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Generating high-quality multiparticle entanglement between communicating parties is the primary resource
in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is
able to sustain the generation of two pairs of Bell states—-possibly shared between a sender and a distant
receiver—which can in turn enable two-qubit teleportation. In particular, we address a spin- 1

2 chain with XX
interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In
the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite
times a state that has vanishing infidelity with the product state of two Bell pairs, thereby providing nearly unit
fidelity of teleportation. We also derive an effective Hamiltonian via a second-order perturbation approach that
faithfully reproduces the dynamics of the full system.
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I. INTRODUCTION

Quantum information processing (QIP) has become the
subject of an increasingly intensive theoretical and experi-
mental effort over the last few decades. With research fields
spanning from computation to simulation and metrology, QIP
aims at leading the next quantum revolution by developing
devices able to outperform any classical analog in a variety of
tasks, from cryptographic key distribution to the simulation
of chemical reactions. Nevertheless, a necessary condition
for almost any QIP task is the capability of implementing a
faithful quantum state transfer (QST) protocol [1–3]. Indeed,
QIP tasks such as quantum key distribution and quantum
computation require the transfer of quantum information from
a sender to a receiver, embodied by a measurement apparatus
or quantum processors.

The means by which QST is achievable can be grouped
in three large classes. The first one involves the physical
displacement of a carrier encoding the information (e.g.,
photons) and has been successfully employed in cavity QED-
based architectures [4,5]. The second one relies on the dy-
namics of a physical quantum channel connecting the sender
and the receiver, the former encoding the information in a
stationary qubit at its location, with the aim that the evolution
of the quantum channel allows the information to be retrieved
at the receiver’s stationary qubit location. In this context, spin-
1
2 chains have been intensively investigated as faithful quan-
tum channels for a variety of tasks [6–11]. Finally, the third
QST protocol is based on exploiting a preexisting quantum
resource, usually entanglement, and perform a teleportation
protocol—which represents the most prominent example of
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quantum communication under local operations and classical
communication (LOCC) constraints. In this paper, we focus
on the use of a spin- 1

2 chain to generate such a quantum
resource, which can then be used for the deterministic tele-
portation of an arbitrary two-qubit state.

Since the seminal work by Bennett et al. that introduced the
quantum teleportation protocol of a single qubit via the use of
a Bell pair and a classical communication channel [12], great
effort has been devoted both to its experimental implemen-
tation [13] and to the generalization to higher-dimensional
systems—in particular, n-qubit teleportation protocols. The
latter find a natural application in LOCC-constrained quantum
communication, where high-dimensional systems guarantee
higher security and increased transmission rates [14–23].
Also, n-qubit teleportation protocols can be used in quan-
tum computation, especially in distributed approaches [24]—
where the state of a quantum register needs to be routed
to different processing units—and in client-server models
[25]—where quantum computation is performed by a remote
unit.

While in the original protocol in Ref. [12] the quantum
channel for deterministic teleportation is embodied by one
of the Bell states, many other states have been found to
achieve the same goal, among which is the three-particle
Greenberger-Horne-Zeilinger (GHZ) and a class of W states
[26,27]. The search for two-qubit teleportation protocols went
along the same line: from the original proposal exploiting
tensor products of two Bell states [28,29] to genuine four- and
five-qubit entangled states [30,31] and a class of four-qubit
states having cluster states as a special case [32]. Similarly, for
n-qubit teleportation, 2n-qubit states made up by Bell tensor
product states constitute a faithful quantum channel and the
necessary and sufficient conditions they have to fulfill are
given in Ref. [33].
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Whereas the generation and distribution of single Bell
states—that is, the key resource for one-qubit teleportation—
have been widely investigated, the same does not hold for
the entangled states needed for n-qubit teleportation. In the
context of spin chains, several schemes have been proposed to
generate a Bell state between two distant qubits [6,8,34–40]
based mainly on the same protocol used for one-qubit quan-
tum state transfer. Clearly, any of these schemes could be used
to sequentially generate Bell states by removing the entangled
spins from the chain and waiting for a new Bell pair to be
formed. A drawback of such a procedure is that it requires
control over the motional degree of freedom of the spins and
the sequential use of a spin chain as a quantum entangler could
require its initialization at each run, not to mention that the
coherent dynamics of the quantum channel has to be preserved
for longer times. It is hence evident that, also due to scalability
issues, it would be beneficial to have a single quantum chain
able to support the generation of n pairs of Bell states, shared
among a sender and a distant receiver, to be used as a resource
for the teleportation of n qubits. Recently, the transfer of
arbitrary two-qubit states, as well as specific classes thereof,
have received a lot of attention [41–48], but the search for a
protocol able to generate, via the natural spin chain dynamics,
entanglement involving spins at distant locations to serve as a
resource for two-qubit teleportation has yet to be addressed.

In the present paper we address such a question. In
Refs. [28,29] it was shown that perfect two-qubit teleportation
can be achieved by means of a four-qubit maximally entangled
state, which is the tensor product of a pair of two-qubit
entangled states shared by the sender and receiver blocks.
Here, we show how a one-dimensional (1D) spin- 1

2 chain
with nearest-neighbor couplings of the XX type and open
boundary conditions can give rise to such a state when the
spins residing at the opposite edges of the chain are weakly
coupled to the channel. The paper is organized as follows:
In Sec. II we introduce the spin model and in Sec. III we
work out an effective perturbative Hamiltonian that faithfully
reproduces its dynamics; in Sec. IV we evaluate the bipartite
entanglement between the two pairs of spins located at the
edges of the chain and we show its usefulness for a two-
qubit teleportation protocol; finally, in Sec. V we draw our
conclusions and outlooks.

II. THE MODEL

Our model consists of a 1D spin- 1
2 chain with open bound-

aries and an isotropic nearest-neighbor interaction in the XY
directions, where the first two spins are the sender party
(A1, A2), the last two are the receiver party (B1, B2), and the
M spins in between represent the channel,

H =
∑

i

Ji

2

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1

)
, (1)

where σ̂ α
i (α = x, y, z) are the Pauli matrices and index i

comprises A1, A2, 1, . . . , M, B1, and B2. The Hamiltonian de-
scribed by Eq. (1) exhibits U (1) symmetry, thus conserving
the total magnetization in the z direction, and can be reduced
to a model of noninteracting spinless fermions [see Eq. (8)].
We set coupling strengths Ji to be uniform along the chain
except those interfacing the sender and receiver blocks with

the channel, that is, Ji = J for i �= A2, M and Ji = g otherwise,
with g � J and J = 1 being the energy unit (see Fig. 1).
A similar scheme has been found to yield a high-fidelity
two-qubit quantum state transfer in Ref. [44].

In our protocol, the initial state of the quantum channel
is fully polarized and each pair of qubits located at the
edges A and B can be judiciously initialized, that is, |�〉 =
|ϕ〉A1A2

|0〉1...M |ϕ〉B1B2
, with |0〉1...M = |00 . . . 0〉 involving all

the channel spins. We denote by |0〉 and |1〉, respectively, the
spin-up | ↑〉 and spin-down |↓〉 state of a single spin- 1

2 system.
Our primary goal is to achieve a tensor product of two Bell
states, which in their generalized version read∣∣�1,2

θ

〉 = 1√
2

(|01〉 ∓ e−iθ |10〉), (2)

∣∣�3,4
θ

〉 = 1√
2

(|00〉 ∓ e−iθ |11〉) (3)

(note that the entanglement featured in a Bell state is
independent of its relative phase) between blocks A and
B. To do so, we need to determine the Hamiltonian
dynamics in the invariant subspaces with (0, 2, 4),
(1, 3), or (2) flipped spins, depending on which
Bell states enter the product. For instance, if we
were considering the tensor product state |�1

θ 〉|�3
φ〉 =

1
2 (|0100〉 − e−iθ |1000〉 − e−iφ |0111〉 + e−i(θ+φ)|1011〉), the
dynamics would occur in the Hilbert space with one and three
spins down, i.e., in the (1, 3)-excitation invariant subspaces.
Nevertheless, as Bell states are all equivalent under local
unitary operations, each of the 16 tensor products can be
obtained from an arbitrary one. Clearly, because of the
conservation of the total magnetization along the z axis, the
initial number of flipped spins is conserved and so in the
A ∪ B block there have to be n � 2 flipped spins. In the
following we investigate the case n = 2 since, as we show
in our perturbation analysis later on, the quantum channel
(bulk of the chain) will not effectively support any flipped
spin during the dynamics. (Henceforth we omit |0〉1...M for
convenience.) Therefore, in order to possibly generate a
tensor product of Bell states lying in subspaces with (0, 2, 4)
or (1, 3) flipped spins, the initial state cannot be a simple
tensor product of single-qubit states, implying that it should
contain some entanglement. Although this could be achieved
by exploiting the dynamics of the spins in blocks A and
B before coupling them to the quantum channel, it would
require additional time control over the couplings if the initial
states are not eigenstates of their respective Hamiltonian.

Our analysis is thus made upon initial states of the form
(using the notation |sA1 sA2 sB1 sB2〉 ≡ |sA1 sA2 00 . . . 0sB1 sB2〉 with
si ∈ {0, 1})

|�1(0)〉 = |1100〉 ≡ |1100 . . . 000〉, (4)

|�2(0)〉 = |1010〉 ≡ |1000 . . . 010〉, (5)

|�3(0)〉 = |1001〉 ≡ |1000 . . . 001〉, (6)

|�4(0)〉 = |0110〉 ≡ |0100 . . . 010〉. (7)

Note that the remaining options |0011〉 and |0101〉 are sym-
metric to |�1(0)〉 and |�2(0)〉, respectively.
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FIG. 1. Alice (A) and Bob (B) each has access to a pair of qubits located at the opposite edges of a quantum channel. Their aim is to
generate, via the natural dynamics of the spin chain, an entangled state of the form, e.g., |�k1

θ 〉A1B2
⊗ |�k2

θ 〉A2B1
, that is, the tensor product of

two Bell states, to be used as a resource for two-qubit teleportation.

Equation (1) can be mapped to a spinless fermion model
via the Jordan-Wigner transformation [49]

H =
N−1∑
i=1

Ji(ĉ
†
i ĉi+1 + ĉ†

i+1ĉi ), (8)

where N = M + 4 and ĉ†
i (ĉi) is the fermionic creation (an-

nihilation) operator at site i. Because of the quadratic nature
of the Hamiltonian, the one-particle spectrum is sufficient to
describe its full dynamics. Denoting by εk and |εk〉 = ĉ†

k |{0}〉
the single-particle kth energy eigenvalue and its correspond-
ing eigenvector (with |{0}〉 being the vacuum state), the full
Hamiltonian operator acting on a 2N -dimensional Hilbert
space is easily decomposed into a direct sum over all particle
number-conserving invariant subspaces H = ⊕N

n=1 Hn, where

Hn =
N∑

k1<k2<···<kn=1

(εk1 + εk2 + · · · + εkn )

× ĉ†
k1

ĉ†
k2

· · · ĉ†
kn
|{0}〉〈{0}|ĉkn · · · ĉk2 ĉk1 . (9)

Each Hn can then be constructed quite simply once the single-
particle spectrum is known. Notice that the specific ordering
of the ki’s in the sum of Eq. (9) is taken in such a way that
unwanted phase factors do not arise when mapping back into
spin operators via the inverse Jordan-Wigner transformation.
Every invariant subspace is spanned by a set of states having
a fixed number of flipped spins. Hence, single-particle states
| j〉 = ĉ†

j |{0}〉 are obtained by flipping the jth spin of the
system, two-particle states | ji〉 = ĉ j

†ĉi
†|{0}〉 are created by

flipping the jth and ith spins of the chain (with j < i), and so
forth. The noninteracting nature of the fermionic Hamiltonian
in Eq. (9) allows one to reduce the two-particle transition
amplitudes hpq

nm(t ) = 〈pq|e−itH2 |nm〉 to determinants of matri-
ces whose elements are single-particle transition amplitudes
f j
i (t ) = 〈 j|e−itH1 |i〉, where i = {n, m} and j = {p, q} (see,

e.g., Ref. [42,43]),

hpq
nm(t ) =

∣∣∣∣ f p
n (t ) f q

n (t )
f p
m (t ) f q

m(t )

∣∣∣∣. (10)

Consequently, the evolved state in the two-particle sector
results in

|�(t )〉 =
N∑

p<q=1

hpq
n0m0

(t )|pq〉, (11)

for an initial state |n0m0〉.
Notwithstanding we are able to solve the exact full dynam-

ics of Hamiltonian (1) numerically, it is instructive to rely on a

perturbative approach due to the presence of weak couplings g
in order to derive an effective Hamiltonian. This allows us to
identify more easily the peculiar dynamical behavior behind
the generation of highly entangled states between blocks A
and B.

III. PERTURBATIVE ANALYSIS

Similarly to the one-particle subspace dynamics, the model
supports one- and two-particle Rabi-like oscillations between
its edge spins. This has been used to generate a Bell state in
the one-particle subspace in an XX -type spin- 1

2 chain with
an even number of sites and a single weakly coupled spin
residing at each end, given one gets |10〉 → 1√

2
(|10〉 − |01〉)

shared between them at half the QST time [8].
However, a straightforward extension involving two non-

interacting edge spins, such as proposed in Ref. [47], each
weakly coupled to the quantum channel, does not yield a ten-
sor product of Bell states. Indeed, starting from, e.g., |1100〉,
because of the permutation symmetry of the edge spins, the
amplitudes of states {|1001〉, |1010〉, |0101〉, |0110〉} have to
be equal at all times, thereby preventing the generation of any
Bell state between both end blocks.

Turning our attention back to the system arrangement
displayed in Fig. 1, where the edge spins are interacting, in
the n = 2 flipped-spin subspace, the states whose dynamics
we are about to investigate are listed in Eqs. (4)–(7). Given the
dynamics is restricted to the two-excitation subspace and that
g � J , our task now is to carry out a perturbative approach in
order to derive an effective Hamiltonian involving only the six
possible configurations spanning over both edge blocks (A and
B), that is, {|A1B1〉, |A1B2〉, |A2B1〉, |A2B2〉, |A1A2〉, |B1B2〉}
using the occupation-site index notation | ji〉 = ĉ j

†ĉi
†|{0}〉.

A. Effective description

Let us split Hamiltonian (8) into H = H0 + Hch + HI ,
where

H0 = J
(
c†

A1
cA2 + c†

B1
cB2 + H.c.

)
, (12)

Hch =
M−1∑
i=1

J (c†
i ci+1 + H.c.), (13)

HI = g
(
c†

A2
c1 + c†

McB1 + H.c.
)
. (14)
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The effective Hamiltonian can be obtained via a second-order
perturbation method that gives [50]

〈ψ0,i|Heff |ψ0, j〉 = Ejδi, j − 1

2

∑
k

×
[

(HI )ik (HI )k j

λk − Ei
+ (HI )ik (HI )k j

λk − Ej

]
, (15)

where (HI )ik ≡ 〈ψ0,i|HI |λk〉, with {|ψ0,i〉} and {|λk〉} being,
respectively, the eigenstates of H0 and Hch with corresponding
energies {Ei} and {λk}.

The unperturbed eigenstates of the subsystem of interest,
that is, blocks A and B, read

|ψ0,1〉 = |A+B+〉, (16)

|ψ0,2〉 = |A+B−〉, (17)

|ψ0,3〉 = |A−B+〉, (18)

|ψ0,4〉 = |A−B−〉, (19)

|ψ0,5〉 = |A1A2〉, (20)

|ψ0,6〉 = |B1B2〉, (21)

where |AμBν〉 = (|A1〉 + μ|A2〉) ⊗ (|B1〉 + ν|B2〉)/2, with
μ, ν = ±1. Their corresponding eigenvalues are E1 = 2J ,
E4 = −2J , and E2,3,5,6 = 0.

The single-particle eigenstates of the channel Hamiltonian
Hch are

|εm〉 =
√

2

M + 1

M∑
x=1

sin

(
πmx

M + 1

)
|x〉, (22)

with energies εm = 2J cos ( πm
M+1 ). Then one can construct 4 ×

M unperturbed states as |λk=(l,m)〉 = |ηl〉|εm〉 (l = 1, 2, 3, 4
and m = 1, . . . , M), with |η1,2〉 = (|A1〉 ± |A2〉)/

√
2 and

|η3,4〉 = (|B1〉 ± |B2〉)/
√

2. The corresponding eigenvalues
read λl,m = εm + J for l = 1, 3 and λl,m = εm − J for l =
2, 4. The remaining unperturbed eigenstates involve linear
combinations of states containing no excitations in either
block A or B. Those provide no contribution to the sum
in Eq. (15) given 〈ψ0,i|HI |x1x2〉 = 0 for all i and x1, x2 ∈
{1, . . . , M}.

With all the above relations at hand, one is able to evaluate
the matrix elements of Heff through Eq. (15). When doing so,
it is possible to show that all of them are functions of four
parameters, namely,

�±
1 ≡ g2

2

∑
m

a2
m

εm ± J
, �±

2 ≡ g2

2

∑
m

a2
me2iθm

εm ± J
, (23)

for a mirror-symmetric channel fulfilling |αm
1 | = |αm

M | = am

and (αm
1 ) = (αm

M )∗ = ameiθm , with αm
x ≡ 〈x|εm〉 [51]. The ex-

pressions above yield �±
1 = 0 and �±

2 = −g2/2J if M =
6n (n = 1, 2, . . .) and �±

1 = ±g2/2J and �±
2 = g2/2J for

M = 6n + 4. We also point out that the above perturbation
approach is not valid for M = 6n + 2 given it yields εm = ±J ,
thereby causing divergence of the sums above. Without loss of

units of

FIG. 2. Infidelity between exact dynamics and the perturbative
one vs the weak coupling g (in units of J) for N = 94 and N = 16
evaluated at t = πJ/g2. We take as the initial state |�1(0)〉.

generality, though, we consider M = 6n for the remainder of
this paper.

After working out every term of the effective Hamiltonian
via Eq. (15), its matrix form written in basis {|ψ0,i〉} reads

Heff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2J 0 0 0 g2

2J
g2

2J

0 0 0 0 g2

2J − g2

2J

0 0 0 0 g2

2J − g2

2J

0 0 0 −2J g2

2J
g2

2J
g2

2J
g2

2J
g2

2J
g2

2J 0 0
g2

2J − g2

2J − g2

2J
g2

2J 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

We finally express its eigenvectors and corresponding eigen-
values in terms of {|sA1 sA2 sB1 sB2〉}, recalling that, e.g.,
|A1B1〉 ≡ |1010〉,

|ξ1〉 ≈ 1
2 (|1010〉 + |1001〉 + |0110〉 + |0101〉), (25)

|ξ2〉 ≈ 1
2 (|1010〉 − |1001〉 − |0110〉 + |0101〉), (26)

|ξ3〉 ≈ 1√
2

(|1100〉 + |0011〉), (27)

|ξ4〉 = 1√
2

(−|1001〉 + |0110〉), (28)

|ξ5〉 = 1
2 (|1010〉 − |0101〉 + |1100〉 − |0011〉), (29)

|ξ6〉 = 1
2 (|1010〉 − |0101〉 − |1100〉 + |0011〉), (30)

with ξ1 ≈ 2J , ξ2 ≈ −2J , ξ3=ξ4 = 0, ξ5 = g2/J , and ξ6 =
−g2/J . We stick to the above notation hereafter.

In Fig. 2 we report the infidelity between the states ob-
tained via Eqs. (8) and (24) taken at a specific time for the ini-
tial state |�1(0)〉 and different values of g and N . We see that
the infidelity scales as Ng2, thus validating the second-order
perturbation approach for g � 1√

N
. As we are interested in a

protocol generating long-distance entanglement between the
qubits in the sender block and those in the receiver block, we
have reported the infidelity between the exact and perturbative
dynamics only at the time t = πJ

g , corresponding to the first
half of the Rabi-like oscillation of the excitations.
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E
(ρ

A
1A
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)

t[units of J/g2]

g=1/10
g=1/20
g=1/40

FIG. 3. Exact time evolution of the entanglement entropy
E (ρA1A2 ) for N = 22, |�1(0)〉 = |1100〉, and different values of g.
Maximum entanglement is achieved at times t∗ = (2n+1)πJ

2g2 , with n
being a positive integer, when the state can be expressed as a tensor
product of Bell states shared by pairs (A1, B2) and (A2, B1).

B. Generation of Bell product states

We are now ready to track down the time evolution of
the initial states displayed in Eqs. (4)–(7) in light of the
second-order perturbation theory and check whether a tensor
product of Bell states can be achieved involving blocks A and
B. We stress that the effective description in Eq. (24) entails
no excitation within the channel at any time.

According to the eigenstates obtained above, we arrive at
the following dynamics for |�1(0)〉 = |1100〉,

|�1(t )〉 =1

2

[(
1 − cos

g2t

J

)
|0011〉 + i sin

g2t

J
|0101〉

−i sin
g2t

J
|1010〉 +

(
1 + cos

g2t

J

)
|1100〉

]
. (31)

Given the above is a pure state, we can evaluate the amount
of entanglement block A is sharing with block B by means
of the entanglement entropy E (ρA1A2 ) = Tr[ρA1A2 log2 ρA1A2 ],
with ρA1A2 (t ) = TrB1B2 (|�1(t )〉〈�1(t )|), which is reported in
Fig. 3, wherein we check via exact diagonalization of the
full Hamiltonian, Eq. (1), that it reaches the maximum value
attainable for two qubits, E = 2, at t∗ = (2n+1)πJ

2g2 , with n =
0, 1, 2, . . .. Notice that after many Rabi-like oscillations n,
the perturbative dynamics no longer faithfully reproduces the
exact dynamics. This is due to the fact that leakage of the ex-
citations in the chain is building up with time and, in the long-
time regime, Rabi-like oscillations eventually are completely
suppressed. Nevertheless, in any practical implementation of
our protocol, the generated entanglement would be exploited
after the first few oscillations, where the agreement between
exact and perturbative dynamics is excellent. At such times,
the state of Eq. (31) reads

|�1(t∗)〉 = 1
2 (|0011〉 + (−1)ni|0101〉
+ (−1)n+1i|1010〉 + |1100〉). (32)

This state can be also written as a tensor product of two Bell
states between pairs (A1, B2) and (A2, B1), namely |�1(t∗)〉 =
|�1

θn
〉

A1B2
⊗ |�2

θn
〉

A2B1
, where∣∣�1

θn

〉
A1B2

= 1√
2

(|01〉 + (−1)n+1i|10〉), (33)

∣∣�2
θn

〉
A2B1

= 1√
2

(|01〉 + (−1)ni|10〉), (34)

and θn = −π 2n+1
2 .

Although the state in Eq. (32) is a legitimate one for
two-qubit teleportation, Alice may apply a single-qubit phase
gate R( π

2 ) to retrieve the standard Bell states and subsequently
follow the protocol addressed in Ref. [28] to carry out the
teleportation. Otherwise, as pointed out in Ref. [12], there will
be a different set of two local unitary operations Bob has to
perform on each of his qubits which we report in the following
section.

We reach to a similar scenario starting from |�2(0)〉 =
|1010〉,

|�2(t )〉 =1

2

[(
cos 2Jt + cos

g2t

J

)
|1010〉

+
(

cos 2Jt − cos
g2t

J

)
|0101〉

−i sin 2Jt (|1001〉 + |0110〉)

−i sin
g2t

J
(|1100〉 − |0011〉)

]
, (35)

with maximum entanglement entropy E (ρA1A2 ) at the same
time t∗ = (2n+1)πJ

2g2 , when the state reads

|�2(t∗)〉 = 1
2 [i(−1)n(|0011〉 − |1100〉)

+ cos 2Jt∗(|0101〉 + |1010〉)

− i sin 2Jt∗(|0110〉 + |1001〉)]. (36)

If we now assume that the ratio J2/g2 is commensurate such
that 2Jt∗ = 2mπ or 2Jt∗ = (2m + 1)π , we have that the
cosine and sine functions yield, respectively, ±1 and 0. The
state in Eq. (36) thus becomes

|�2(t∗)〉 = 1
2 [i(−1)n(|0011〉|1100〉)

+ μn(|0101〉 + |1010〉)], (37)

with μn ≡ sgn[cos 2Jt∗], which can be readily seen to be the
product state |�2(t∗)〉 = i(−1)n|�1

η〉A1B2
⊗ |�1

η〉A2B1
, where

∣∣�1
η

〉
A1B2

= 1√
2

(|01〉 − μn(−1)ni|10〉), (38)

and η = π
μn

2 . Similarly, for 2Jt∗ = π/2 + 2nπ or 2Jt∗ =
3π/2 + 2nπ , cosine and sine functions give, respectively, 0
and ±1, and the state in Eq (36) evolves into |�2(t∗)〉 =
i(−1)n|�1

η〉A1B1
⊗ |�1

η〉A2B2
. For times different from those

reported above, although the entanglement entropy is maxi-
mum, the state cannot be decomposed into a tensor product of
Bell states.

The two remaining initial states in our investigation,
|�3(0)〉 = |1001〉 and |�4(0)〉 = |0110〉, do not yield any
entanglement between block A and B at any time, that is,
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E [ρA1A2 (t )] = 0. It is interesting to note that their dynamics
does not even involve g in the second-order perturbation
expansion.

IV. ENTANGLEMENT OF TELEPORTATION

The one-qubit teleportation protocol establishes that Alice
and Bob share a pair of qubits in a maximally entangled (Bell)
state |�k

θ 〉AB [cf. Eqs. (2) and (3)] and that the former performs
a Bell measurement on her shared qubit and an unknown one
|ϕ〉X . It is thus convenient to express the initial state of the
protocol as

|ϕ〉X ⊗∣∣�k
θ

〉
AB = 1

2

4∑
j=1

∣∣� j
θ

〉
XA⊗Ok

j |ϕ〉B, (39)

where the operators Ok
j depend on the initially shared en-

tangled state. Alice must now perform a Bell measurement
depending on the relative phase θ . The state reduces, with
equal probability, to one of the Bell states and Alice classically
communicates her result to Bob. Depending on the outcome,
he is able to recover the unknown state |ϕ〉B performing the
right operation Õk

j (according to initial shared state) among
the set

Õ1
j ={−R(θ ), R(θ )σ z, σ x, σ zσ x}, (40)

Õ2
j ={−R(θ )σ z, R(θ ), σ zσ x, σ x}, (41)

Õ3
j ={−R(−θ )σ x,−R(−θ )σ zσ x, I,−σ z}, (42)

Õ4
j ={R(−θ )σ zσ x, R(−θ )σ x,−σ z, I}, (43)

with

R(θ ) =
(

eiθ 0
0 e−iθ

)
. (44)

Observe that Õk
j is simply the inverse of Ok

j in Eq. (39). The
quantum resource for this protocol is a maximally entangled
state, i.e., the Bell state of two qubits.

For the two-qubit teleportation protocol let us suppose
Alice and Bob share the state |�k1

θ 〉A1B2
⊗|�k2

θ 〉A2B1
and Alice

wants to teleport an arbitrary two-qubit state |ϕ〉XY = a|00〉 +
b|01〉 + c|10〉 + d|11〉. The initial state of the protocol can
then be written as

|ϕ〉XY ⊗∣∣�k1
θ

〉
A1B2

⊗∣∣�k2
θ

〉
A2B1

= 1

4

4∑
j1, j2=1

∣∣� j1
θ

〉
XA1

⊗∣∣� j2
θ

〉
YA2

⊗(
Ok2

j1
⊗Ok2

j2

)|ϕ〉B1B2 .

(45)

As a consequence, a measurement in the generalized Bell ba-
sis given above on Alice’s pairs of qubits (X, A1) and (Y, A2)
reduces the scheme to the standard single-qubit teleportation
protocol for each qubit X and Y .

In Ref. [28], the entanglement of teleportation (EoT)
ET (|�〉) has been introduced as a measure of the usefulness
of a 2n-qubit pure state |�〉 for n-qubit teleportation. In
the following we report its expression for the case of four
qubits. The EoT is based on the generalized concurrence

[52], C(|�〉) = |〈�|�̃〉|, where |�̃〉 = σ̂
y
A1

σ̂
y
A2

σ̂
y
B1

σ̂
y
B2

|�〉∗ and
the state is expressed in the computational basis. Hence,
ET (|�〉) = 1

16

∑16
i=1 C(|�(i)〉), where |�(i)〉 are all the orthog-

onal states that can be obtained from |�〉 by applying certain
single-qubit unitary operations, as reported in Ref. [28]. Let
us point out that the EoT is independent of the choice of
basis as long as each of the 16 basis states are composed of a
tensor product of maximally entangled states. Straightforward
calculations show that in the case of θ = π

2 the states reported
in Eqs. (32) and (37) have unit EoT.

Although the states obtained by the full and effective
dynamics have vanishing infidelity, as shown in Fig. 2, let
us also compare, for the sake of completeness, the efficiency
of the teleportation protocol performed via the exact and the
reduced states as, in principle, states with high fidelity may
not share the same resources [53]. To this aim we report
the fidelity of teleportation FT by means of the full and the
effective Hamiltonians reported in the previous sections, in
Eqs. (8) and (24), respectively. The fidelity of teleportation is
given by the overlap of the unknown state to be teleported, say,
|ϕin〉, and Bob’s output state ρ̂out, that is, FT = 〈ϕin|ρ̂out|ϕin〉.
Using the two-qubit parametrization as in Ref. [42],

|ϕ〉in =
√

1 − s

2

(
cos

θ1

2
|0〉 + eiφ1 sin

θ1

2
|1〉

)

⊗
(

cos
θ2

2
|0〉 + eiφ2 sin

θ2

2
|1〉

)

+
√

1 + s

2

(
e−iφ1 sin

θ1

2
|0〉 − cos

θ1

2
|1〉

)

⊗
(

e−iφ2 sin
θ2

2
|0〉 − cos

θ2

2
|1〉

)
, (46)

with 0 � θ1,2 � π , 0 � φ1,2 � 2π , and −1 � s � 1.
After working out the fidelity of teleportation of such a

state, according to the effective Hamiltonian description, we
integrate it over all possible inputs to obtain the average
fidelity of teleportation,

F̄eff(t ) = 1

2
− 7

54
cos

2g2t

J
+ 10

27
sin

g2t

J
. (47)

On the other hand, the average FT for the full dynamics
reads

F̄T (t ) = 1

27

(
7 + 3|h12|2 + 3|h1N−1|2 + 6|h1N |2 + 3|hN−1N |2

+ 3|h2N |2−2
N−2∑
n=3

(|h1n|2+|h2n|2+|hnN−1|2 + |hnN |2)

+ 14 Re(h12h∗
N−1N − h2N h∗

1N−1) + 10 Im(h12h∗
1N−1

+ h2N h∗
N−1N − h1N−1h∗

N−1N − h12h∗
2N )

− 4
N−2∑
n=3

Im(h1nh∗
nN − h2nh∗

nN−1)

)
, (48)

where, for conciseness, hpq stands for hpq
12 as defined in

Eq. (10), and Re (Im) denote the real (imaginary) part. In
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FIG. 4. Average fidelity of teleportation for the full model for
a random two-qubit state for various values of g. Time is being
expressed in units of J/g2. The black curve represents the same
quantity for the effective dynamics obtained from the second-order
perturbation approach.

Fig. 4 we report F̄T for a chain with N = 22 sites for different
values of g, comparing it with the effective description F̄eff.
It can be seen that already for values of g/J = 1/40, the
effective description is faithful and the average fidelity of
teleportation is very close to the unit at time t∗ obtained from
the perturbative analysis (see the inset of Fig. 4). From Figs. 3
and 4 we can also infer that, for g � 1, being the entanglement
entropy and the average fidelity of teleportation obtained by
the perturbative approach an excellent approximation of the
same quantities derived via the exact dynamics, the infidelity
of the two respective maps should be negligible at any time,
and not only at the times shown in Fig. 2.

Finally, as the resource for two-qubit teleportation may
be used at an arbitrary time after t∗, we consider the case
where Alice and Bob decouple, at t = t∗, their respective
blocks from the channel, i.e., set g = 0. The qubits in each
block are still interacting according to H0 in Eq. (12), but the
entanglement between the blocks remains constant. This can
be easily shown as the pair of spins in each block are left, at
t = t∗, in a state close to the maximally mixed state one. As
[Ĥi j, ρ̂i j] = 0, for i, j = A1, A2 and B1, B2, the entanglement
of teleportation also stays almost constant, exhibiting oscilla-
tions with less than 1% of the values at t = πJ

2g2 (see Fig. 3), as
we have numerically verified.

V. CONCLUSIONS

We worked out a protocol for generating four-qubit gen-
eralized Bell states, to be used in the quantum teleportation
of an arbitrary two-qubit state, via the natural Hamiltonian
dynamics of a XX spin- 1

2 chain with weakly coupled end
blocks. We derived analytically the effective dynamics of
the system in the two-excitation manifold up to second-order
perturbation theory.

We found that a simple initialization of the sender and
receiver blocks, i.e., a two-spin flip on a overall fully polarized
spin background of the quantum channel, results in the gener-
ation of the appropriate resource (entanglement) upon which
the teleportation protocol will rely on. Note that, at variance
with entanglement distribution schemes, where entanglement
is shared initially between two pairs of qubits (of which only
one belongs to the chain) and the quantum channel is used
to distribute the initial entanglement, our protocol generates
entanglement via the natural dynamics of the chain and no
preexisting entanglement is required.

Motivated by the need, in several quantum information pro-
cessing tasks, to transfer many-qubit states with a minimum
amount of resources, we have taken a step in this direction by
implementing the two-qubit case in a quantum channel, which
also fulfills the one-qubit scheme. Remarkably, the timescale
for sharing a tensor product of two Bell states is the same
as that required for a single Bell state, hinting towards the
possibility that the generation of an arbitrary tensor product
of Bell states, via our protocol, is independent of the wanted
number of Bell pairs. This seems to be a consequence of the
noninteracting nature of the model, where the many-particle
dynamics can be evaluated through single-particle transition
amplitudes. This will be addressed in a future project.

Our work was inspired by the idea of using preengineered
spin chains for transmitting (and generating) states from one
point to another with minimal control, which may find appli-
cations in intermediate-scale quantum computations as well
[54]. Further extensions of this work should generalize the
protocol to cover the generation of resources for n-qubit tele-
portation as well as investigate the effects static disorder and
other forms of noise, as well as other ways to perturbatively
couple the sender and the receiver blocks to the quantum
channel, e.g., using strong local magnetic fields [41,42,55].
Finally, considering the high level of control achievable in
cold atom settings, we believe that our protocol is within
experimental reach [56–58].
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