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We use quantum detector tomography to characterize the qubit readout in terms of measurement positive
operator-valued measures (POVMs) on IBM quantum computers IBM Q 5 Tenerife and IBM Q 5 Yorktown.
Our results suggest that the characterized detector model deviates from the ideal projectors, ranging from 10 to
40%. This is mostly dominated by classical errors, evident from the shrinkage of arrows from the poles in the
corresponding Bloch-vector representations. There are also small deviations that are not “classical,” of order 3%
or less, represented by the tilt of the arrows from the z axis. Further improvement on this characterization can
be made by adopting two- or more-qubit detector models instead of independent single-qubit detectors for all
the qubits in one device. We also find evidence indicating correlations in the detector behavior, i.e., the detector
characterization is slightly altered (to a few percent) when other qubits and their detectors are in operation.
Such peculiar behavior is consistent with characterization from the more sophisticated approach of the gate
set tomography. We also discuss how the characterized detectors’ POVMs, despite deviation from the ideal
projectors, can be used to estimate the ideal detection distribution.
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I. INTRODUCTION

Recent manufacture of 49, 50, and 72 superconducting
qubits from companies such as Intel, IBM, and Google gives
the prospect of demonstrating quantum advantage in the not
distant future. However, these and near-future machines are at
best noisy intermediate-scale quantum processors [1]. There-
fore, developing and harnessing tools for characterizing noise
and error, mitigating them, and verifying quantum processing
will be essential in running programs on quantum devices
and in further locating the parameter windows in applica-
tions towards quantum advantage. Several tools have been
developed, including tomographic ones for quantum states
and processes [2–8]. But these rely on accurate measurement
and/or state preparation, which the system may not have, and
the methods do not scale favorably with the system size. If
one is only concerned with partial characterization, such as the
average gate error rate, then the so-called randomized bench-
marking [9–11] provides a reliable estimation independent of
state preparation and measurement error. Although these tools
seem to be standard, there are still some aspects of them not
fully explored.

When one speaks of qubit decoherence, there are typically
two associated processes: (1) relaxation (with time T1), usu-
ally related to the transition of the excited state(s) back to the
ground state or the system returning to thermal equilibrium,
and (2) dephasing (with time T2), related to off-diagonal ele-
ments of the density matrix decaying exponentially with time.
In reality, a qubit will couple to the environment and such
interaction (and with other qubits in an undesired way) will
induce relaxation and dephasing, and possibly other forms of
decoherence. These will be loosely referred to as noise, and
any quantum gate that does not operate as desired is said to

have errors. For instance, in the IBM quantum computers,
the error rate in measurement readout (2–10%) is comparable
to that of two-qubit gates (3–7%) and both rates are greater
than that of single-qubit gates (0.1–0.2%) by one order of
magnitude. Single-qubit state preparation for short circuits is
to some extent of high fidelity, but the computation for longer
circuits will inevitably suffer from noise. One tomographic
tool that sometimes gets overlooked is the so-called quantum
detector tomography (QDT) [12], more recently discussed
in photon detectors [13–16], which seems to provide a first
tool to improve the readout or detector characterization,
via short quantum circuits involving single-qubit gates. Be-
cause the measurement error is higher than state preparation
(of |0〉) and single-qubit gates on IBM Q devices, we perform
quantum detector tomography to characterize the detectors.
The experiments are done via the IBM cloud computing
under the framework Qiskit [17]. We point out some behavior
revealed by experiments that require further investigation into
physical devices, beyond the setting of quantum circuits.

We remark that a more thorough characterization scheme
that makes the fewest assumptions is gate set tomography
(GST) [18,19], where an initial state, a set of quantum gates,
and a positive operator-valued measure (POVM) are char-
acterized simultaneously. Such characterization can provide
information for error mitigation purpose [20]. Since GST
requires a large number of gate sequences, some of which
are very long, it is currently limited to single-qubit and two-
qubit processes in practice. Another recently proposed scheme
that is less costly tries to characterize state preparation and
measurement iteratively [21].

In the next section (Sec. II) we briefly review the tomo-
graphic tool for detectors. We present our experimental results
in Sec. III. An unexpected behavior was seen in the physical
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qubit labeled as qubit 3 of IBM Q 5 Tenerife. Its detector
characterization seems to be different when it is done alone
(with other qubits being idle) from when it is done when other
qubits are also in operation. This can be a consequence of
detector crosstalk or qubit operations influencing each other
and requires further investigation into the physical process.
In Sec. IV, we describe how such characterized readout can
be used for mitigation of measurement error, in the sense of
inferring ideal measurement statistics. In Sec. V, we also use
the gate set tomography and compare its detector character-
ization with that from the simple detector tomography. We
make concluding remarks in Sec. VI. Some experimental data
and further results of GST are presented in the Appendices,
including QDT for the 14 qubits of IBM Q 16 Melbourne.

II. TOMOGRAPHIC TOOL FOR DETECTORS

A. Quantum detector tomography

In this section we review the tool of quantum detector
tomography [12], which was often studied for photon detec-
tors [13–16]. A short review of quantum state tomography
(QST) and quantum process tomography (QPT) is included
in the Appendices for completeness. In QST one has a
set of projectors or more general POVM elements {�(i)}
(e.g., A1 ≡ {|0/1〉〈0/1|, | + /−〉〈+/ − |, | ± i〉〈±i|}, corre-
sponding to eigenstates of Pauli matrices), and measures
them with respect to an unknown state ρ, yielding a set of
data pρ,i = Tr(ρ�(i) ). QDT is a dual viewpoint: with a set
of known states {ρ f }, one is asked to estimate a fixed but
unknown set of measurement operators {�(i)} characterizing
a detector. Here we formulate qubit detectors that are most
relevant to realistic measurement in cloud quantum comput-
ers, such as IBM Q and Rigetti’s. The usual assumption is that
the set of states {ρ f }’s is well known or at least with much
smaller error rates than detection. For the state preparation in
|0〉, the typical ground state of superconducting qubits, it is
fairly accurate. Moreover, in these systems the single-qubit
gates have higher fidelity (than the measurement and two-
qubit gates), and only Z measurement can be implemented.
Measurement in other bases needs to be actively made by the
users to perform a suitable rotation before the Z measurement.
Hence we will consider two measurement operators �(0) and
�(1) for a single qubit, which is constrained by the trace-
preserving condition that �0 + �1 = 1. In the ideal case,
|0〉〈0| = (1 + σ3)/2 and |1〉〈1| = (1 − σ3)/2.

Let us denote for convenience

�
(n)
1 =

3∑
i=0

a(n)
i σi, (1)

where the subscript of �
(n)
1 means the single-qubit detector

and (n) denotes the measurement outcome 0 or 1. The Pauli
basis is σ0 = 1, σ1 = σx, σ2 = σy, σ3 = σz. We can use a
vector �a(n) = (a(n)

0 , a(n)
1 , a(n)

2 , a(n)
3 ) to collectively denote the

parameters. There are some constraints: (1) �a(0) + �a(1) =
(1, 0, 0, 0) due to completeness and (2) |a(n)

0 |2 � ∑3
i=1 |a(n)

i |2
in order for �(n) to be non-negative. We choose and prepare
ρ from the six-element set A1 (listed above), and those
other than |0〉 can be prepared from it with relatively high
fidelity by single-qubit gates. Then the measurement process

accumulates a set of data Pρi,n = Tr(ρi�n), which is a 6 × 2
matrix for each detector. From this we can find the best
fit, under the above constraints, to extract �a(n) that describes
the action of the detector. In adopting this model, we have
made the assumption that there is no crosstalk between the
qubits in one device so that the detectors are viewed as
independent. Relaxing this assumption a little bit, we can have
a multiqubit detector model, where a binary string is produced
as the measurement result. Just like the single-qubit case, the
N-qubit detector model is written as

�
(�n)
N =

∑
�i

c(�n)
�i σi0 ⊗ . . . ⊗ σi j . . . ⊗ σiN−1 , (2)

where the binary string �n = (n0, . . . , nN−1) is the measure-
ment outcome and each component of �i = (i0, . . . , iN−1) runs
from 0 to 3. It is natural to ask whether measuring only one
single qubit in the device gives the same result as measuring
all the qubits and tracing out the other irrelevant ones. This
question will be addressed in our experiments.

In an experiment, the characterized detectors can be used
to perform QST on the resultant state, hence mitigating the
effect from detector errors. However, we remark that some
correction can be made even without an informationally com-
plete set of measurements on the state; see discussions below
in Sec. IV.

B. Maximum likelihood estimation

In this section we summarize the maximum likelihood
estimation (MLE) analysis for detectors that we will employ
[12]. The log likelihood function is defined as

lnL =
∑

n

∑
i

fn,i ln Tr(�(n)ρi ), (3)

where {�(n)} is the POVM characterizing the detector and
fn,i is the frequency of measuring the state ρi and obtaining
outcome n. The sum over index i contains an information-
ally complete set of test states. The normalization constraint∑

n �(n) = 1 is implemented by Lagrange multipliers. Maxi-
mization with the constraint leads to the equation

�(n) = R(n)�(n)R†(n). (4)

R(n) is determined by the normalization constraint, and is
given by

R(n) =
∑

i

fn,i

pn,i

⎛
⎝∑

m

∑
j,k

fm, j fm,k

pm, j pm,k
ρ j�

(m)ρk

⎞
⎠

− 1
2

ρi, (5)

where pm, j denotes the theoretical probability of measuring
the state ρ j and obtaining outcome m. Note that R(n) is a
function of the POVM {�(m)}, not only through the explicit
dependence but also because pm, j = Tr(�(m)ρ j ). In our anal-
ysis, we choose the multiqubit Pauli matrices as the basis to
express {�(m)} and {ρ j}. Each iteration starts with updating
{�(m)} according to Eq. (4), and ends with calculating {R(m)}
from Eq. (5) for the next iteration. The termination condition
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is set as
∑

n

∣∣∣∣�(n)
t − �

(n)
t+1

∣∣∣∣ < ε, (6)

where the subscript denotes the t th and the (t + 1)th iter-
ations, the norm is taken to be the Frobenius norm, and
ε is some (arbitrarily chosen) cutoff value. Positivity and
normalization are preserved as long as the initial values of
{�(m)} form a POVM. It is worth mentioning that ε should
be sufficiently small such that the numerical error introduced
by this cutoff would be smaller than the uncertainty in the
estimated parameters due to statistical fluctuations.

III. RESULTS OF QUANTUM DETECTOR TOMOGRAPHY

We performed QDT on the two IBM Q 5 devices, Tenerife
(ibmqx4) and Yorktown (ibmqx2), and present the results
below. Each experiment consists of 100 runs with the setting
of 8192 shots for each run on the IBM Q devices. The effective
total number of repetitions is 819 200. This gives us effec-
tively 819 200 shots. The test states in A1 were prepared by
first initializing the qubits in |0〉 (which is the ground state of
each qubit) and acting on it by the single-qubit gates Pauli X ,
Hadamard H , and the S gates, as well as their combinations.
The MLE [12] was used for calculating the POVM parameters
from measured frequencies, reviewed earlier. The positivity is
ensured by construction, e.g., using 1

2N 1 as the initial POVM
elements for the iteration.

First we adopted the single-qubit detector model. One can
carry out the detector tomography procedure for each physical
qubit individually, leaving the other qubits in the machine
idle, or simultaneously carry out the same procedure for all
qubits (or a subset of them). We henceforth refer to these
two different ways as “individual measurement” and “parallel
measurement,” respectively. In principle there should not be
any difference except that due to statistical fluctuations be-
tween the two, since using the single-qubit detector model we
have assumed independence of the qubits. However, in reality
we see significant discrepancy between the results obtained
from the two types of experiments, which we will describe
below.

A next-step generalization would be to adopt the two-qubit
detector model. We examined all pairs of qubits in the two
machines, and compared the results with those obtained for
the single-qubit detector model (both individual and parallel).
If the discrepancy we observed is solely due to pairwise
influence, this would be captured in the two-qubit detector
tomography. However, this is not the case, as we will see
in Sec. III B. One can readily generalize this to detector
models involving three or more qubits as in Eq. (2). For the
five-qubit devices, a five-qubit detector model will be the
best to characterize the measurement for the two five-qubit
IBM machines. In order to obtain all 25 = 32 operators �(�n)

using the aforementioned basis states, 65 = 7776 circuits are
required. But some kind of compressed sensing technique
may be used to mitigate this, as was done for QST [22]. We
would like to point out that to run this list of circuits on the
current devices it needs to be separated into smaller lists of
jobs, since there is an upper limit on the circuit count for one
single submitted job.

A. Single-qubit detector: Parallel vs individual

The results of QDT are visualized in Fig. 1 using Bloch
spheres, with detailed parameters listed in Tables V(a), V(b),
VI(a), and VI(b). The three-dimensional arrow represents the
vector �r = (a1, a2, a3)/a0, and should be (0, 0,±1) for ideal
detectors �0/1 = (1 ± σz )/2. We use the thickness of the
arrow to represent the parameter a0. Each detector is found
to have its axis align mostly with the z axis but behave with
some notable difference to the ideal 0 and 1 projectors: (1)
shrinkage of the arrows from poles, where the lengths of
the arrows represent the purity of the measurement, and the
shorter they are the further away are the detectors from perfect
projection; (2) tilt of the arrows, where the measurement
axis is slightly tilted from the Pauli z basis, but it is only
of a few percent or less; and (3) thickness of arrows, which
represents the amount of a(0)

0 and a(1)
0 = 1 − a(0)

0 . Intuitively,
we can consider the conditional probability of measuring 0
given that the state is 0, P(0|0) = a(0)

0 + a(0)
3 , and the con-

ditional probability of measuring 0 given that the state is
1, P(0|1) = a(0)

0 − a(0)
3 and similarly P(1|0) = a(1)

0 + a(1)
3 =

1 − a(0)
0 − a(0)

3 , and P(1|1) = 1 − a(0)
0 + a(0)

3 . Given that the
tilt is small, the detector errors are mostly classical flips.
From the above relations, we have 2a(0)

0 = P(0|0) + P(0|1)
and 2a(1)

0 = P(1|0) + P(1|1). Given that |0〉 is the ground
state in each qubit, we expect that a(0)

0 � a(1)
0 . Indeed most

of the detectors do satisfy this regardless of the schemes of
measurement, parallel or individual, except qubit 3 in IBM Q
5 Tenerife measured in parallel. These features are displayed
in Fig. 1.

The details of the single-qubit detector results for the two
devices, as measured individually for each physical qubit
leaving the other qubits idle, are shown in Tables V(a) and
VI(a), respectively. And those obtained by carrying out single-
qubit detector tomography simultaneously for all five qubits
in the machine are presented in Tables V(b) and VI(b). We
use the nonparametric bootstrap method [19] to estimate the
uncertainty for each parameter, which gives errors typically of
the order O(10−4), with the largest among them up to 0.003. A
detailed discussion is in Sec. III C below. We note that Fig. 5
corresponds to data in Table V, and Fig. 6 corresponds to data
in Table VI.

A notable feature is found that for almost all qubits a(0)
0

is larger than a(1)
0 = 1 − a(0)

0 , which comes from relaxation to
the ground state |0〉. There is an exception for qubit 3 of the
device IBM Q 5 Tenerife, where a(0)

0 < a(1)
0 when measured

together with the other qubits in parallel. This was not seen
when qubit 3 was measured alone, which hints at influence
from the other qubits.

A measure of discrepancy between individual measure-
ment and parallel measurement is the distance between
the vectors �a(0) = (a(0)

0 , a(0)
1 , a(0)

2 , a(0)
3 ) [note that �a(1) =

(1, 0, 0, 0) − �a(0)] obtained in the two different ways. This
distance corresponds to the Frobenius norm of the difference
between the two �(0) operators up to a factor of 2. These are
shown in Table I. It is worth noticing that the statistical fluctu-
ation in the estimated �a(0) limits the resolution of the distance
to an order O(10−3). We distinguish this order of magnitude
from the magnitude of the fluctuations in the parameters
of the detector model, which are typically O(10−4). This
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FIG. 1. Detector spheres for qubits 0 to 4 of (a, b) IBM Q 5 Tenerife and (c, d) IBM Q 5 Yorktown. The arrow represents the vector
(a1, a2, a3)/a0 from measurement �̃(n=0,1) = �a(n) · �σ , where the north pole and the south pole correspond to ideal |0〉〈0| and |1〉〈1|, respectively.
Positivity is reflected by the length of the arrow being smaller than 1. The width of the arrow represents the weight a0 in the corresponding
POVM element, for which the ideal case is 1/2. These data are in Tables V and VI. For example, individual measurement of qubit 4 of
IBM Q 5 Tenerife produces the last sphere in (a), which corresponds to �(0) = 0.521(1)1 − 0.012(2)σx − 0.0122(4)σy + 0.3798(4)σz and
�(1) = 0.479(1)1 + 0.012(2)σx + 0.0122(4)σy − 0.3798(4)σz.

distance is derived from those parameters and the estimated
fluctuations in the distances originate from, but are of lager
magnitude than, the fluctuations in the detector parameters.
We see that the distance between the two �a(0) vectors obtained
from individual measurement and parallel measurement is one

TABLE I. Distance between the single-qubit detector from indi-
vidual measurement and that from parallel measurement, for IBM Q
5 Tenerife (ibmqx4) and IBM Q 5 Yorktown (ibmqx2).

�������Device
Qubit

0 1 2 3 4

ibmqx4 0.011 0.010 0.023 0.087 0.025
ibmqx2 0.042 0.017 0.044 0.031 0.024

order of magnitude larger, which indicates that there is some
correlation due to several qubits being operated and measured
simultaneously, visible even in the presence of statistical
fluctuations. These differences are visible from Bloch spheres
between first and second rows and between third and fourth
rows in Fig. 1.

B. Beyond the single-qubit detector

Two-qubit QDT and cross talk

The two-qubit detector model �
(n0,n1 )
2 for a pair of qubits is

characterized by 64 parameters, which can be organized into
four 4 × 4 matrices c(n0,n1 )

i, j for the four outcomes (n0, n1) =
(00), (01), (10), and (11), respectively. Imagine we have two
uncorrelated systems A and B, where the POVM for the com-
position is {�(nA,nB )

AB = �
(nA )
A ⊗ �

(nB )
B }. ∑

nA
�

(nA )
A = 1A and
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FIG. 2. The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by tracing out another qubit in a
two-qubit detector while that on the right is from individual measurement. The tables contain the distances between these two: the entry in the
ith row and jth column is the distance between the single-qubit detector of qubit i conditioned on qubit j and that for qubit i obtained from
individual measurement. Values between 0.01 and 0.1 are highlighted in blue and those above 0.1 are highlighted in green. The right panels
are schematic influence diagrams where each arrow points from the qubit traced out to the qubit of interest and the thickness is proportional to
the distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q 5 Yorktown (bottom panels), respectively.

the same condition for B are satisfied independently. When we
have no access to system B, we need to sum over all possible
outcomes for B to get {�(nA )

A ⊗ 1B = ∑
nB

�
(nA,nB )
AB }. We can

then take the partial trace over B to recover

�
(nA )
A = 1

dim(B)
TrB

∑
nB

�
(nA,nB )
AB , (7)

where dim(B) is the dimension of the Hilbert space for B.
In doing so we are assuming that any state of B is equally
likely to occur, i.e., no information about B is accessible. To
check whether a pair of qubits is separable, we can calculate
the singular values of the matrices c(n0,n1 )

i, j for them. If the
single-qubit detector assumption holds well, the operators can
be decomposed in the following way:

�
(n0,n1 )
2 = �

(n0 )
1 ⊗ �

(n1 )
1 , (8)

where �
(n)
1 is a single-qubit detector operator. In this case

there will be only one nonzero singular value for any of the
four c(n0,n1 )

i, j matrices. This is a direct analogy to characteriza-
tion of the entanglement of a bipartite system. We can also cal-
culate from the singular values the analogy of entanglement
measures, the magnitudes of which give a measure of how
badly the assumption of independent single-qubit detectors is
violated. We will not present detailed analysis about this here.

How do we characterize a single-qubit detector reduced
from the detector in the presence of other qubits? From the
two-qubit detector model [see Eq. (2) applied to two qubits],
one can trace out one qubit and obtain a single-qubit detector
model for the other qubit. For example, tracing out the second
qubit in a pair, we get a single-qubit detector for the first qubit

according to

�
(0)
1 = 1

2 Tr2nd
(
�

(00)
2 + �

(01)
2

)
, (9)

where the trace is taken over the second qubit only. Note that
by doing this �

(0)
1 + �

(1)
1 = 1C2 is an automatic consequence

of
∑

n0,n1
�

(n0,n1 )
2 = 1C2×C2 . We call the single-qubit detector

obtained by tracing out another qubit in a pair “a single-
qubit detector conditioned on another qubit.” We calculate
such models for each qubit conditioned on any of the other
qubits, and compare the result to the single-qubit detector
obtained from individual measurement, parallel measurement,
and parallel measurement of only those two qubits (henceforth
referred to as “pairwise parallel measurement”). In the ideal
case where all detectors are independent of each other, these
results should agree within statistical uncertainty. If there is
influence of only one other qubit on a given qubit, then we
expect one of the four conditional single-qubit detector results
to coincide with the result obtained from parallel measure-
ment. From this we can also find which qubit is affecting
a given qubit. Again we use the distance between two �a(0)

vectors to characterize the agreement between two results.
We present the comparison between the single-qubit detector
from individual measurement and that conditioned on another
qubit in Fig. 2, and leave the other two comparison schemes
in the Appendices (Figs. 3 and 4). In these figures we also use
schematic diagrams to visualize the crosstalk. In the influence
diagrams, the arrows are of thicknesses proportional to the
distance between the detectors obtained in the two different
ways and point from the qubit traced out to the qubit of
interest, indicating the influence of the former to the latter. As
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FIG. 3. The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by tracing out another qubit in a
two-qubit detector while that on the right is from parallel measurement. The tables contain the distances between these two: the entry in the
ith row and jth column is the distance between the single-qubit detector of qubit i conditioned on qubit j and that for qubit i obtained from
parallel measurement. Values between 0.01 and 0.1 are highlighted in blue and those above 0.1 are highlighted in green. The right panels are
schematic influence diagrams where each arrow points from the qubit traced out to the qubit of interest and the thickness is proportional to the
distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q 5 Yorktown (bottom panels), respectively.

mentioned before, due to statistical fluctuations the distance
cannot be resolved below the order O(10−3). Therefore, it is
sensible to compare the entries in the tables to this order of
magnitude. For all qubits in both Tenerife and Yorktown, the
distances obtained are mostly one order of magnitude larger
[of order O(10−2)], with the largest of order O(10−1) for
qubit 3 of Tenerife. This suggests that pairwise influence and
crosstalk do exist. This is important to take into account when
we analyze results of measurement, and this suggests that
by adopting the two-qubit detector model the measurement
result may be further improved than using just the single-
qubit detector model. In the upper panels of Fig. 2 we can
see that the result for qubit 3 measured individually differs
significantly from that conditioned on qubit 2. This suggests
possible influence on qubit 3 by qubit 2. Further discussion on
the implications from the other comparison schemes is given
in Appendix B.

We comment that we also performed three-qubit detector
tomography on certain subsets of qubits. These could poten-
tially be used in measurement error mitigation, e.g., in the
circuit of Greenberger-Horne-Zeilinger production, similar to
the two-qubit detector tomography for the Bell-state circuits
below. But we do not present those results here.

C. Error analysis

1. Nonparametric bootstrap approach

Following the nonparametric bootstrap error analysis [23],
we evaluate the uncertainty in the parameters by first ob-
taining different estimates from resampled data sets of ex-
perimental data and calculating statistics of these estimates.

In our analysis each experiment was repeated 100 times,
each time with 8192 shots on the IBM Q devices. This
gives us effectively 819 200 shots, from which the result
is calculated using MLE. To evaluate an uncertainty in this
result, we resample the set of 100 runs with replacement to
obtain new sets of experimental data. These sets are of the
same size (100) as our original data set and from each we
can calculate a new estimate of the result. The assumption
supporting the method of nonparametric bootstrap is that the
resampled data will approximate the true probability distribu-
tion and their distribution allows one to study the confidence
region for the estimated parameters. Since our experiments
involve large numbers of repetitions, each of which is assumed
independent of the others, by the central limit theorem the
distribution of the observed frequency of a given outcome
can be approximated by a Gaussian distribution. The fitted
detector parameters are linear in the observed frequencies and
consequently their distributions will be similar to Gaussian.
This enables one to associate the confidence interval of one
parameter with the standard error in its estimated value. For a
single parameter following Gaussian distribution, the interval
within 1.96 standard errors of the estimate contains the true
value with probability 95%. The standard deviation across the
bootstrap resampled data sets is an estimate of the standard
error in the fitted parameter from the original sampled data.

Therefore, the standard deviation of the estimates from
resampled data sets gives a scale for the uncertainty in our
result. We generated 100 resampled data sets for each exper-
iment. For some selected cases we tried more (up to 1000)
resampled data sets, which gave similar standard deviation to
that from 100 resampled data sets. Therefore, we believe the
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FIG. 4. The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by tracing out another qubit in
a two-qubit detector while that on the right is from pairwise parallel measurement. The tables contain the distances between these two: the
entry in the ith row and jth column is the distance between the single-qubit detector of qubit i conditioned on qubit j and that for qubit i
obtained from pairwise parallel measurement. Values between 0.01 and 0.1 are highlighted in blue and those above 0.1 are highlighted in
green. The right panels are schematic influence diagrams where each arrow points from the qubit traced out to the qubit of interest and the
thickness is proportional to the distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q 5 Yorktown (bottom
panels), respectively.

standard deviation from 100 resampled data sets can represent
the fluctuations well. The estimated statistical fluctuations in
the parameters of the obtained detector models are typically
of order O(10−4), with some exceptions of order O(10−3) (see
Tables V and VI). This would cause fluctuations of order up
to O(10−3) in the distance between two �a(0) vectors.

2. Hessian approach

In addition to bootstrap, the authors of [19] used likelihood
ratio confidence regions [24] to define an error bar in the
following way:

� f =
√

c(∇ f )† · H−1 · (∇ f ), (10)

where f is a function of the fitted parameters, H is the Hessian
matrix without any redundancy in the parameter space, and the
constant c is the argument for the cumulative density function
of the normal distribution when its value reaches the desired
confidence (e.g., 95%). This definition relies on the Gaussian-
like likelihood function and the fact that in GST there are no
constraints on the fitted parameters. As discussed previously it
is reasonable to assume Gaussian distribution for the detector
parameters, but the latter statement is not true in QDT. Specif-
ically the operators in a POVM must be positive semidefinite.
When the constraint |a(0)

0 |2 � ∑3
i=1 |a(0)

i |2 is close to being
saturated, the distribution will be non-Gaussian. Note that
normalization is not a constraint if we remove the redundancy
in the parameters. For example, in the single-qubit detector
case one only considers the parameter space formed by �a(0)

since �a(1) = (1, 0, 0, 0) − �a(0). Under the positivity constraint
the detector parameters are not completely independent and

the distribution may be distorted from Gaussian. However,
we argue that if the distribution of each parameter has a
narrow peak we may overlook the constraint and still use
the definition to quantify the uncertainty in our estimates. We
calculate this quantity for the detector parameters and find that
most of the time the result agrees in order of magnitude with
the fluctuation estimated using the nonparametric bootstrap.
In the rarer cases where the nonparametric bootstrap produces
fluctuations of order O(10−3) instead of O(10−4), estimates
from this definition are still of order O(10−4). This discrep-
ancy is likely to arise from ignoring the positivity constraint.

IV. APPLICATION OF CHARACTERIZED DETECTORS:
INFERRING IDEAL DETECTION

Given the characterized detectors, one should be able
to infer from the existing measurement data the “correct”
joint distribution P(n0,n1,...,nN−1 ) of obtaining N-qubit outcomes
(n0, n1, . . . , nN−1) in the ideal computational basis to some
extent. Assuming there is no detector crosstalk,

P̃(n0,n1,...,nN−1 ) = Tr
(
ρ �̃

n0
[0] ⊗ �̃

n1
[1] ⊗ . . . ⊗ �̃

nN−1
[N−1]

)

= Tr

⎡
⎣ρ

N−1∏
j=0

⎛
⎝

3∑
q=0

a
(n j )
q,[ j]σq,[ j]

⎞
⎠

⎤
⎦, (11)

where [ j] denotes the jth physical qubit in the device;
we use P̃(n0,n1,...,nN−1 ) to denote the experimental distribution
and P(n0,n1,...,nN−1 ) to denote the ideal distribution. And when
|a(n)

1 |, |a(n)
2 | � |a(n)

3 |, which is the case in the IBM quantum
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computers, Eq. (11) becomes approximately

P̃(n0,n1,...,nN−1 ) ≈ Tr

⎡
⎣ρ

N−1∏
j=0

(
a0,[ j] + a

(n j )
3,[ j]σ3,[ j]

)
⎤
⎦

=
∑

(m0,m1,...,mN−1 )

P(m0,m1,...,mN−1 )

×
N−1∏
j=0

(
a

(n j )
0,[ j] + (−1)mj a

(n j )
3,[ j]

)

≡
∑

�m
M�n; �mP�m, (12)

where summation over �m runs through all possible outcomes.
Moreover, M is a left-stochastic matrix and its matrix ele-
ments are given by

M�n; �m ≡
N−1∏
j=0

(
a

(n j )
0,[ j] + (−1)mj a

(n j )
3,[ j]

)
. (13)

This can be used to invert the relation to obtain P�m. We remark
that the matrix M is equivalent to the transition matrix in [25],
where it is estimated by preparing and measuring the classical
states instead of using QDT data. A similar idea was proposed
by the IBM group [26]. We remark that obtaining this matrix
from detector tomography data becomes inefficient for a large
number of qubits because the number of experiments needed
grows exponentially with the number of qubits.

However, a problem is that the resultant P�m by direct
inversion may have negative components. Similar issues were
also addressed in [18], and dealt with by setting a cutoff. In the
near-term devices (e.g., IBM Q 5 Yorktown in Sec. IV), this
problem is very likely to occur due to statistical fluctuations
in measured frequencies. Another way to obtain P�m circum-
venting the negativity problem is to minimize the distance
squared, |MP − P̃|2, subject to the constraints of positivity
and normalization. This is a quadratic programming problem,
the objective function of which is convex (and the solution of
which can be found in polynomial time using the ellipsoid
method). In Sec. IV we demonstrate this procedure using
a built-in function in the PYTHON package SCIPY [27]. We
stress that this correction procedure only serves as an easy
first-step mitigation, which does not have the full power of
QST using characterized detectors. The advantage is that one
only needs the measured frequencies for all outcomes in the
computational basis and no further experiments are needed.

We remark that this conclusion is based on the assumption
that �̃

(n j )
[ j] ≈ a

(n j )
0,[ j]1 + a

(n j )
3,[ j]σ3,[ j]. The situation will be com-

plicated when there are non-negligible components a1 and a2,
in which case a trick can be used if we can run additional
circuits, which are the same as before except with additional
Pauli Z gates at the end. This is similar to the idea behind the
error mitigation scheme in [28]. The gates added to the end
are of the form

Z ( �K ) ≡
N−1∏
i=0

σ
Ki
3,[i], (14)

where �K is a binary string of length N that denotes whether
there is a Pauli Z gate on each qubit in the device. Given a
particular �K , the probability is given by

P̃�n( �K ) = Tr

⎡
⎣Z ( �K )ρZ ( �K )

N−1∏
j=0

⎛
⎝

3∑
q=0

a
(n j )
q,[ j]σq,[ j]

⎞
⎠

⎤
⎦

= Tr

⎧⎨
⎩ρ

N−1∏
j=0

[(
a

(n j )
0,[ j] + a

(n j )
3,[ j]σ3,[ j]

)

+ (−1)Kj
(
a

(n j )
1,[ j]σ1,[ j] + a

(n j )
2,[ j]σ2,[ j]

)]
⎫⎬
⎭. (15)

There are 2N different �K’s, including the original circuit with
the probability given by Eq. (11). Adding up P̃�n( �K )’s cancels
the terms involving a1 and a2, and their average gives the
probability in Eq. (12).

Crosstalk between qubits can further complicate the situ-
ation. Let us again make the assumption that in Eq. (2) only
coefficients involving Pauli indices i = 0 and 3 dominate, i.e.,
c(�n)
�i ≈ 0 for all the �i’s with any entry equal to 1 or 2. Now the

probability is

P̃�n =
∑

i0=0,3

. . .
∑

iN−1=0,3

c(�n)
�i Tr

(
ρσi0 ⊗ . . . ⊗ σiN−1

)

=
∑

i0=0,3

. . .
∑

iN−1=0,3

c(�n)
�i

∑
�m

(−1) �m·�i/3P�m

=
∑

�m
M̂�n; �mP�m, (16)

where M̂ is given by

M̂�n; �m =
∑

�I
c(�n)

�I (−1) �m·�I/3. (17)

Although �I = (i0, . . . , iN−1) has the same expression as �i,
we distinguish between them because each component of �I
is equal to 0 or 3. Note the summation only runs through
these �I’s. We can use the same procedure to extract the ideal
distribution P�m. Moreover, if the assumption that c(�n)

�i ≈ 0 for

all the �i’s with any entry equal to 1 or 2 does not hold, we can
still use the average procedure by running additional circuits
with gates (14) appended to the original circuits.

Using characterized detectors

We demonstrate how to apply the characterized detectors
in a simple real-life experiment for a first-step correction,
without carrying out QST, as described in Sec. II. First we
applied a Hadamard gate on qubit 3, and then a controlled-
NOT (CNOT) gate on qubits 3 (condition) and 4 (target) in
IBM Q 5 Yorktown, followed by measurement of all qubits.
The resultant state, in the perfect scenario, should be a Bell
state between qubits 4 and 3, (|00〉43 + |11〉43)/

√
2. The ideal

probability distribution will be P00000 = P11000 = 0.5 with all
other components of P�n equal to zero. The circuit was repeated
for 50 runs, each run with 8192 shots. The largest two compo-
nents are P̃00000 = 0.466 and P̃11000 = 0.422, with the others
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TABLE II. Measured frequencies in comparison with those after inversion with cutoff at zero and with those after minimizing |MP − P̃|2
for (a) a two-qubit Bell state 1√

2
(|00〉 + |11〉) on IBM Q 5 Yorktown. The experiment was repeated for 50 runs, each run with 8192 shots. The

leftmost column is the qubits operated on and measured.

Qubits of interest Control-target Data type P00 P01 P10 P11 |MP − P̃|
0, 1 0-1 Experiment 0.470 0.040 0.054 0.436

Inversion 0.489 0.003 0.0 0.509 0.0055
Optimization 0.490 0.001 0.0 0.509 0.0053
Uncertainty 0.0018 0.0014 0.0014 0.0016

3, 4 3-4 Experiment 0.481 0.031 0.041 0.448
Inversion 0.480 0.024 0.0 0.497 0.0158
Optimization 0.483 0.019 0.0 0.498 0.0150
Uncertainty 0.0013 0.003 0.003 0.0012

ranging from zero to the order 0.01 (P̃00001 = 0.013, P̃01000 =
0.042, P̃10000 = 0.032, P̃11001 = 0.011). Direct inversion gives
some negative entries in P�n. An immediate technique is setting
any negative entry to zero, and then renormalizing P�n. This
results in the two largest components being P̃00000 = 0.479
and P̃11000 = 0.498, with the biggest among the others of the
order 0.01. We then turn to maximizing |MP − P̃|2 subject
to constraints of positivity and normalization. We argue that
this method is more desirable because it avoids setting some
arbitrary small value as the cutoff. This was done using the
optimization function “optimize.minimize” in the PYTHON

package SCIPY, with the sequential least-squares programming
(SLSQP) method. The tolerance parameter “ftol” was set
to 10−20 and optimization was typically done after between
300 and 400 iterations. First we apply Eq. (12) with detec-
tor parameters obtained from individual measurement. The
“corrected” P�n has two dominant components, P00000 = 0.493
and P11000 = 0.507, with all the other components of the
order O(10−17). We evaluate the uncertainty by combining
the uncertainties in the entries of M [as in Eq. (12)] and the
statistical fluctuations in the measured probabilities P̃�n. The
estimated uncertainties in the entries of P�n vary in magnitude,
with the largest of the order O(10−3) (in particular, the un-
certainties in P00000 and P11000 are 0.002 and 0.0018, respec-
tively). We repeat this analysis using detector parameters ob-
tained from parallel measurement, which gives P00000 = 0.495
and P11000 = 0.505 and the other components of the order
O(10−17). The estimated uncertainties in the entries of P�n are
of the order O(10−3) or less (in particular, the uncertainties
in P00000 and P11000 are 0.0012 and 0.0010, respectively). We
would like to stress that our experiment involves applying
CNOT on a particular state (i.e., |0+〉43), which does not fully
capture the errors that the CNOT gate can cause and therefore
does not reflect the overall fidelity of CNOT gate. It would
require full QPT to characterize the CNOT gate.

When a number nexp of qubits are operated on in an experi-
ment, the matrix M̂ in Eq. (16) used for error mitigation needs
to characterize the same qubits involved in the experiment.
To obtain this information, without making the assumption
of the qubits being independent of each other, one should
use the nexp-qubit detector model to carry out the detector to-
mography. The reason is that in such a tomography procedure
exactly the same qubits as those in the experiment are turned
on, so that the crosstalk between detectors will be captured.

To demonstrate the use of the double-qubit detector model,
we prepare a Bell state on two qubits using the Hadamard
gate and CNOT gate, followed by measuring only the two
qubits involved. It is worth noting that the CNOT gates used
respect the connectivity of the qubits in the real machine, so
that we know which qubits are actually operated on. We list
the measured frequencies in comparison with their corrected
versions in Table II. It is clear that with the first-step correction
P00 and P11 are brought closer to the ideal value 0.5, and their
difference is reduced. We also note that the direct inversion
with cutoff at zero and the optimization using SLSQP give
similar results.

V. GATE SET TOMOGRAPHY

Here we provide results of the GST analysis we carry out
on the two IBM machines. We begin with a brief review of
the GST scheme developed in [18,19]. A gate set in GST
is defined as the collection of an unknown initial state ρ, a
set of unknown completely positive trace preserving (CPTP)
gates {Gk}, and a two-outcome unknown POVM {E ,1 −
E}. The first step is called “linear GST,” which broadly
speaking is to express the gate set in some arbitrary basis.
Taking the Hilbert-Schmidt space of matrices on the original
Hilbert space as the new vector space, the expressions are the

TABLE III. Single-qubit detector results by using GST on
IBM Q 5 Tenerife, measured for all five qubits in parallel.
However, if we perform the same GST only on qubit 3, then
we obtain �a(n3=0) = (0.5182, 0.0036, 0.0022, 0.4449) and �a(n3=1) =
(0.4818, −0.0036, −0.0022, −0.4449).

Qubit Operator a0 a1 a2 a3

0 �(0) 0.5292 −0.0116 0.0021 0.4707
�(1) 0.4708 0.0116 −0.0021 −0.4707

1 �(0) 0.5491 0.0046 0.0058 0.4594
�(1) 0.4509 −0.0046 −0.0058 −0.4594

2 �(0) 0.5183 0.0013 −0.0063 0.4816
�(1) 0.4817 −0.0013 0.0063 −0.4816

3 �(0) 0.4521 0.0064 0.0061 0.4520
�(1) 0.5478 −0.0064 −0.0061 −0.4520

4 �(0) 0.5006 0.0082 0.0079 0.4370
�(1) 0.4994 −0.0082 −0.0079 −0.4370
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TABLE IV. Single-qubit detector results by using GST on IBM
Q 5 Yorktown, measured for all five qubits in parallel.

Qubit Operator a0 a1 a2 a3

0 �(0) 0.5074 −0.0307 −0.0298 0.4847
�(1) 0.4926 0.0307 0.0298 −0.4847

1 �(0) 0.5107 0.0078 0.0061 0.4892
�(1) 0.4893 −0.0078 −0.0061 −0.4892

2 �(0) 0.5131 0.0230 0.0229 0.4858
�(1) 0.4869 −0.0230 −0.0229 −0.4858

3 �(0) 0.5137 0.0170 0.0136 0.4858
�(1) 0.4863 −0.0170 −0.0136 −0.4858

4 �(0) 0.5206 0.0171 0.0139 0.4789
�(1) 0.4794 −0.0171 −0.0139 −0.4789

following:

1̃ =
∑

j,k

〈〈E |FjFk|ρ〉〉,

ˆ|ρ〉〉 = 1̃
−1 ∑

j

〈〈E |Fj |ρ〉〉,
(18)

〈 ˆ〈E | =
∑

k

〈〈E |Fk|ρ〉〉,

Ĝi = 1̃
−1 ∑

j,k

〈〈E |FjGiFk|ρ〉〉,

|ρ〉〉 and 〈〈E | are vectorized versions of ρ and E , respectively,
and {Fj} is a set of gates (acting on vectorized versions of
density matrices and POVM) with which the initial state and
the measurement will be informationally complete, respec-
tively. The inner products in these equations are obtained from
experiments. This can only determine the gate set up to a
transformation

ρ = Mρ̂,

E = ÊM−1, (19)

Gi = MĜiM
−1,

where M is some invertible matrix. This freedom was termed
the “gauge” by the authors of [18], and can be removed by try-
ing to match the gate set towards some target. Long sequences
of gates are used in experiments so as to capture the amplified
gate parameter errors and thus achieve better characterization
of a certain subset of gates {Gk}, called “germs.” However,
state preparation and measurement (SPAM) parameter errors
cannot be amplified. The full GST analysis in [19] can be sum-
marized as follows: (1) linear GST for the first estimate, (2)
gauge optimization to match the target gate set, (3) iteratively
adding data for χ2 minimization to avoid local minima, and
(4) final MLE analysis and gauge optimization.

Results of single-qubit detector characterization from GST

We also used GST and ran corresponding circuits on IB-
MQx4, with the standard gate set G = {Gx = Rx(π/2), Gy =

TABLE V. Single-qubit detector results for IBM Q 5 Tenerife (a) measured individually for each physical qubit leaving the other qubits
idle and (b) measured for all five qubits in parallel.

(a) Individual measurement.
Qubit Operator a0 a1 a2 a3

0 �(0) 0.590(2) −0.006(3) −0.0063(4) 0.3562(5)
�(1) 0.410(2) 0.006(3) 0.0063(4) −0.3562(5)

1 �(0) 0.544(1) 0.001(3) 0.0008(3) 0.4059(5)
�(1) 0.456(1) −0.001(3) −0.0008(3) −0.4059(5)

2 �(0) 0.5427(5) −0.0179(9) −0.0173(5) 0.4294(4)
�(1) 0.4573(5) 0.0179(9) 0.0173(5) −0.4294(4)

3 �(0) 0.5381(5) −0.003(1) −0.0030(4) 0.4054(4)
�(1) 0.4619(5) 0.003(1) 0.0030(4) −0.4054(4)

4 �(0) 0.521(1) −0.012(2) −0.0122(4) 0.3798(4)
�(1) 0.479(1) 0.012(2) 0.0122(4) −0.3798(4)

(b) Parallel measurement.
Qubit Operator a0 a1 a2 a3

0 �(0) 0.587(2) −0.000(3) −0.0001(4) 0.3618(5)
�(1) 0.413(2) 0.000(3) 0.0001(4) −0.3618(5)

1 �(0) 0.5483(8) 0.006(2) 0.0053(4) 0.4116(4)
�(1) 0.4517(8) −0.006(2) −0.0053(4) −0.4116(4)

2 �(0) 0.5329(5) −0.0065(7) −0.0064(5) 0.4430(5)
�(1) 0.4671(5) 0.0065(7) 0.0064(5) −0.4430(5)

3 �(0) 0.4535(8) 0.002(1) 0.0023(4) 0.4229(5)
�(1) 0.5465(8) −0.002(1) −0.0023(4) −0.4229(5)

4 �(0) 0.522(1) 0.000(2) −0.0002(4) 0.3975(4)
�(1) 0.478(1) −0.000(2) 0.0002(4) −0.3975(4)
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TABLE VI. Single-qubit detector results for IBM Q 5 Yorktown (a) measured individually for each physical qubit leaving the other qubits
idle and (b) measured for all five qubits in parallel.

(a) Individual measurement.
Qubit Operator a0 a1 a2 a3

0 �(0) 0.545(2) −0.013(2) −0.012(3) 0.424(3)
�(1) 0.455(2) 0.013(2) 0.012(3) −0.424(3)

1 �(0) 0.530(2) 0.003(1) 0.0028(5) 0.4625(5)
�(1) 0.470(2) −0.003(1) −0.0028(5) −0.4625(5)

2 �(0) 0.5159(2) 0.0007(3) 0.0005(4) 0.4788(4)
�(1) 0.4841(2) −0.0007(3) −0.0005(4) −0.4788(4)

3 �(0) 0.534(1) 0.003(1) 0.0029(4) 0.4600(5)
�(1) 0.466(1) −0.003(1) −0.0029(4) −0.4600(5)

4 �(0) 0.5181(6) 0.001(4) 0.0004(4) 0.4417(4)
�(1) 0.4819(6) −0.001(4) −0.0004(4) −0.4417(4)

(b) Parallel measurement.
Qubit Operator a0 a1 a2 a3

0 �(0) 0.544(1) 0.016(1) 0.0163(4) 0.4130(4)
�(1) 0.456(1) −0.016(1) −0.0163(4) −0.4130(4)

1 �(0) 0.5199(3) 0.0115(3) 0.0109(4) 0.4703(4)
�(1) 0.4801(3) −0.0115(3) −0.0109(4) −0.4703(4)

2 �(0) 0.5181(2) 0.0320(3) 0.0318(3) 0.4749(4)
�(1) 0.4819(2) −0.0320(3) −0.0318(3) −0.4749(4)

3 �(0) 0.5304(4) 0.0244(3) 0.0250(3) 0.4634(4)
�(1) 0.4696(4) −0.0244(3) −0.0250(3) −0.4634(4)

4 �(0) 0.5149(2) 0.0121(1) 0.0121(4) 0.4594(4)
�(1) 0.4851(2) −0.0121(1) −0.0121(4) −0.4594(4)

Ry(π/2), GI = 1} for the state preparation and measurement
fiducials. GST is particularly well suited for characterizing
gates but less so for state preparation and measurement.
However, it still provides a good comparison for detector
tomography without the bias of assuming high-fidelity gate
and state preparation. To run the GST with a long sequence
requires a large number of different circuits to run. Since
we are only interested in the detectors, we only choose
{GI} to be the germs and only of six different lengths,
i.e., [1,121,241,361,481,601]. (Our other motivation was to
capture some simple relaxation or decoherence from the de-
cohered identity operation; see also Appendix E.) Even for
such a simple setup, there are 272 different circuits to run
(compared to just six for QDT). For each we take 8192 shots
to obtain statistics. Ideally, we could have included Gx and Gy

in the set of germs, but it will require many more circuits to
run.

We use the PYGSTI package (version 0.9.6) of PYTHON to
analyze the data. We first run linear-inversion GST without
using the long-sequence circuits to obtain an initial estimate.
We perform the gauge optimization by setting gate param-
eters to be trace preserving (TP). If the obtained POVMs
for the detectors are not positive, we repeat the analysis by
additionally setting a nonzero SPAM penalty factor (typically
from 0.3 to 0.5) so as to obtain positive POVMs. We then
project the gates (this does not modify characterization of
the initial state or measurement POVMs) to be CPTP. Using
such an initial estimate, we then run the long-sequence GST
(LSGST), which takes into account long-sequence circuits by

performing iterative maximum likelihood by including longer
sequences successively. Since we are concerned mostly with
the detectors’ POVMs, if the obtained POVMs after LSGST
are not positive, we will repeat gauge optimization by setting
the SPAM penalty factor.

The circuits for GST were done in parallel for all five qubits
on both IBMQx2 and IBMQx4. The obtained detectors’
POVMs characterized by the above GST procedure are shown
in Tables III and IV. They agree within a few percent with
those using simple detector tomography earlier. The particular
qubit 3 of IBMQx4 also displays the unusual behavior that its
detector a(n=0)

0 = 0.4521 is smaller than a(n=1)
0 = 0.5479 in

parallel measurement together with other qubits.
We then performed individual GST procedure only for the

qubit 3 (leaving all other qubits idle), and obtain the detectors’
characterization �a(n3=0) = (0.5182, 0.0036, 0.0022, 0.4449)
and �a(n3=1) = (0.4818,−0.0036,−0.0022,−0.4449), which
is closer to what was obtained by simple detector tomography
on the qubit 3 individually with about 4% difference.

VI. CONCLUSION AND DISCUSSION

In summary we performed the standard quantum detector
tomography on the two devices IBM Q 5 Tenerife and IBM
Q 5 Yorktown, assuming negligible errors in the ground-state
preparation and the single-qubit gates used to prepare the
eigenstates of the three Pauli operators. Our resultant POVM
shows deviation from the ideal projectors {|0〉〈0|, |1〉〈1|}
and can be used for a first-order correction in experiments.
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(a)

(b)

FIG. 5. Visualizing the single-qubit detector parameters for the five qubits in IBM Q 5 Tenerife obtained by (a) individual measurement
and (b) parallel measurement. The parameters arx,y,z = a1,2,3. These are displayed for both �(1) and �(0).

We also found evidence of crosstalk between qubits in one
device. In particular, discrepancy was seen between indi-
vidual measurement and parallel measurement. We believe
adopting two- or more-qubit detector models can improve
the results further compared with assuming an independent
single-qubit detector model. To study that, more knowledge

about hardware is required. Some peculiar features were
observed in the qubit 3 of IBM Q 5 Tenerife that need further
investigation.

The peculiar behavior of the qubit 3 from simple QDT
agrees with that obtained from using a more sophisticated
approach of the GST. This method, in principle, is capable of
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(a)

(b)

FIG. 6. Visualizing the single-qubit detector parameters for the five qubits in IBM Q 5 Yorktown obtained by (a) individual measurement
and (b) parallel measurement. The parameters arx,y,z = a1,2,3. These are displayed for both �(1) and �(0).

deducing the initial state, gate operations, and measurement
POVMs in one go, by running various circuit sequences.
Our simple QDT relies on the assumption that the detector
error rate is higher than that of state preparation and simple
single-qubit gates.

We point out some directions for future work. Given
that the total number N of qubits can be large, com-
plete detector tomography will not be efficient. One can
consider employing compressed sensing, as done in the
state tomography [22]. On the other hand, since the
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FIG. 7. Detector spheres for qubits 0 to 13 of IBM Q 16 Melbourne (from left to right, the rows corresponding to qubits 0 to 3, 4 to 7, 8 to
11, and 12 and 13, respectively).

characterization of the triad—detector, state, and process—
forms a loop, there should be further improvement (to the
next order in error) on detector characterization, and then
on the state and process tomography, an idea similar to that
in [21].
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APPENDIX A: REVIEW OF QST AND QPT

1. Quantum state tomography

The idea of quantum state tomography was proposed [3,29]
early in the context of quantum optics using quasiprobability
distributions, and it has become a standard procedure in
measuring multiple qubits [4,5]. To infer the best estimate of
an unknown state ρ, one can choose a (over-)complete set of
POVM elements {�(i)} and obtain the data pρ,i = Tr(ρ�(i) )
from measurements. The approach was later extended to a
“hedged” version [30] and a mean Bayesian version [31] that
deal with certain drawbacks of MLE [32,33]. However, QST

requires O(3n) different measurement bases for n qubits, but
compressed sensing can be used to ameliorate this [22].

Nevertheless, quantum state tomography remains an indis-
pensable ingredient in characterizing small quantum systems,
and even a partial tomography (for some part of a larger sys-
tem) can also be useful when one is verifying some properties,
such as the existence of entanglement, that may not require a
complete global wave function. However, most of the descrip-
tion relies on the assumption that almost perfect projective
von Neumann measurements can be performed. Here, we will
consider a more realistic scenario where measurements are not
necessarily projective, as in, e.g., IBM quantum computers the
measurement errors of which are not negligible, of order 2–
5%. (See manufactures’ released data for devices’ properties,
e.g., on IBM Q Experience or Rigetti Computing, but some
useful information was listed in the Appendix of Ref. [34].)

2. Quantum process tomography

Related to state tomography is the characterization of a
quantum process, which may arise from application of a
gate or evolution of a system that possibly couples to its
environment. In the latter case, it is commonly considered in
the Markovian limit, and one arrives at the so-called master
equation for the system state ρ(t ) [2]:

dρ(t )

dt
= − i

h̄
[H, ρ] + L(ρ) (A1)

= − i

h̄
[H, ρ] +

∑
j
(2LjρL†

j − {L†
j L j, ρ}), (A2)

052315-14



DETECTOR TOMOGRAPHY ON IBM QUANTUM COMPUTERS … PHYSICAL REVIEW A 100, 052315 (2019)

FIG. 8. Qubit relaxation: probability p of measuring |1〉 vs a
time t , calculated using the identity gate from (a) best GST estimate
without imposing TP or CPTP condition, (b) projecting the identity
gate from (a) to be TP, and (c) projecting the identity gate from (a) to
be CPTP.

where H is the system Hamiltonian, and Lj’s are the Lindblad
operators, representing the effect of coupling to environment.
One can describe the change of ρ in a discrete time step
�t as a quantum process, ρ(t0) → ρ(t0 + �t ) = E (ρ). A
general quantum process E can be described by a set of Kraus
operators Ej , so that its action on ρ is E (ρ) = ∑

j E jρE†
j ,

where without loss of generality we can assume E to be
trace preserving:

∑
j E†

j E j = I , unless there is some loss or
leakage. The procedure to infer E is called quantum process
tomography, which is natural to consider given QST [2,6–
8]. It is possible to infer the quantum process because of
linearity, and if one applies (unknown) E to a complete
basis of a density matrix, e.g., |k〉〈l| → E (|k〉〈l|), then by
measuring the output the process can be determined [2].
The matrix element |k〉〈l| can be expressed in terms of a
linear combination of different states |ψ〉ψ | in, e.g., A1 ≡
{|0/1〉〈0/1|, |+/−〉〈+/−|, | ± i〉〈±i|} for one qubit, and thus
quantum process tomography uses quantum state tomography
as a subroutine. Instead of varying the input states over some
“complete” (or even overcomplete) set, such as A1 above,
one can also use a bipartite maximally entangled state |
〉AB,
where the party A corresponds to the system that will be acted
on by the process EA, and the party B acts as an ancillary role.
Then state tomography on the resulting bipartite system (after
A undergoing the process E) gives identical determination of
the process E [35].

However, in currently available small-scale quantum com-
puters, both measurement and state preparation have errors,
and if there is some separation of rates in these different types
of errors, as in IBM and Rigetti quantum computers, then we
can give better individual characterization.

APPENDIX B: TABLES AND FIGURES

We list Tables V and VI containing processed experimental
data. The error estimated for each parameter is typically of
the order O(10−4), with the largest error among them up
to 0.003. We adopt the precision according to the estimated
errors. To further demonstrate the crosstalk, we present the
comparisons between the single-qubit detector obtained by
tracing out the other qubit in a double-qubit detector and
the single-qubit detector obtained from parallel measurement
(Fig. 3) and pairwise parallel measurement (Fig. 4). We can
see that by tracing out one qubit in a pair the double-qubit
detector result is reduced to the single-qubit result obtained
from pairwise parallel measurement within statistical fluctu-
ations for most pairs. In Tenerife, one significant exception
is qubit 3’s detector under the influence of qubit 2’s detector,
and in Yorktown qubit 1’s detector is influenced by that of
qubit 2. This significant discrepancy could be a consequence
of basis-dependent influence, since in the two-qubit detector
the two qubits are treated independently whereas in pairwise
parallel measurement the operations on them are always the
same. We have seen in Fig. 2 signs of influence on qubit 3
by qubit 2. If qubit 2 is the single source of crosstalk, one
would expect the result for qubit 3 from parallel measurement
or pairwise parallel measurement to agree with the result
conditioned on qubit 2 (operating only qubits 2 and 3). From
the upper panels of Figs. 3 and 4, however, we can see that
this is not the case. In fact, the result for qubit 3 measured
in parallel with all the other qubits differs from any of the
results obtained by tracing out the other qubit from two-qubit
detectors. This could imply basis-dependent influence and/or
nontrivial correlation when several physical qubits are being
operated on.
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APPENDIX C: SCATTER PLOTS FOR
DETECTOR PARAMETERS

In Figs. 5 and 6, we present scattered plots for detector
parameters in IBM Q 5 Tenerife and in IBM Q 5 Yorktown
for 100 different runs. These are detector characterization
in higher-dimensional parameter space projected onto two-
dimensional cross sections. They show signs of separation
of the single-qubit detectors for different physical qubits in
the parameter space. For some cross sections, data from
different detectors seem to cluster to five groups (and their
corresponding “inverse”), e.g., panels 1 and 2 in Fig. 5(a)
(i.e., those involving parameter a). For others, the data seem
to all clump together, e.g., the fourth panel in Figs. 5(a) and
5(b) (i.e., those involving arx and ary, as these have small
values). The parameters of the vectors are the signatures of
the detectors. As they are not made identical (e.g., such as
atoms), they can differ slightly, despite the experimental effort
to make them as much identical to the ideal ones. These may
be of interest from the machine learning perspective to learn
the detectors, but this is beyond the scope of this paper.

APPENDIX D: QDT FOR IBM Q 16 MELBOURNE

For completeness, we present the detector tomography on
all 14 qubits of the IBM Q 16 Melbourne device. The results

are presented in the form of Bloch spheres in Fig. 7, done
via data taken in parallel for all 14 qubits. As in the other
machines, all detectors align pretty much along the vertical z
axis. We notice that the POVMs for qubit 3 have arrows that
are relatively shorter than all the rest. Its detectors have the
largest imperfection. We note that one can repeat individual,
pairwise, or triple characterization we discussed in the main
text, but we do not present them here.

APPENDIX E: RELAXATION FROM GST

Here we illustrate the relaxation from GST. Since in our
GST implementation we have only used the identity gate
GI = 1 in the germ set, we can examine whether the identity
operation, which is essentially letting the qubit idle, can allow
us to extract relaxation of a qubit in the excited state |1〉.
Since the circuits for the GST include a gate sequence such as
(GI )mGxGx, we already have the data for relaxation. Note that
(Gx )2 = iσx flips |0〉 to the excited state |1〉 and the m identity
gates represent an idling of m units of gate duration, including
gate and buffer times. The sequence measures relaxation. Let
us use qubit zero of ibmqx4 for illustration. Note that each
single-qubit gate duration, including the buffer time, is 70 ns.
The identity gate we obtained from GST before imposing the
TP or CPTP condition, expressed in the Pauli basis, is

GI =

⎛
⎜⎝

0.998699 0.001783 −0.001243 0.002354
−0.047276 1.044539 −0.065670 0.083989

0.030418 −0.068910 0.980521 −0.054349
0.049455 −0.093771 0.056438 0.904232

⎞
⎟⎠. (E1)

Note that the element (GI )α,β represents the amplitude that σβ is mapped to σα (with σ0 = 1), under the idling operation that is
supposed to be the identity gate. This allows us to extract a relaxation time T1 ≈ 29.5 μs. In Fig. 8(a), we show the probability
of obtaining |1〉 after first applying an ideal σx gate to |0〉 and then applying m (=120, 240, ..., etc.) such discrete identity
gates. The curve is an exponential decay fit to the discrete data. Since the obtained identity gate is not positive, using it to
simulate other process, such as T2 decoherence time, we would obtain some probability that is negative, an unphysical result
(not shown).

Projecting the gate to be TP, then the identity gate becomes

GI =

⎛
⎜⎝

1. 0. 0. 0.

−0.047276 1.044539 −0.065670 0.083989
0.030418 −0.068910 0.980521 −0.054348
0.049455 −0.093771 0.056438 0.904232

⎞
⎟⎠. (E2)

From simulating the relaxation using this identity gate, we extract a relaxation time T1 ≈ 43.2 μs; see Fig. 8(b). This value
differs about 50% with one obtained earlier without projecting the identity gate to be TP.

Projecting the gate to be CPTP, then the identity gate becomes

GI =

⎛
⎜⎝

1. 0. 0. 0.

0. 0.9731358 −0.02961343 0.08478270
0. −0.03283288 0.9433932 −0.05294062
0. −0.08548849 0.05312586 0.9170383

⎞
⎟⎠. (E3)

However, from this matrix, we cannot extract a meaningful relaxation time; see Fig. 8(c). Although it is out of the scope of this
paper, it will be interesting to see if one can characterize the identity gate (which lets the qubit idle) and obtain its correct CPTP
description that can describe relaxation or even dephasing.
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