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A quantum secret sharing scheme is a cryptographic protocol by which a dealer can share a secret among a
group of n players so that only certain subsets of players can recover the secret by collaboration. In this paper
we propose communication efficient quantum threshold secret sharing schemes. They minimize the amount of
quantum communication required to reconstruct the secret when more than the necessary number of players
collaborate. They are based on a class of staircase codes proposed by Bitar and El Rouayheb. In a standard
((k, n)) quantum threshold scheme, any subset of k or more players can recover the secret. The quantum
communication cost for reconstruction in such schemes is k qudits for each secret qudit. Using the proposed
construction, any subset of d � k players can also collaborate to recover the secret with a communication cost
of d qudits for d − k + 1 secret qudits. In other words, for the proposed schemes the quantum communication
cost is only d

d−k+1 qudits for every secret qudit. For d > k, proposed schemes are communication efficient with
respect to standard schemes; and when d = 2k − 1, the quantum communication cost is reduced by a factor O(k).
Further, when n = 2k − 1, the proposed schemes have optimal communication cost for secret reconstruction.
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I. INTRODUCTION

Quantum information enables cryptographic protocols that
are much more secure than their classical counterparts. The
most prominent example is that of quantum key distribu-
tion [1–3]. In recent years there has been significant research
in other cryptographic protocols such as quantum secure di-
rect communication [4,5], quantum private query [6,7], quan-
tum secret sharing [8–15], and many more. See the survey
articles [16–18] and references therein for more details.

A quantum secret sharing (QSS) scheme is a protocol by
which a dealer can distribute an arbitrary secret state (in an
encoded form) among n participants so that only authorized
subsets of participants can reconstruct the secret. The secret
can be a classical state as in [8] or quantum state as in [9,10].
The states distributed to the participants are called shares.
Following the distribution of the secret by the dealer, certain
subsets of the participants can, at a later time, recover the
secret.

A subset of parties that can reconstruct the secret is called
an authorized set. Any subset of parties that has no infor-
mation about the secret is called an unauthorized set. In this
paper we are only interested in perfect secret sharing schemes
where a subset is either authorized or unauthorized. In the
reconstruction phase, the participants of an authorized set pool
their shares together and recover the secret. Alternatively, the
participants could communicate their shares to a third party
or user, called the combiner, whose job is to recover the
secret from the data communicated to the combiner. In this
model, a metric of interest is the amount of communication
between the participants and the combiner. The amount of
communication from the participants to the combiner is called
the communication cost. In this paper we focus on reducing
the quantum communication cost during recovery.

In this paper we initiate the study of communication
efficient quantum secret sharing schemes for quantum secrets,
opening a new avenue for further research in quantum secret
sharing. We propose schemes which aim to minimize the
communication cost of QSS schemes. While the problem of
communication cost in classical secret sharing schemes was
studied previously, see [19–24], the corresponding problem
for quantum secret sharing schemes has not been studied thus
far. Quantum secret sharing has become experimentally viable
and there are many demonstrations; see, for instance, [25–32].
However, quantum information is still an expensive resource,
and clearly, we would like to reduce the cost of storing and
transmitting it. Our results should be of interest to experimen-
talists as well.

The collection of authorized sets is called the access struc-
ture (denoted as �) of the secret sharing scheme. We focus
on an important class of QSS schemes, namely, the ((k, n))
quantum threshold schemes (QTSs) where n � 2k − 1 and
any subset of t participants with k � t � n can reconstruct
the secret.

Contributions. Based on the staircase codes proposed by
Bitar and El Rouayheb [19], we propose a class of quantum
threshold secret sharing schemes that are also communication
efficient. In the standard model of quantum secret sharing,
sharing a secret of one qudit using a ((k, 2k − 1)) threshold
scheme requires k qudits to be communicated to reconstruct
the secret. In the proposed schemes, we can recover the secret
of m = d − k + 1 qudits by communicating d qudits where
k � d � 2k − 1, in average d

d−k+1 qudits for every qudit in
secret. Note that d is fixed and m is dependent on the choice
of d . Further, we show that these schemes are optimal with
respect to communication cost in the given model of quantum
secret sharing. When d = k, the proposed schemes reduce to
the standard quantum threshold schemes.
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Previous work. The closest work related to ours appears to
be that of [33] who also aimed at reducing the communica-
tion cost in quantum secret sharing schemes. However, there
are important differences: their work uses a combination of
nonperfect secret sharing schemes along with a hybrid QSS
scheme. A hybrid QSS scheme is one in which participants
have (partly or wholly) classical shares. Our schemes in
contrast are purely quantum in that no share is classical. The
work in [33] is concerned with the communication cost of the
secret sharing schemes during distribution of the (encoded)
secret more than the cost during reconstruction, which is our
focus here.

Our results have a bearing on hybrid schemes also. The
schemes we propose here can be adapted to improve the quan-
tum communication cost of hybrid schemes. Since a hybrid
scheme consists of both classical and quantum components,
we might expect that in general that a fully quantum version
of the scheme would be much more secure than the hybrid
version. For instance, one of the components of the hybrid
secret sharing scheme in [33] is a classical secret sharing
scheme. We can replace this classical component by quantum
secret sharing giving us a much more secure protocol.

Scope of the work. In this paper we focus on reducing the
quantum communication cost for the recovery of the secret.
Other metrics such as the cost of distributing the shares, classi-
cal communication, and computational costs due to encoding
and reconstruction of the secret are not considered in this
paper. We also do not consider eavesdropping detection.

The quantum communication cost during the share dis-
tribution stage of the proposed schemes is the same as that
of standard QSS schemes such as [9,10]. Since the proposed
schemes do not involve any classical shares, they do not incur
any classical communication cost. The encoding complexity
of our schemes is comparable to that of the standard schemes
in [9]. The decoding complexity is also comparable to that of
the scheme in [9] when we use minimal authorized sets for
recovery. However, while using nonminimal authorized sets,
we expect the decoding complexity to be lower than that of
standard threshold schemes.

Our paper is organized as follows. In Sec. II, we provide the
intuition behind our protocol by considering a simple example
that illustrates how standard QSS schemes can be improved
with respect to their communication cost. Then in Sec. III,
we give the proposed schemes. In Sec. IV, we prove the
optimality of the proposed schemes and conclude in Sec. V.

II. MOTIVATING EXAMPLE

The intuition behind the communication efficient secret
sharing schemes lies in using a nonminimal authorized set to
recover the secret. (An authorized set is said to be a minimal
authorized set if every proper subset of the authorized set is
unauthorized.)

Let Fq denote the finite field with q elements. Consider the
ternary ((2,3)) quantum threshold scheme proposed by Cleve
et al. [9]. In this scheme, the secret state s ∈ F3 is encoded
into three qudits as

|s〉 �→ 1√
3

2∑
r=0

|r〉A |s + r〉B |2s + r〉C , (1)

where one qudit each is given to parties A, B, and C. (The
notation |i〉 | j〉 stands for the tensor product |i〉 ⊗ | j〉.) In order
to reconstruct the secret we need to communicate two qudits
to the combiner.

We propose an alternate ((2,3)) quantum threshold scheme
where we can obtain better communication costs. In this
scheme, the secret is an arbitrary state from a Hilbert space of
dimension nine. For each basis state |s1, s2〉 where (s1, s2) ∈
F2

3 , the encoding is as follows:

|s1, s2〉 �→
∑

r1,r2∈F3

|s1 + r1, r2〉A
|s2 + r1, r1 + r2〉B

|s1 + s2 + r1, r1 + 2r2〉C ,

(2)

where we have ignored the normalizing factors and the tensor
product |i〉 ⊗ | j〉 is also written as |i, j〉 or one above the other
as |i〉

| j〉. In this scheme, the secret of two qudits is encoded into
six qudits, equivalently each secret qudit is encoded into three
qudits as in the scheme of [9], see Eq. (1).

Let us look at the reconstruction of the secret from the four
qudits of the first two participants A and B from the state as
given in Eq. (2). The reconstruction steps are similar for other
choices of two participants as well. (Values of qudits which
have changed after each operation are indicated in bold.)

In the secret recovery, we need the generalized CNOT gate,
namely, the ADD gate, see [34], defined as follows:

ADD |i〉c | j〉t → |i〉c |i + j〉t . (3)

The inverse of this gate is denoted ADD† and it acts as follows:

ADD† |i〉c | j〉t → |i〉c | j − i〉t , (4)

If we apply ADD† on the second qudits of A and B, i.e.,
ADD† |r2〉A |r1 + r2〉B we obtain the following state:

∑
r1,r2∈F3

|s1 + r1, r2〉A
|s2 + r1, r1〉B

|s1 + s2 + r1, r1 + 2r2〉C .

Next we apply ADD† on the second qudit of B and first qudit of
A, i.e., ADD† |r1〉B |s1 + r1〉A. This gives us the following state:

∑
r1,r2∈F3

|s1, r2〉A
|s2 + r1, r1〉B

|s1 + s2 + r1, r1 + 2r2〉C .

Then we apply ADD† on the second qudit and first qudit of B,
i.e., ADD† |r1〉B |s2 + r1〉. This gives the following state:

∑
r1,r2∈F3

|s1, r2〉A |s2, r1〉B
|s1 + s2 + r1, r1 + 2r2〉C .

Rearranging the qudits, we obtain

|s1〉A |s2〉B

∑
r1,r2∈F3

|r2〉A |r1〉B |s1 + s2 + r1〉C |r1 + 2r2〉C .

This does not end the reconstruction process because the
information about the secret could still be entangled with
the rest of the qudits and we may not be able to recover an
arbitrary superposition. Further steps are required to recover
an arbitrary secret completely. Let us now apply ADD† on the
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second qudits of A and B, i.e., |r2〉A |r1〉B. We obtain

|s1〉A |s2〉B

∑
r1,r2∈F3

|r2〉A |r1 + 2r2〉B
|s1 + s2 + r1〉C |r1 + 2r2〉C .

Next we transform the second qudits of B and A as
ADD |r1 + 2r2〉B |r2〉A,

|s1〉A |s2〉B

∑
r1,r2∈F3

|r1〉A |r1 + 2r2〉B
|s1 + s2 + r1〉C |r1 + 2r2〉C .

Next we transform as ADD |s2〉B |r1〉A followed by
ADD |s1〉A |s2 + r1〉A,

|s1〉A |s2〉B

∑
r1,r2∈F3

|s1 + s2 + r1〉A |r1 + 2r2〉B
|s1 + s2 + r1〉C |r1 + 2r2〉C .

Setting t1 = s1 + s2 + r1, we obtain the following state

|s1〉A |s2〉B

∑
t1,r2∈F3

|t1〉A |t1 + 2s1 + 2s2 + 2r2〉B

|t1〉C |t1 + 2s1 + 2s2 + 2r2〉C .

Setting t2 = t1 + 2s1 + 2s2 + 2r2, we obtain

|s1〉A |s2〉B

∑
t1,t2∈F3

|t1〉A |t2〉B |t1〉C |t2〉C .

At this point the secret is completely disentangled with
the rest of the qudits and the state of the remaining qudits is
independent of the secret, thereby ensuring we can recover an
arbitrary linear combination of basis states.

Let us recover the secret when we have access to all three
participants (they constitute a nonminimal authorized set). We
do not need to have access to all six qudits of the participants.
We need only the first qudit from each of three participants,
see Eq. (2).

First, we apply ADD† to |s2 + r1〉B |s1 + s2 + r1〉C obtain-
ing |s2 + r1〉B |s1〉C . Next, we have ADD† |s1〉C |s1 + r1〉A =
|s1〉C |r1〉A. Then we transform as ADD† |r1〉A |s2 + r1〉B, we
obtain the following state.∑

r1,r2∈F3

|r1, r2〉A |s2, r1 + r2〉B |s1, r1 + 2r2〉C .

Reordering the qudits, we have

|s1〉C |s2〉B

∑
r1,r2∈F3

|r1, r2〉A |r1 + r2〉B |r1 + 2r2〉C .

Once again the secret is completely disentangled from the
rest of the system and we are able to recover the secret using
only three qudits. However, note that in this case we are able
to recover a secret of two qudits. Had we used the ((2,3))
threshold scheme of [9], we would have needed four qudits
even when we allow access to all three participants. This
example demonstrates we can reduce the number of qudits to
be communicated when reconstructing the secret.

III. COMMUNICATION EFFICIENT QSS SCHEMES

A. Preliminaries

To specify a quantum secret sharing concretely, we give
the encoding for the basis states of the secret. Linearity can be
invoked to encode an arbitrary superposition of basis states.

An encoding E realizes a perfect quantum secret sharing
scheme with access structure � if it satisfies the following
constraints [26]:

(i) (Recoverability) Any set in � can recover the secret.
(ii) (Secrecy) Any set not in � has no information about

the secret.
To show recoverability, we explicitly show that the set

can recover the secret. To show secrecy, we show that the
complement of the set contains an authorized set. A quantum
secret sharing scheme is said to be a pure state scheme if it
encodes pure state secrets to global pure states.

Notation. We denote by ((k, n, d ))q a q-ary quantum
threshold scheme with n participants, where any k participants
can recover the secret and d is chosen to be a fixed integer such
that k � d � n. If d = k, then it is a standard ((k, n)) scheme.
If d > k, then the scheme is communication efficient if d
participants can recover the secret with lower communication
cost. We suppress the subscript for convenience and write it
as ((k, n, d )).

B. Encoding

We assume that the number of participants is n = 2k − 1
and fewer than k cannot recover the secret. Fix an integer k �
d � n, and a prime q > n. The secret contains m qudits where
each qudit is q-dimensional and

m = d − k + 1. (5)

Consider the vectors s = (s1, s2, . . . , sm) in
Fm

q and r = (r1, r2, . . . , rm(k−1)) in Fm(k−1)
q .

The vector r is further split into m vectors r1 =
(r1, r2, . . . , rk−1), r2 = (rk, rk+1, . . . , r2(k−1)), . . . rm =
(r(m−1)(k−1)+1, r(m−1)(k−1)+1, . . . , rm(k−1)). The vector r1 alone
is further split into two vectors with its first (k − m) values in
u and the remaining (m − 1) values in v.

Let x1, x2, . . . , xn be distinct nonzero elements from Fq.
Denote by Vn,d a Vandermonde matrix (over Fq) given as

Vn,d =

⎡
⎢⎢⎢⎢⎣

1 x1 . . . xd−1
1

1 x2 . . . xd−1
2

...
...

. . .
...

1 xn . . . xd−1
n

⎤
⎥⎥⎥⎥⎦, (6)

where x1, x2, . . . , xn are distinct nonzero elements from Fq,
known to all the parties involved. Let si, r j ∈ Fq, where 1 �
i � m and 1 � j � m(k − 1). We define the following matrix
Y .

(7)
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We also represent Y in a slightly compact form as follows:

(8)

Consider the matrix C = Vn,dY where Y is defined as in
Eq. (7). Each entry in matrix C, ci j is a function of s and r.
The encoding for the basis states (s1, . . . , sm) ∈ Fm

q is given
by E , where

E : |s1s2 . . . sm〉 �→
∑

r∈Fm(k−1)
q

2k−1⊗
i=1

|ci1ci2 . . . cim〉 , (9)

where we have omitted the normalizing factor. The qudits in
the share of the ith participant are indexed by i. The first share
contains the first m qudits, the second share contains the next
set of m qudits, and so on till the (2k − 1)th share.

C. Secret reconstruction and secrecy

Lemma 1. (Recoverability for nonminimal authorized sets).
For the encoding scheme given in Eq. (9), we can recover the
secret from any d shares by accessing only the first qudit in
each share.

Proof. We shall prove this by giving the sequence of
operations to be performed so that the d shares can recover
the secret with only d qudits. Each of the d participants
sends their first qudit to the combiner for reconstructing the
secret. Let D = {i1, i2, . . . , id} ⊆ {1, 2, . . . , 2k − 1} be the set
of d shares chosen and E = {id+1, id+2, . . . , i2k−1} be the
complement of D. Let VD and VE be the matrices containing
the rows of Vn,d corresponding to D and E respectively. Then,
Eq. (9) can be rearranged as∑

r∈Fm(k−1)
q

|ci1,1 ci2,1 . . . cid ,1〉 |cid+1,1 cid+2,1 . . . ci2k−1,1〉
|(ci1,2 ci2,2 . . . ci2k−1,2) . . . (ci1,m ci2,m . . . ci2k−1,m)〉 ,

where we have highlighted (in bold) the qudits accessed by
the combiner. Now using the fact that ci j is the product of the
ith row of Vn,q and jth column of Y and r = (r1, . . . , rm), we
can rewrite this as∑
r∈Fm(k−1)

q

|VD(s, r1)〉 |VE (s, r1)〉 |V (0, rk−m+1, r2)〉 · · ·
· · · |V (0, rk−1, rm)〉 .

Since VD is a d × d Vandermonde matrix of full rank, we can
apply V −1

D to the d qudits with the combiner to transform the
state as follows:∑
r∈Fm(k−1)

q

|s, r1〉 |VE (s, r1)〉 |V (0, rk−m+1, r2)〉 · · ·
· · · |V (0, rk−1, rm)〉 .

Then from Eq. (7) we have r1 = (u, v), and rk−m+ j = v j for
1 � j � m − 1, we can write

|s〉
∑

(v, r2, r3, ..rm )
∈ F k(m−1)

q

∑
u∈F k−m

q

|u〉 |v〉 |VE (s, u, v)〉 |V (0, v1, r2)〉 · · ·

· · · |V (0, vm−1, rm)〉 .

Since the combiner has access to |s〉, |u〉, and |v〉, we can
use the matrix VE , of rank k − m equal to the size of u, to
transform |u〉 to |VE (s, u, v)〉.

|s〉
∑

(v, r2, r3, ..rm )
∈ F k(m−1)

q

∑
u∈F k−m

q

|VE (s, u, v)〉 |v〉 |VE (s, u, v)〉

|V (0, v1, r2)〉 · · · |V (0, vm−1, rm)〉 .

Rearranging qudits |v〉 |VE (s, u, v)〉 to |VE (s, u, v)〉 |v〉,

|s〉
∑

(v, r2, r3, ..rm )
∈ F k(m−1)

q

⎛
⎝ ∑

u∈F k−m
q

|VE (s, u, v)〉 |VE (s, u, v)〉
⎞
⎠ |v〉

|V (0, v1, r2)〉 · · · |V (0, vm−1, rm)〉 .

Since E is of size (2k − 1 − d ), with Eq. (5), we see that
VE is a Vandermonde matrix of size (k − m) × d and rank
k − m < d . Therefore, the image of VE spans F k−m

q and∑
u∈F k−m

q
|VE (s, u, v)〉 |VE (s, u, v)〉 is independent of s. The

state can be written as

|s〉
∑

f ∈F k−m
q

| f 〉 | f 〉
∑

(v, r2, r3, ..rm )
∈ F k(m−1)

q

|v〉 |V (0, v1, r2)〉
. . . |V (0, vm−1, rm)〉 .

The secret is now completely disentangled from the rest of
the system, therefore even when the secret is an arbitrary
superposition we can recover the secret from d shares as
claimed. �

Lemma 2. (Recoverability for minimal authorized sets). For
the encoding scheme given in Eq. (9), we can recover the
secret by accessing (all) the qudits of any k shares.

Proof. For secret recovery from k shares, all the qu-
dits from each chosen share are sent to the user. Let K =
{ j1, j2, . . . , jk} ⊂ {1, 2, . . . , 2k − 1} be the set of k shares
chosen and L = { jk+1, jk+2, . . . , j2k−1} be the complement of
K . Let VK and VL be the matrices containing the rows of Vn,d

corresponding to K and L respectively. Then, grouping the
(ith) qudits of K and L, the encoded state in Eq. (9) can be
written as∑

r∈Fm(k−1)
q

|c j1,1 c j2,1 . . . c jk,1〉 · · · |c j1,m c j2,m . . . c jk,m〉
|c jk+1,1 c jk+2,1 . . . c j2k−1,1〉

· · · |c jk+1,m c jk+2,m · · · c j2k−1,m〉 .

This can be written in terms of VK and VL as∑
r∈Fm(k−1)

q

|VK (s, r1)〉 |VK (0, rk−m+1, r2)〉 · · ·
|VK (0, rk−1, rm)〉

|VL(s, r1)〉 |VL(0, rk−m+1, r2)〉 · · ·
|VL(0, rk−1, rm)〉 .

Letting VK,� be the submatrix of VK consisting of the last k
columns. Then we can simplify the state as∑
r∈Fm(k−1)

q

|VK (s, r1)〉|VK,�(rk−m+1, r2)〉· · ·|VK,�(rk−1, rm)〉
|VL(s, r1)〉 |VL(0, rk−m+1, r2)〉 . . . |VL(0, rk−1, rm)〉 .
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Since VK,� is a k × k Vandermonde matrix of full rank, we can
apply VK,�

−1 to further transform the state as∑
r∈Fm(k−1)

q

|VK (s, r1)〉 |rk−m+1, r2〉 · · · |rk−1, rm〉|VL(s, r1)〉
|VL(0, rk−m+1, r2)〉 . . . |VL(0, rk−1, rm)〉 .

Then from Eq. (7) we have r1 = (u, v), and rk−m+ j = v j

is the jth entry in v for 1 � j � m − 1, and rearranging the
qudits, we can write the state as∑
r∈Fm(k−1)

q

|VK (s, u, v)〉 |v〉 |r2, r3, . . . rm〉

|VL(s, r1)〉 |VL(0, rk−m+1, r2)〉 · · · |VL(0, rk−1, rm)〉 .

Let VK, f be the first k columns of VK and VK, f̄ be the submatrix
of remaining columns. Note that VK, f̄ has m − 1 columns.
Then VK (s, u, v) = VK, f (s, u) + VK, f̄ (v). Thus, the above state
can be written as∑
r∈Fm(k−1)

q

|VK, f (s, u) + VK, f̄ (v)〉 |v〉 |r2, r3, . . . rm〉
|VL(s, r1)〉

|VL(0, rk−m+1, r2)〉 · · · |VL(0, rk−1, rm)〉 .

At this point the combiner has access to |v〉 and can subtract
VK, f̄ (v) from |VK, f (s, u) + VK, f̄ (v)〉 to obtain∑
r∈Fm(k−1)

q

|VK, f (s, u)〉 |v〉 |r2, r3, . . . rm〉 |VL(s, u, v)〉

|VL(0, rk−m+1, r2)〉 · · · |VL(0, rk−1, rm)〉 .

Since VK, f is a k × k Vandermonde matrix of full rank, we can
apply VK, f

−1 to extract |s〉 as shown below.∑
r∈Fm(k−1)

q

|s〉 |u〉 |v〉 |r2, r3, . . . rm〉 |VL(s, u, v)〉

|VL(0, rk−m+1, r2)〉 · · · |VL(0, rk−1, rm)〉

= |s〉
∑

r∈Fm(k−1)
q

|r1〉 |r2, r3, . . . rm〉 |VL(s, r1)〉

|VL(0, rk−m+1, r2)〉 · · · |VL(0, rk−1, rm)〉 .

Since VL is a (k − 1) × d matrix of rank k − 1, we can now
modify each of the registers |ri〉 of size (k − 1) qudits, |r1〉 to
|VL(s, r1〉 and |ri〉 for 2 � i � m, to |VL(0, rk−m+i−1, ri )〉.
|s〉

∑
r∈Fm(k−1)

q

|VL(s, r1)〉
|VL(0, rk−m+1, r2) . . .VL(0, rk−1, rm)〉
|VL(s, r1)〉

|VL(0, rk−m+1, r2) . . .VL(0, rk−1, rm)〉 .

On rearranging the qudits, we obtain

|s〉
∑

r1∈F k−1
q

|VL(s, r1)〉 |VL(s, r1)〉
∑

r2∈F k−1
q

|VL(0, rk−m+1, r2)〉 |VL(0, rk−m+1, r2)〉
. . .∑

rm∈F k−1
q

|VL(0, rk−1, rm)〉 |VL(0, rk−1, rm)〉 .

VL is a Vandermonde matrix of size (k − 1) × d with d >

k − 1. So the image of VL is of dimension k − 1. Therefore∑
ri∈F k−1

q
|VL(0, rk−m+i−1, ri )〉 |VL(0, rk−m+i−1, ri )〉 is a uni-

form superposition independent of rk−m+i−1, for 2 � i � m.

|s〉
∑

r1∈F k−1
q

|VL(s, r1)〉 |VL(s, r1)〉
∑

f
2
∈F k−1

q

| f
2
〉 | f

2
〉 . . .

∑
f

m
∈F k−1

q

| f
m
〉 | f

m
〉 .

Now we can show that
∑

r1∈F k−1
q

|VL(s, r1)〉 |VL(s, r1)〉 is a
uniform superposition independent of s, since VL has rank
k − 1.

|s〉
∑

f
1
∈F k−1

q

| f
1
〉 | f

1
〉 · · ·

∑
f

m
∈F k−1

q

| f
m
〉 | f

m
〉 .

At this point the state is given by the above expression with the
secret completely disentangled from the rest of the system and
we can recover any arbitrary superposition. This completes
the proof that k shares can recover the secret. �

Lemma 3. (Secrecy). In the encoding scheme defined in
Eq. (9), any k − 1 or lesser number of shares do not give any
information about the secret |s〉.

Proof. The encoding scheme is a pure state encoding
scheme with the total number of shares n = 2k − 1. If some
set of k − 1 or lesser number of shares give any information
about the secret, then the secret cannot be recovered from
the remaining k or more number of shares, because of the
no-cloning theorem. However, from Lemma 2, any k shares
are enough to recover the secret completely. Hence, no set of
k − 1 (or lesser number of) shares gives any information about
the secret. �

D. Proposed scheme

From the results in previous subsections we obtain our
central result.

Theorem 1. (Communication efficient QSS). The encoding
given in Eq. (9) gives rise to a ((k, 2k − 1, d )) quantum secret
sharing scheme where d is a fixed integer satisfying k � d �
2k − 1. The scheme shares a secret of m = d − k + 1 qudits.
The communication cost for any k participants to recover the
secret is mk qudits, while the communication cost for any d
participants is d qudits.

A standard ((k, 2k − 1)) QTS will incur a communication
cost of km qudits to share m qudits, while the proposed
schemes will require only d qudits. The gains over the stan-
dard threshold schemes will depend on the number of parties
contacted; equivalently, it depends on the size of the secret.
If the secret is of size m = k, then the standard method will
lead to a communication cost of k2 qudits. For the proposed
scheme, the number of parties contacted is d = 2k − 1, there-
fore, the communication complexity is only 2k − 1 qudits.
The complexity is lower by a factor of O(k). If the secret is
of size m = 1, then in effect only k parties are contacted and
the scheme reduces to a standard threshold scheme. A subtle
point to be noted is that the communication efficient scheme
requires the dealer to share a larger secret for obtaining the
gains in communication complexity.
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An ((k, 2k − 1)) QTS can be converted to ((k, n)) QTS
for k � n � 2k − 1 by throwing away or ignoring 2k − 1 − n
shares of the ((k, 2k − 1)) scheme (Theorem 1 in [9]). If n <

2k − 1, then the scheme is a mixed state scheme. Therefore,
Theorem 1 implies the existence of ((k, n, d )) QSS schemes,
where k � d � n � 2k − 1. Note that a ((k, n)) QTS cannot
exist for n � 2k by Theorem 2 in [9].

IV. BOUNDS ON COMMUNICATION COMPLEXITY

In this section we study the optimality of the proposed
schemes. We focus on the ((k, 2k − 1, d )) schemes. We show
that the proposed ((k, 2k − 1, d )) secret sharing schemes are
optimal with respect to the communication cost. We need the
following lemma given by Gottesman (Theorem 5 in [10]).

Lemma 4. Even in the presence of preexisting entangle-
ment, sending an arbitrary state from a Hilbert space of
dimension h requires a channel of dimension h.

Lemma 5. (Secret replacement with authorized set). A party
having access to an authorized set of shares in a quantum
secret sharing scheme can replace the secret encoded with any
arbitrary state (of the same dimension as the secret) without
disturbing the remaining shares. After this replacement, secret
recovery from any of the authorized sets will give only the new
state.

Proof. Let A ⊆ [1, n] be an arbitrary authorized set in the
given QSS scheme and B be its complement. Let E : S →
A ⊗ B denote the operation for encoding the secret and RA :
A → S be the operation required for recovering the secret
from the authorized set A.

If |φ〉 is the secret encoded, then the encoding can be
given as E |φ〉 |0〉 where |0〉 represents the ancilla qudits.
To replace the secret |φ〉 with the arbitrary state |ψ〉 of the
same dimension, perform the following steps on the set A: (i)
Recover the secret |φ〉 using RA by acting only on A. The joint
state with A and B becomes |φ〉 〈φ| ⊗ ρ where |φ〉 is with A
and ρ is jointly with A and B and independent of |φ〉. (ii) Swap
the secret |φ〉 with the arbitrary state |ψ〉. (iii) Encode |ψ〉 but
using R†

A ⊗ IB by acting on the state |ψ〉 〈ψ | ⊗ ρ. Note that
all these steps do not involve any operations on the shares in
B. After these steps, the final state of qudits with A and B is the
same as E |ψ〉 |0〉. The recovery operation by any authorized
set from the n shares remains the same as before but the state
recovered is |ψ〉. �

Application of Lemma 5 in the proof of our next lemma
is similar to Theorem 6 in [10]. However, Lemma 5 is
convenient and sufficient for our work. In the next theorem,
we prove a lower bound on the communication cost for a
((k, n, d )) quantum secret sharing scheme. We build on the
ideas of Gottesman [10] and Huang et al. [20].

Lemma 6. In any ((k, 2k − 1, d )) QSS scheme, which
recovers a secret of dimension M from any set of d shares,
the total communication to the combiner from any d − k + 1
shares among the d shares is of dimension at least M.

Proof. We prove this by means of a communication proto-
col between Alice and Bob based on the QSS scheme. Alice
needs to send an arbitrary state |ψ〉 of dimension M to Bob.

First, encode the pure state |0〉 using the given QSS
scheme. Consider any set of d participants D such that each
participant in D can send a part of its share to the combiner to

recover the secret. Consider any subset L ⊆ D with d − k + 1
shares.

A third party, say Carol, is given the k − 1 shares from the
set D\L. Alice is given the d − k + 1 shares from L and all the
remaining 2k − 1 − d shares in the scheme. If Bob wants to
reconstruct the secret by accessing some qudits from each of
the d shares in D, both Alice and Carol have to communicate
some qudits from each share in L and D\L respectively. Next,
Carol sends the qudits needed for this reconstruction from
each share in D\L to Bob.

Clearly, Bob has no prior information on |ψ〉 even though
he may share some entanglement with Alice due to qudits he
received earlier from Carol. Now, instead of directly transmit-
ting |ψ〉 to Bob, Alice can exploit the secret sharing scheme
for the communication. Using the authorized set of k shares
she already has, Alice replaces the secret |0〉 in the scheme
with |ψ〉 (by Lemma 5). Then, she transmits the qudits from
the shares in L which Bob needs to reconstruct the encoded
secret. Now, Bob uses the qudits received from shares in both
L and D\L to reconstruct the secret |ψ〉. By Lemma 4, the
communication from the shares in L has to be at least M. �

Theorem 2. (Lower bound on communication cost). In any
((k, 2k − 1, d )) quantum secret sharing scheme, recovery of a
secret of dimension M from d shares requires communication
of a state from a Hilbert space of dimension at least Md/(d−k+1)

to the combiner.
Proof. Consider any set of d participants D such that

each participant in D can send a part of its share to the
combiner to recover the secret. Label the part of ith share in
D communicated to the combiner as Hi such that

dim(H1) � dim(H2) � . . . � dim(Hd ). (10)

Applying Lemma 6 for the set {Hk, Hk+1, . . . Hd} which is the
overall communication from a set of d − k + 1 shares,

d∏
i=k

dim(Hi ) � M. (11)

Then by Eq. (10), we have

dim(Hk ) � M1/(d−k+1) and dim(Hi ) � M1/(d−k+1) (12)

for 1 � i � k. From Eqs. (11) and (12), the communication to
the combiner from the d shares in D can be lower bounded as

d∏
i=1

dim(Hi ) =
k−1∏
i=1

dim(Hi )
d∏

i=k

dim(Hi ) (13)

�
(

k−1∏
i=1

M1/(d−k+1)

)
M = Md/(d−k+1). (14)

This shows that the set of d participants in D must commu-
nicate a state that is in a Hilbert space of dimension at least
Md/(d−k+1). This completes the proof. �

If we let M = q�, then we obtain the following corollary
which immediately implies the optimality of the proposed
schemes.

Corollary 1. (Optimality of proposed schemes). Any
((k, 2k − 1, d )) QSS scheme sharing � qudits incurs a com-
munication cost of � d�

d−k+1 qudits. The ((k, 2k − 1, d )) QSS
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scheme of Theorem 1 has optimal communication cost (for
fixed d).

V. CONCLUSION

In this paper we have proposed communication efficient
quantum secret sharing schemes and demonstrated their

optimality with respect to communication cost. There are
many further directions for research, some of which general-
ize the classical analogues [19–24] to the quantum setting. For
instance, it is natural to study secret sharing schemes that are
efficient with variable d as studied classically in [19]. Another
direction for research is that of general access structures.
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