (2018).

[30] Y. Guo, W. Ye, H. Zhong, and Q. Liao, Continuous-variable
quantum key distribution with non-Gaussian quantum catalysis,
Phys. Rev. A 99, 032327 (2019).

[31] F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-
Brouri, and P. Grangier, Implementation of a Nondeterministic
Optical Noiseless Amplifier, Phys. Rev. Lett. 104, 123603
(2010).

[32] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, New York, 1997).

[33] G. Vidal and R. F. Werner, Computable measure of entangle-
ment, Phys. Rev. A 65, 032314 (2002).

[34] M. B. Plenio and S. Virmani, An introduction to entanglement
measures, Quantum Inf. Comput. 7, 1 (2007) and references
therein.

[35] L. Y. Hu, F. Chen, Z. S. Wang, and H. Y. Fan, Time evolution of
distribution functions in dissipative environments, Chin. Phys.
B 20, 074204 (2011).

[36] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an
oscillator, Phys. Rev. A 64, 012310 (2001).

[37] H. Y. Fan and H. R. Zaidi, Application of IWOP technique to
the generalized Weyl correspondence, Phys. Lett. A 124, 303
(1987).

[38] C. Navarrete-Benlloch, R. Garcia-Patron, J. H. Shapiro, and
N. J. Cerf, Enhancing quantum entanglement by photon addi-
tion and subtraction, Phys. Rev. A 86, 012328 (2012).

[39] H. L. Zhang, Y. Q. Hu, F. Jia, and L. Y. Hu, Entanglement of
Photon-Subtracted Two-Mode Squeezed Thermal State and Its
Decoherence in Thermal Environments, Int. J. Theor. Phys. 53,
2091 (2014).

[40] P. Huang, G. He, J. Fang, and G. Zeng, Performance im-
provement of continuous-variable quantum key distribution via
photon subtraction, Phys. Rev. A 87, 012317 (2013).

[41] D. Wang, M. Li, F. Zhu, Z. Q. Yin, W. Chen, Z. F. Han,
G. C. Guo, and Q. Wang, Quantum key distribution with the
single-photon-added coherent source, Phys. Rev. A 90, 062315
(2014).

052322-14

https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1126/science.1103190
https://doi.org/10.1126/science.1103190
https://doi.org/10.1126/science.1103190
https://doi.org/10.1126/science.1103190
https://doi.org/10.1103/PhysRevA.43.492
https://doi.org/10.1103/PhysRevA.43.492
https://doi.org/10.1103/PhysRevA.43.492
https://doi.org/10.1103/PhysRevA.43.492
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevLett.98.030502
https://doi.org/10.1103/PhysRevLett.98.030502
https://doi.org/10.1103/PhysRevLett.98.030502
https://doi.org/10.1103/PhysRevLett.98.030502
https://doi.org/10.1103/PhysRevA.82.043842
https://doi.org/10.1103/PhysRevA.82.043842
https://doi.org/10.1103/PhysRevA.82.043842
https://doi.org/10.1103/PhysRevA.82.043842
https://doi.org/10.1103/PhysRevA.82.053812
https://doi.org/10.1103/PhysRevA.82.053812
https://doi.org/10.1103/PhysRevA.82.053812
https://doi.org/10.1103/PhysRevA.82.053812
https://doi.org/10.1103/PhysRevA.82.042331
https://doi.org/10.1103/PhysRevA.82.042331
https://doi.org/10.1103/PhysRevA.82.042331
https://doi.org/10.1103/PhysRevA.82.042331
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.84.012335
https://doi.org/10.1103/PhysRevA.84.012335
https://doi.org/10.1103/PhysRevA.84.012335
https://doi.org/10.1103/PhysRevA.84.012335
https://doi.org/10.1364/JOSAB.32.002299
https://doi.org/10.1364/JOSAB.32.002299
https://doi.org/10.1364/JOSAB.32.002299
https://doi.org/10.1364/JOSAB.32.002299
https://doi.org/10.1103/PhysRevLett.108.060502
https://doi.org/10.1103/PhysRevLett.108.060502
https://doi.org/10.1103/PhysRevLett.108.060502
https://doi.org/10.1103/PhysRevLett.108.060502
https://doi.org/10.1103/PhysRevLett.112.070402
https://doi.org/10.1103/PhysRevLett.112.070402
https://doi.org/10.1103/PhysRevLett.112.070402
https://doi.org/10.1103/PhysRevLett.112.070402
https://doi.org/10.1103/PhysRevA.87.022313
https://doi.org/10.1103/PhysRevA.87.022313
https://doi.org/10.1103/PhysRevA.87.022313
https://doi.org/10.1103/PhysRevA.87.022313
https://doi.org/10.1103/PhysRevLett.88.250401
https://doi.org/10.1103/PhysRevLett.88.250401
https://doi.org/10.1103/PhysRevLett.88.250401
https://doi.org/10.1103/PhysRevLett.88.250401
https://doi.org/10.1103/PhysRevA.95.012310
https://doi.org/10.1103/PhysRevA.95.012310
https://doi.org/10.1103/PhysRevA.95.012310
https://doi.org/10.1103/PhysRevA.95.012310
https://doi.org/10.1088/1367-2630/17/2/023038
https://doi.org/10.1088/1367-2630/17/2/023038
https://doi.org/10.1088/1367-2630/17/2/023038
https://doi.org/10.1088/1367-2630/17/2/023038
https://doi.org/10.1103/PhysRevA.89.062309
https://doi.org/10.1103/PhysRevA.89.062309
https://doi.org/10.1103/PhysRevA.89.062309
https://doi.org/10.1103/PhysRevA.89.062309
https://doi.org/10.1103/PhysRevA.98.012319
https://doi.org/10.1103/PhysRevA.98.012319
https://doi.org/10.1103/PhysRevA.98.012319
https://doi.org/10.1103/PhysRevA.98.012319
https://doi.org/10.1038/nphys2469
https://doi.org/10.1038/nphys2469
https://doi.org/10.1038/nphys2469
https://doi.org/10.1038/nphys2469
https://doi.org/10.1038/nphoton.2014.49
https://doi.org/10.1038/nphoton.2014.49
https://doi.org/10.1038/nphoton.2014.49
https://doi.org/10.1038/nphoton.2014.49
https://doi.org/10.1103/PhysRevLett.81.1604
https://doi.org/10.1103/PhysRevLett.81.1604
https://doi.org/10.1103/PhysRevLett.81.1604
https://doi.org/10.1103/PhysRevLett.81.1604
https://doi.org/10.1038/nphoton.2010.35
https://doi.org/10.1038/nphoton.2010.35
https://doi.org/10.1038/nphoton.2010.35
https://doi.org/10.1038/nphoton.2010.35
https://doi.org/10.1103/PhysRevA.97.043830
https://doi.org/10.1103/PhysRevA.97.043830
https://doi.org/10.1103/PhysRevA.97.043830
https://doi.org/10.1103/PhysRevA.97.043830
https://doi.org/10.1103/PhysRevA.99.032327
https://doi.org/10.1103/PhysRevA.99.032327
https://doi.org/10.1103/PhysRevA.99.032327
https://doi.org/10.1103/PhysRevA.99.032327
https://doi.org/10.1103/PhysRevLett.104.123603
https://doi.org/10.1103/PhysRevLett.104.123603
https://doi.org/10.1103/PhysRevLett.104.123603
https://doi.org/10.1103/PhysRevLett.104.123603
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1088/1674-1056/20/7/074204
https://doi.org/10.1088/1674-1056/20/7/074204
https://doi.org/10.1088/1674-1056/20/7/074204
https://doi.org/10.1088/1674-1056/20/7/074204
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1016/0375-9601(87)90016-8
https://doi.org/10.1016/0375-9601(87)90016-8
https://doi.org/10.1016/0375-9601(87)90016-8
https://doi.org/10.1016/0375-9601(87)90016-8
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1007/s10773-014-2015-y
https://doi.org/10.1007/s10773-014-2015-y
https://doi.org/10.1007/s10773-014-2015-y
https://doi.org/10.1007/s10773-014-2015-y
https://doi.org/10.1103/PhysRevA.87.012317
https://doi.org/10.1103/PhysRevA.87.012317
https://doi.org/10.1103/PhysRevA.87.012317
https://doi.org/10.1103/PhysRevA.87.012317
https://doi.org/10.1103/PhysRevA.90.062315
https://doi.org/10.1103/PhysRevA.90.062315
https://doi.org/10.1103/PhysRevA.90.062315
https://doi.org/10.1103/PhysRevA.90.062315


ENTANGLEMENT IMPROVEMENT VIA A QUANTUM … PHYSICAL REVIEW A 100, 052322 (2019)

[42] Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo,
Non-Gaussian postselection and virtual photon subtraction in
continuous-avarible quantum key distribution, Phys. Rev. A 93,
012310 (2016).

[43] S. W. Ji, J. Lee, J. Park, and H. Nha, Quantum steering of
Gaussian states via non-Gaussian measurements, Sci. Rep. 6,
29729 (2016).

[44] F. Jia, X. X. Xu, C. J. Liu, J. H. Huang, L. Y. Hu, and H. Y. Fan,
Decompositions of beam splitter operator and its entanglement
function, Acta Phys. Sin. 63, 220301 (2014).

[45] S. M. Barnett and P. M. Radmore, Methods in Theoretical
Quantum Optics (Clarendon Press, Oxford, 1997).

[46] L. Y. Hu, H. Y. Fan, and Z. M. Zhang, New for-
mulas for normalizing photon-added (-subtracted) two-
mode squeezed thermal states, Chin. Phys. B 22, 034202
(2013).

[47] H. Y. Fan, H. L. Lu, and Y. Fan, Newton-Leibniz integra-
tion for ket-bra operators in quantum mechanics and deriva-
tion of entangled state representations, Ann. Phys. 321, 480
(2006).

052322-15

https://doi.org/10.1103/PhysRevA.93.012310
https://doi.org/10.1103/PhysRevA.93.012310
https://doi.org/10.1103/PhysRevA.93.012310
https://doi.org/10.1103/PhysRevA.93.012310
https://doi.org/10.1038/srep29729
https://doi.org/10.1038/srep29729
https://doi.org/10.1038/srep29729
https://doi.org/10.1038/srep29729
https://doi.org/10.7498/aps.63.220301
https://doi.org/10.7498/aps.63.220301
https://doi.org/10.7498/aps.63.220301
https://doi.org/10.7498/aps.63.220301
https://doi.org/10.1088/1674-1056/22/3/034202
https://doi.org/10.1088/1674-1056/22/3/034202
https://doi.org/10.1088/1674-1056/22/3/034202
https://doi.org/10.1088/1674-1056/22/3/034202
https://doi.org/10.1016/j.aop.2005.09.011
https://doi.org/10.1016/j.aop.2005.09.011
https://doi.org/10.1016/j.aop.2005.09.011
https://doi.org/10.1016/j.aop.2005.09.011

